Website Detail Page
published by
the PhET
This webpage contains an interactive simulation that allows students to explore quantum interference of photons and matter particles. The simulation allows the user to shoot either a continuous beam or single particles at a screen and watch an interference pattern emerge. The entire evolution of the wave packet can be seen as it travels from the source to the screen. This simulation helps learners to develop a concrete mental model of quantum particles and the process of interference. User controls include resolution of the detector, size and placement of barriers, slits and detectors, types of particles modeled, frequency of photons or velocity of the particles. The simulations includes a stopwatch and ruler tool in order to record data and the capability to capture results at different times for comparisons.
This page also contains sample learning goals, a teacher's guide and user-submitted ideas and activities for use with the simulation. This simulation is part of a large and growing collection. It has been designed using principles from physics education research and refined based on student interviews.
ComPADRE is beta testing Citation Styles!
Record Link
<a href="https://psrc.aapt.org/items/detail.cfm?ID=4232">PhET. PhET Simulation: Quantum Wave Interference. Boulder: PhET, August 11, 2006.</a>
AIP Format
(PhET, Boulder, 2005), WWW Document, (https://phet.colorado.edu/en/simulation/quantum-wave-interference).
AJP/PRST-PER
PhET Simulation: Quantum Wave Interference (PhET, Boulder, 2005), <https://phet.colorado.edu/en/simulation/quantum-wave-interference>.
APA Format
PhET Simulation: Quantum Wave Interference. (2006, August 11). Retrieved September 20, 2024, from PhET: https://phet.colorado.edu/en/simulation/quantum-wave-interference
Chicago Format
PhET. PhET Simulation: Quantum Wave Interference. Boulder: PhET, August 11, 2006. https://phet.colorado.edu/en/simulation/quantum-wave-interference (accessed 20 September 2024).
MLA Format
PhET Simulation: Quantum Wave Interference. Boulder: PhET, 2005. 11 Aug. 2006. 20 Sep. 2024 <https://phet.colorado.edu/en/simulation/quantum-wave-interference>.
BibTeX Export Format
@misc{
Title = {PhET Simulation: Quantum Wave Interference},
Publisher = {PhET},
Volume = {2024},
Number = {20 September 2024},
Month = {August 11, 2006},
Year = {2005}
}
Refer Export Format
%T PhET Simulation: Quantum Wave Interference %D August 11, 2006 %I PhET %C Boulder %U https://phet.colorado.edu/en/simulation/quantum-wave-interference %O application/java
EndNote Export Format
%0 Electronic Source %D August 11, 2006 %T PhET Simulation: Quantum Wave Interference %I PhET %V 2024 %N 20 September 2024 %8 August 11, 2006 %9 application/java %U https://phet.colorado.edu/en/simulation/quantum-wave-interference Disclaimer: ComPADRE offers citation styles as a guide only. We cannot offer interpretations about citations as this is an automated procedure. Please refer to the style manuals in the Citation Source Information area for clarifications.
Citation Source Information
The AIP Style presented is based on information from the AIP Style Manual. The APA Style presented is based on information from APA Style.org: Electronic References. The Chicago Style presented is based on information from Examples of Chicago-Style Documentation. The MLA Style presented is based on information from the MLA FAQ. This resource is stored in a shared folder. You must login to access shared folders. PhET Simulation: Quantum Wave Interference:
Accompanies
PhET Teacher Ideas & Activities: Probability and Randomness Interactive Lecture
This is a lecture presentation in Power Point format designed by the PhET research team specifically to supplement the Quantum Wave Interference simulation. It could be adapted for use in either a sophomore-level Modern Physics class or an introductory class. relation by Caroline HallKnow of another related resource? Login to relate this resource to it. |
SupplementsContributeRelated MaterialsSimilar Materials |