The first edition of this publication was registered with the Library of Congress with the call number QC20.C66.2004.

The second edition was registered with the Library of Congress with the LCCN 2019947884. It has been assigned the ISBN 9780961342968 and carries the Library of Congress call number QC20.C66.2019.
Preface to the Second Edition

Note: Usually with a second edition of a book, the preface to the first edition\(^1\) is preserved and a short preface to the second edition is added. In the present case, the preface to the first edition required here and there a number of edits which, had they not been made, would have been perhaps a bit confusing to readers of the second edition. Consequently, I have elected to depart from the normal practice and simply create a preface for the second edition, though much of its content essentially copies that of the preface to the first edition.

Note: Regardless of which components are included and which omitted in this version of *Computation and Problem Solving in Undergraduate Physics*, the preface and acknowledgements in the front matter are those from the assemblage containing all components.

Since the mid 1980’s (including the years since my official retirement in 2008), we in the Department of Physics at Lawrence University have been developing and offering curricular components that

- support efforts to acquaint students with computational procedures and resources early enough so that they will be motivated and prepared to use these resources on their own initiative when circumstances warrant and so that later work need not be interrupted to deal with computational issues as an aside to its main purposes, and
- provide students with both the background and the confidence to support informed reading of vendor manuals, which usually do a splendid job of listing capabilities exhaustively but typically burden the beginner with initially irrelevant refinements and fail to illustrate adequately how even the rudimentary capabilities can be combined to perform useful tasks.

Over the years since the mid 1980s, a wide assortment of instructional materials has been drafted and redrafted. This book brings these materials together into a single publication with the hope that it may prove useful to others who seek to achieve these same or similar objectives.\(^2\)

With these objectives in mind, this book consciously focuses on helping students get started. It is not designed to be comprehensive or exhaustive, either in laying out the capabilities of any particular computational resource or in discussing numerical algorithms. Students must understand throughout that they must refer regularly to vendors’ manuals and on-line help files for details beyond those discussed in the book—details that may, in fact, be necessary for successful completion of some of the exercises. The need for that activity is noted here; repeated reminders will not be included in the body of the book.

\(^1\)The first edition was published in 2003, though it experienced a number of edits and adjustments in subsequent years.

The book is also not a book about computational physics; it addresses uses of computational tools. Indeed, the sophomore course at Lawrence in which students first encounter this book would not in any way replace a course in computational physics. Rather, the materials treated here should provide strong background for a subsequent, junior-senior level course in computational physics, which would—I believe—he substantially enhanced if students came to it already familiar with the resources on which this book concentrates.

One major difficulty in creating materials on computational topics is that different potential users favor different hardware platforms and software packages. Especially in the computational arena, the variety of options and combinations is so great that any single choice (or coordinated set of choices) is bound to limit the usefulness of the product to a small subset of all potential users. This book addresses that difficulty by being assembled from a wide assortment of components, some of which—the generic components—will be included in all versions and others of which—those specific to particular software packages—will be included only if the potential user requests them. Thus, the specific software and hardware discussed in the book can be tailored to the spectrum of resources available at the instructor’s site. Two versions may well differ in numerous respects. One may include the generic components and the components that discuss\(^3\) IDL, MAPLE, C (with Numerical Recipes), and \LaTeX\, while another may include the generic components and the components that focus on MATLAB, Mathematica, and FORTRAN (including Numerical Recipes). The table of contents and index contain only entries from the included chapters and sections. To facilitate communication among users of different versions, however, chapter and section numbers and the numbers identifying package-independent exercises are preserved in all versions. In a version that does not include FORTRAN, for example, the FORTRAN sections will be omitted from Chapters 9, 10, 11, 13, 14, and 15 and Chapters 12 and 16—for which FORTRAN is prerequisite—will be omitted altogether. In addition, FORTRAN-specific exercises will be omitted from the end-of-chapter exercises. Because of version-specific omissions such as those just described, there will therefore be gaps in the chapter, section, and exercise numbers in any version that does not include all options. In contrast, within each chapter, equation numbers, figure numbers, table numbers, and footnote numbers advance from one without gaps, and page numbers run continuously from the beginning of the book to the end. In consequence, the numbers assigned to identical equations, figures, tables, footnotes, and pages may differ from version to version, but the numbers assigned to chapters and sections with identical titles and the numbers assigned to identical exercises will be the same in all versions (and will have gaps reflecting omitted chapters, sections, and exercises). Such flexibility would be impossible were we not able to exploit features of \LaTeX, including the particular capabilities of the ifthen and imakeidx packages, to assemble the PostScript and PDF files that subsequently can be printed to obtain each version.

Even among sites that use the same spectrum of hardware and software, however, some aspects of local environments remain unique to individual sites. Local rules of citizenship; the features and elementary resources of the local operating system; local practices and policies governing structuring of public directories, assignment of accounts and passwords, backup schedules, and after-hours access; licensing restrictions on proprietary software; means to launch particular application programs, compile user-written FORTRAN and/or C programs, and access printers; and numerous other aspects are subject to considerable local variation. This book does not constrain local options in these matters. Instead, its users must draft a site-specific supplement, which we will refer to as the Local Guide, to which individuals should refer for site-specific particulars. A \LaTeX\ template for that guide, specifically the one used at Lawrence, is available to users of this book, but it will require editing to reflect local practices. In particular, to give local sites flexibility in configuring their environments, we have in the book used symbols like \$HEAD, \$IDLHEAD, and \$NRHEAD to stand for paths to the specific directories that sit at the head of particular directory trees. All such symbols must be expanded as described in the Local Guide when commands or statements illustrated in the book are submitted to the user’s machine.

\(^3\)Many of the packages mentioned in this list are commercial and proprietary, and the names are registered trademarks of the respective vendors. Full contact information for all mentioned packages will be found in Appendix Z.
With the broadest brush, Chapter 1 stands alone and focuses on a number of topics assumed as background for the rest of the book. The next several chapters introduce

- Specific array processors (Chapter 2 on IDL, Chapter 3 on MATLAB, Chapter 4 on OCTAVE, Chapter 5 on PYTHON),
- Computer algebra systems (Chapter 6 on MAXIMA, Chapter 7 on MAPLE, Chapter 8 on Mathematica),
- Programming languages (Chapter 9—with sections on FORTRAN and C), and
- Subroutine libraries (Chapter 10 on Numerical Recipes, Chapter 12 on LSODE, Chapter 16 on MUDPACK).

The remaining chapters address several important categories of computational processing, specifically

- Solving ordinary differential equations (Chapters 11 and 12),
- Evaluating integrals (Chapter 13),
- Finding roots (Chapter 14),
- Solving partial differential equations (Chapters 15 and 16)

Each of Chapters 11, 13, 14, and 15 begins with a (generic) section in which several problems drawn from subareas of physics and using the computational technique on which the chapter focuses are laid out. Each of Chapters 11, 13, and 14 then continues with

- one or more (optional) sections in which some of the identified problems are addressed with whatever computer algebra systems are included in the version,
- a (generic) section on numerical approaches to the category of problem on which the chapter focuses, and
- several (optional) sections in which some of the problems laid out in the first section are addressed with whatever array processors, computer algebra systems, and programming languages are included in the version.

Somewhat in contrast, Chapter 15 continues with

- a (generic) section on finite difference methods (FDMs) for solving partial differential equations,
- several (optional) sections in which some of the identified problems are addressed using FDMs with each of several tools,
- a (generic) section on finite element methods (FEMs), and
- several (optional) sections in which some of the identified problems are addressed using FEMs.

Every chapter in the book concludes with a collection of exercises using the techniques—both symbolic and numerical—of the chapter. The appendices introduce a publishing system (Appendix A on \LaTeX) and a (UNIX/LINUX) program for producing drawings (Appendix B on TGIF). In time, other options than those available in this edition may be added.

The order of presentation in the book does not compel any particular order of treatment in a course or program of self-study. To be sure, some later sections depend on some earlier sections, but the linkages are not particularly tight. In the Lawrence context, for example, the required sophomore course Computational Mechanics typically covers the chapters and appendices introducing IDL, either MAPLE or Mathematica, and \LaTeX; and finally covers the IDL and either the MAPLE or the Mathematica portions of the chapters on ordinary differential equations (ODEs), integration and root finding. The chapter on Numerical Recipes, the FORTRAN and/or C portions of the chapters

4 The second edition has added the shareware programs OCTAVE and PYTHON and replaced the no-longer available commercial program MACSYMA with the shareware program MAXIMA. The addition of OCTAVE and PYTHON explain why Chapters 4–12 in the first edition have become Chapters 6–14 in the second edition.
on programming, ODEs, integration, and root finding, the chapter on partial differential equations and the chapters on LSODE and MUDPACK are the focus of the Lawrence elective junior/senior course *Computational Physics*.

Despite the organization of the chapters by program or by computational technique involved, the focus throughout is on physical contexts. The materials are designed to be used in conjunction with intermediate level courses, not introductory courses. While the illustrations of computational procedures highlight significant physical contexts and most of the examples and suggested exercises emerge from interesting physical situations, the objective is for students to become both fluent and wary in using computational resources in application to these physical situations, not to dwell excessively on the microscopic details of numerical analysis or to teach them the underlying physics (except insofar as successful computer-based solution of problems underscores the power of the fundamental physical ideas). The students are assumed

- to have completed an introductory survey course in physics,
- to have completed courses in calculus, differential equations and, to some extent, linear algebra,
- and
- to be embarking on intermediate-level studies in physics

as they undertake a study of this book. We focus not so much on the set up of the situations—that is assumed to be the province of other courses—as on computer-based techniques and strategies for determining the solution once the set up is complete. Examples are drawn from classical mechanics, classical electricity and magnetism, thermal physics, quantum mechanics, curve fitting, DC and AC circuit theory, optics, and several other areas.
First and foremost, I wish to acknowledge the assistance and contributions of Peter Strunk, LU '89, Kristi R. G. Hendrickson, LU '91, Todd G. Ruskell, LU '91, Stephen L. Mielke, LU '92, Ruth Rhodes, LU '92, Michelle Ruprecht, LU '92, Sandra Collins, LU '93, Mark F. Gehrke, LU '93, Karl J. Geissler, LU '94, Steven Van Metre, LU '94, Alain Bellon, LU '95, Peter Kelly Senecal, LU '95, Christopher C. Schmidt, LU '97, Michael D. Stenner, LU '97, Mark Nornberg, LU '98, Scott Shaw, LU '98, Jim Truitt, LU '98, Eric D. Moore, LU '99, Teresa K. Hayne, LU '00, Danica Dralus, LU '02, Ryan T. Peterson, LU '03, Scott J. Kaminski, LU '04, Michelle L. Milne, LU '04, Lauren E. Kost, LU '05, Claire Weiss, LU '07, and Erik Garbacik, LU '08—all Lawrence students who, as undergraduates, contributed during the first decade and a half to the evolution of this book and the accompanying manual of solutions to representative exercises. While current versions in most instances deviate—often considerably—from the initial drafts to which these students contributed, there can be no denying that their contributions have played an important role in the evolution of the use of computational resources in the Lawrence curriculum and the evolution of this book. I thank them warmly and sincerely for their assistance. All of these students have given permission for me to use whatever has over the years become of their contributions in this publication.

Second, I wish to acknowledge and thank several individuals who have provided reviews of drafts or otherwise assisted in the refinement of this book, including

- numerous students (beyond those specifically named in the previous paragraph) who have enrolled in my courses over the years and who, directly and indirectly, have made comments that have influenced this book.
- my departmental colleagues J. Bruce Brackenridge, John R. Brandenberger, Jeffrey A. Collett, Matthew R. Stoneking, and Paul W. Fontana, who have listened to my sometimes lengthy observations about matters computational and curricular and offered valuable criticisms.
- Wolfgang Christian (Davidson College), Robert Ehrlich (George Mason University), and A. John Mallinckrodt (California Polytechnic Institute–Pomona), each of whom participated in a 1990 Sloan-supported conference on computation in advanced undergraduate physics that I organized at Lawrence and each of whom as a consultant throughout the writing project has offered many suggestions and constructive criticisms.
- all those faculty members\(^1\) who participated in one of the NSF-supported week-long workshops offered at Lawrence in the summers of 2001, 2002, and 2003 and who, in that context,

\(^1\) In July 2001: Steve Adams (Widener University), Russel Kauffman (Muhlenberg College), Marylin Bell (Lake Forest College), Lawrence A. Molnar (Calvin College), Thomas R. Greenlee (Bethel College), Elliott Moore (New Mexico Tech), Javier Hasbun (State University of West Georgia), Joelle L. Murray (Linfield College), Derrick Hylton (Spelman College), Paula C. Turner (Kenyon College), Ross Hyman (DePaul University), Scott N. Walck (Lebanon Valley College), William H. Ingham (James Madison University), and Tim Young (University of North Dakota). In July, 2002 (first workshop): Albert Batten (United States Air Force Academy), Andrea Cox LU '91 (Beloit College), Brian Cudnik (Prairie View A and M), Craig Gunsul (Whitman College), Kevin Lee (University of Nebraska), Kam-Biu Luk (University of California, Berkeley), Daryl Macomb (Boise State University), Viktor Martisovits (Central College), Donald Miller (Central Missouri State University), Dorn Peterson (James Madison University), Robert Ragan (University of Wisconsin – Lacrosse), Shafiq Rahman (Allegheny College), Rahmathullah Syed (Norwich University), Jorge Talamantes (California State University – Bakersfield), Mark Timko (Elmhurst College), Paul Tjossem
provided a critical examination of the evolving manuscript and offered numerous suggestions for improvement—in addition to finding many previously undetected typographical glitches.

• especially Javier Hasbun (State University of West Georgia)—who had students working with almost the entire manuscript—but also William H. Ingham (James Madison University), Russel Kaufman (Muhlenberg College), Joelle L. Murray (Linfield College), Shafiq Rahman (Allegeny College), John Thompson (DePaul University), and Tim Young (University of North Dakota), all of whom used at least portions of the growing manuscript in their teaching during the academic year 2001-02 and who collectively sent me a wide spectrum of varied and valuable comments.

• several anonymous reviewers engaged by potential publishers as they evaluated my efforts, even though all potential publishers ultimately decided they could not provide the microscopic customization the book required.

Third, I wish to acknowledge considerable debt to many individuals whom I do not know but whose contributions behind the scenes have been invaluable. Chief among these individuals are

• Donald Knuth, originator of TeX;
• Leslie Lamport, originator of \LaTeX;
• Han The Than, originator of pdfTeX, which provides the engine underlying \texttt{pdflatex} for creating PDF files directly from \LaTeX source code.
• Pehong Chen and Nelson Beebe, originator and current maintainer of \texttt{makeindex} for preparing indices to \LaTeX documents;
• Enrico Gregorio, originator and current maintainer of \texttt{imakeidx} that reduces the number of passes required to format and include an index;
• David Carlisle and Sebastian Rahtz, originators, and David Carlisle, current maintainer, of the \LaTeX package \texttt{graphicx} for including graphic images in \LaTeX documents;
• Leslie Lamport, David Carlisle and other members of the \LaTeX3 team, authors of the \LaTeX package \texttt{ifthen} for supporting conditional statements in \LaTeX source files;
• Sebastian Rahtz and Heiko Oberdiek, originator of the \LaTeX package \texttt{hyperref} for creating linked versions of documents as PDF files;
• Paul Vojta, author of \texttt{xdvi}, a versatile on-screen previewer for the .dvi files produced by \TeX and \LaTeX;
• Till Tantau et. al., originators and current maintainers of the \LaTeX packages \texttt{tikz} and \texttt{pgf} for creating sophisticated diagrams using \LaTeX-like inclusions in the source file;
• William Chia-Wei Cheng, author of TGIF, a program used to create several of the figures;
• John Bradley, author of \texttt{xv}, a program used to convert a few bit-mapped files into PostScript;

(Grinnell College), and John Walkup (California Polytechnic Institute – San Luis Obispo). In July, 2002 (second workshop): Julio Blanco (California State University–Northridge), William Briscoe (George Washington University), Paul Bunson (Lawrence University), Albert Chen (Oklahoma Baptist University), K. Kelvin Cheng (Texas Tech University), Bob Davis (Taylor University), Mirela Petea (University of Richmond), David Grumbine (St. Vincent College), Kristi Hendrickson LU ’91 (University of Puget Sound), Tom Herrmann (Eastern Oregon University), Seamus Lagan (Whittier College), Eric Lane (University of Tennessee at Chattanooga), Ernest Ma (Montclair State University), Norris Preyer (College of Charleston), Michael Schillaci (Francis Marion University), Mihir Sejpal (Earlham College), Laura Van Wormer (Hiram College), Mary Lou West (Montclair State University), and Douglas Young (Mercer University). In July, 2003: Stephen Addison (University of Central Arkansas), Mohan Aggarwal (Alabama A&M), Anne Caraley (SUNY at Oswego), William Dieterle (California University of Pennsylvania), Timothy Duman (University of Indianapolis), Brett Fadem (Colby College), Michael Gray (American University), James Meyer (St. Gregory’s University), Prabasaj Paul (Denison University), David Peterson (Francis Marion University), Edward Pogozelski (SUNY at Geneseo), Chandra Prayaga (University of West Florida), Bruce Richards (Oberlin College), David Seely (Albion College), Adam Smith (Hillsdale College), Walther Spjeldvik (Weber State University), Julie Talbot (State University of West Georgia), Paul Thomas (University of Wisconsin–Eau Claire), Srinivasa Venugopalani (SUNY at Binghamton), and Alma Zook (Pomona College).
• The many contributors to the MiKTeX project;
• The developers, authors, and maintainers of WinEdit, the text editor used during the latter years of writing CPSUP; and
• The developers and maintainers of ps2pdf for converting PostScript files to PDF and the developers and maintainers of pdfcrop for pruning excessive white borders from PDF files.
• Radical Eye Software, which holds the copyright on dvips, a program for converting .dvi files to PostScript.

Quite simply, this project would have been impossible without the availability of these several programs and utilities, each of which played a necessary role behind the scenes in preparing or processing the files from which, ultimately, a printable PostScript file for the finished book emerged.

Fourth, I point out that the names of several pieces of commercial software are, in fact, trademarks or registered trademarks belonging to the vendors of those software products. Each such trademark is identified at its first occurrence in the text proper, and detailed contact information for every vendor is compiled in Appendix Z.

Fifth, I acknowledge the following specific permissions, each of which is more fully explained at the point in the text where the permission is explicitly invoked. In particular, I thank

• The MathWorks, Inc., for permission to incorporate in this book and distribute IDL source code for the routines ludiffeq_23 and ludiffeq_45, which code uses algorithms patterned after those used in 1991 in the MATLAB routines ode23 and ode45.
• Wayne Landsman, author of the IDL routines qsimpson and trapzd in the IDL Astronomy User’s Library, for permission to use those routines as the basis for the routines luqsimp and lutrapzd and to distribute the source code for luqsimp and lutrapzd as supplements to this book.
• Research Systems (later Exelis Visual Information Solutions and now part of Harris Geospatial Solutions), Incorporated, for permission to use portions of any RSI-supplied and/or edited .pro code—most particularly evident in RSI contributions to ludiffeq_23.pro, ludiffeq_45.pro, and luqsimp.pro—and to use the IDL name and trademark.
• Numerical Recipes Software (a) for permission to use the names and calling sequences of several Numerical Recipes routines at various places in this book, (b) for permission to refer to the C header files nr.h and nrutil.h and the file nrutil.c containing assorted utilities used by various C recipes, and (3) for permission to use the names and calling sequences of several IDL routines that are derived from Numerical Recipes routines (and for the use of which Research Systems Incorporated has permission from Numerical Recipes Software).
• William Chia-Wei Cheng, author of TGIF, for permission to reproduce in the appendix on that program several of the icons used in its many screen displays.

Sixth, I wish to acknowledge and thank the W. M. Keck Foundation for three grants [#880969 (1988), #931248 (1993), #011795 (2001)], the National Science Foundation for three grants [USE-8851685 (ILI–1988), DUE-9350667 (ILI-1993), and DUE-9952285 (CCLI-EMD-2000)], and Lawrence University for matching and other support. A small conference held at Lawrence in 1990 and supported by the Alfred P. Sloan Foundation stimulated thinking among the participants about uses of computers in upper-division undergraduate physics. All of these grants have contributed

\[\text{specifically f1moon, xflmoon, caldat, julday, xjulday, avevar, xavevar, rk4, xrk4, rkqa, rkck, mmid, bstep, rkdcmp, odeint, trapzd, xtrapzd, qtrap, xqtrap, qsimp, qromb, point, rtbis, xrtbis, rtnewt, xrtnewt, rtsafe, xrtsafe, zbrak, gausj, ludcmp, lubksb, tridag, svdcmp, svbksb, mnewt, newt, and brynd (both in FORTRAN and in C).}\]

\[\text{Any opinions, findings, and conclusions or recommendations expressed in this book are those of the author and do not necessarily reflect the views of any of these granting foundations or agencies.}\]
in many ways to the developments at Lawrence that have culminated in the writing of this book. In particular, the NSF CCLI-EMD grant made in February, 2000, supported my sabbatical while I finalized the text of this book. That grant also supported three week-long summer faculty workshops that have, on the one hand, provided constructive feedback on a succession of drafts and, on the other hand, enhanced awareness nationally of this book and of the developments at Lawrence.

Finally (and most important of all), I wish to express deep gratitude for the decades during which my wife, Cynthia, has shown patience, understanding, and support beyond any possibility of my ever fully knowing. In truth, I do not know how to thank her.
Disclaimer

The statements described in the various chapters of this book have been tested extensively but have certainly not been tested with all versions of all software packages on all possible platforms with all possible versions of the underlying operating systems. Differences from version to version of the software packages, from operating system to operating system, and from platform to platform exist. This brief section identifies the versions of the various programs that have been tested and the operating systems and platforms on which those tests have been carried out. That the behavior of other combinations of version, operating system, and platform will conform in every detail to that herein described can, of course, not be guaranteed. One can, however, have some confidence that the behavior in combinations not explicitly tested will not differ enormously from that described herein—except that newer versions of a software package may well have features not implemented in earlier versions (and occasionally a feature or specific syntax available in an earlier version has been removed altogether from more recent versions). With reasonable confidence, one can presume that the commands and syntax and features described in this book will work on other platforms with the tested versions of the programs and with subsequent versions. Statements herein that exploit features implemented for the first time in the tested versions will, of course, not be accepted in earlier versions, but those “glitches” should not be numerous or extensive. Where, in the months and years since the original draft was created, I have become aware of such glitches, I have inserted a footnote in the text, and subsequent printings have incorporated those footnotes.\(^1\) Nothing, however, assures that I have identified all such glitches.

That disclaimer having been stated, I now present for each program a brief tally of the version(s) tested and the platform(s) and operating system(s) on which those tests have been carried out:

- The MAPLE details herein apply specifically to MAPLE Version 16 on a Hewlett Packard platform running Windows 7 and a Hewlett-Packard platform running the Fedora 17 implementation of LINUX.

- The PYTHON details herein have been tested with
 - PYTHON 2.7.16 from the Anaconda2 distribution installed on a Hewlett-Packard platform running Windows 10, using the Anaconda2 prompt and also using the Anaconda2 Python Shell.\(^2\)
 - PYTHON 3.7.3 from the Anaconda3 distribution installed on a Hewlett-Packard platform running Windows 10, using the Anaconda3 prompt and also using Anaconda3 Python Shell.\(^3\)

The PYTHON 2 and PYTHON 3 details herein have also been spot-checked using Spyder, though the prompt for commands in Spyder differs from the prompt used in this text.

\(^1\)The date of printing is displayed at the top of the cover page, and I have maintained a dated list of edits made to the source files, so changes made between the original printing and subsequent printings can readily be identified for anyone who wishes to update an outdated printing.

\(^2\)See the Local Guide for ways to bring up the prompt and the shell in your environment.

\(^3\)See the previous footnote.
The Numerical Recipes details in Chapter 10 apply specifically for Version 2.10 and have been tested only on a Hewlett-Packard platform running the Fedora 17 implementation of LINUX.

The \LaTeX{} details in Appendix A apply specifically to \LaTeX{} 2ε with the MiKTeX implementation on a Hewlett-Packard platform running Windows 7. \LaTeX{} normally responds to the same source code on all platforms.
Table of Contents

Preface to the Second Edition iii
Acknowledgements vii
Disclaimer xi
Table of Contents xiii

1 Preliminaries
1.1 An Orientation to Computers 1
1.1.1 A Simple Responsive Machine 2
1.1.2 Character Codes 3
1.1.3 The ASCII Character Set 4
1.1.4 Representation of Data in a Computer 5
1.2 Files and Directories 6
1.3 Operating Systems 7
1.4 Glossary, Conventions, and Understandings 8
1.5 Assumed Background 9
1.5.1 The Gamma Function 10
1.5.2 The Laplace Transform 11
1.6 Licensing Issues 12

5 Introduction to PYTHON 15
5.1 Beginning a PYTHON Session 16
5.2 Basic Entities in PYTHON 17
5.2.1 Data Types 17
5.2.2 Variable Names 18
5.2.3 Assignment of Values to Variables 19
5.2.4 Commands 19
5.2.5 PYTHON Modules 20
5.3 A Sampling of PYTHON Capabilities 21
5.3.1 Using PYTHON Interactively 21
5.3.2 Creating and Examining Strings, Tuples, Lists, and Sets 22
5.3.3 Interrogating and Adjusting the Symbol Table 23
5.3.4 Creating and Examining Arrays 23
5.3.5 Creating and Manipulating Matrices 24
5.3.6 Complex Numbers 25
5.3.7 Solving Linear Equations 25
5.3.8 Data and Method Attributes of Variables 26
5.3.9 A First Graph 26
5.4 Loops, Logical Expressions, and Conditionals 27
5.5 Eigenvalues and Eigenvectors 28
5.6 The PYTHON Edit Window and Stored Programs 29
5.6.1 A Quick Example of a Stored Program 30
5.6.2 Reading Data From a File; Radioactive Decay 31
5.6.3 Writing Data To a File; Formatting Output 32
5.7 Defining Functions 33

xiii
TABLE OF CONTENTS

5.7.1 Format of a Function Definition .. 43
5.7.2 The Function `luplot` .. 44
5.7.3 Using Global Variables .. 45

5.8 On-Line Help ... 48

5.9 Graphing Scalar Functions of One Variable 48
 5.9.1 The Basic Strategy .. 49
 5.9.2 Plotting Several Graphs on One Set of Axes 50
 5.9.3 Polar Plots and Custom Axes ... 52
 5.9.4 Multiple Plots In a Single Window 53
 5.9.5 Plotting Experimental Data ... 54

5.10 Making Hard Copy ... 57
 5.10.1 ... of Text ... 57
 5.10.2 ... of Graphs .. 57

5.11 Graphing Scalar Functions of Two Variables 58
 5.11.1 A Preliminary: The Function `meshgrid` 59
 5.11.2 Surface Plots: The Commands `plot_wireframe` and `plot_surface` 60
 5.11.3 Contour Plots: The Command `contour` 63
 5.11.4 Shaded Surfaces: The Command `plot_surface` Again 65
 5.11.5 Features of the `Figure` Window 67
 5.11.6 Functions of Two Variables in Polar Coordinates 67

5.12 Graphing Scalar Functions of Three Variables 68
 5.12.1 Reduction to Two-Dimensional Displays 70
 5.12.2 Isosurfaces .. 72

5.13 Graphing Vector Fields .. 73
 5.13.1 The Function `quiver` .. 75
 5.13.2 More Elaborate Displays .. 76
 5.13.3 Three-Dimensional Vector Fields 77

5.14 Animation ... 78
 5.14.1 The Basic Command .. 78
 5.14.2 Motion of a Vibrating String 79
 5.14.3 Motion of an L-Shaped Drumhead 80
 5.14.4 Trajectory of a Projectile in Uniform Gravity 82

5.15 Advanced Graphing Features ... 84
 5.15.1 Mathematical Symbols and Greek Characters 84
 5.15.2 Space Curves ... 85
 5.15.3 Using Multiple Windows .. 85
 5.15.4 Scaling so Circles are Circles 86
 5.15.5 Customizing Axes .. 86
 5.15.6 Alternative Specifications of Color 88
 5.15.7 Interactive Plotting ... 90

5.16 Miscellaneous Occasionally Useful Tidbits 90
 5.16.1 Find, Change Current Directory 90
 5.16.2 Setting the Search Path .. 91
 5.16.3 Customizing PYTHON ... 92
 5.16.4 Restoring PYTHON’s Initial State 94
 5.16.5 Reading Data from the Keyboard 94
 5.16.6 Error Trapping ... 95

5.17 References .. 95

5.18 Exercises ... 96
 5.18.1 Writing PYTHON Statements ... 96
 5.18.2 Finding Eigenvalues and Eigenvectors 97
 5.18.3 Graphing Scalar Functions of a Single Variable 98
 5.18.4 Graphing Scalar Functions of Two Variables 100
 5.18.5 Graphing Scalar Functions of Three Variables 102
 5.18.6 Graphing Vector Fields .. 102
 5.18.7 Animation .. 104

5.A Listing of `plotradio.py` .. 106
5.B Listing of `rcfilter.py` ... 106
5.C Listing of `stwave.py` ... 107
5.D Listing of `drumhead.py` .. 108
TABLE OF CONTENTS

5.E Listing of *projectile.py* .. 110

7 Introduction to MAPLE .. 111
 7.1 Beginning a MAPLE Session ... 112
 7.2 On-Line Help ... 114
 7.3 Basic Entities in MAPLE ... 114
 7.4 Variable Names in MAPLE ... 115
 7.5 Expressions in MAPLE .. 115
 7.6 Assigning Values to Variables; Defining Functions 116
 7.7 Creating and Examining Basic Entities 118
 7.7.1 Sequences ... 118
 7.7.2 Sets .. 119
 7.7.3 Lists ... 119
 7.7.4 Vectors, Arrays, and Matrices 119
 7.7.5 Conversions .. 122
 7.8 Using MAPLE .. 123
 7.8.1 for Arithmetic ... 124
 7.8.2 for Algebra .. 124
 7.8.3 for Complex Variables .. 128
 7.8.4 for Trigonometry ... 129
 7.8.5 for Algebraic Equations 130
 7.8.6 for Manipulating Arrays 131
 7.8.7 for Basic Calculus ... 134
 7.8.8 for Laplace Transforms 137
 7.8.9 for Ordinary Differential Equations 137
 7.8.10 for Vector Calculus ... 142
 7.9 Packages ... 144
 7.10 Loops, Logical Expressions, and Conditionals 144
 7.11 Command Files .. 146
 7.12 High-Resolution Graphing ... 148
 7.13 Making Hard Copy .. 152
 7.13.1 of Text and Character Graphics in the CLI 153
 7.13.2 of High-Resolution Graphs from the CLI 153
 7.13.3 of Text and Inline Graphics in the GUI 154
 7.13.4 of Window Graphics in the GUI 154
 7.14 Output in \LaTeX Format ... 155
 7.15 Animation ... 156
 7.16 Using the Notebook .. 156
 7.17 Miscellaneous Occasionally Useful Tidbits 158
 7.17.1 Specifying Directories 158
 7.17.2 MAPLE's Default Directory 158
 7.17.3 MAPLE's Search Path .. 159
 7.17.4 Customizing MAPLE ... 159
 7.17.5 Restoring MAPLE's Initial State 160
 7.17.6 Space Curves .. 160
 7.18 Miscellaneous Commands ... 160
 7.19 References ... 165
 7.20 Exercises .. 166

9 Introduction to Programming .. 177
 9.1 Components of a Programming Language 178
 9.1.1 Variables, Variable Names, and Use of Memory 178
 9.1.2 Essential Action Statements 179
 9.1.3 Logical Expressions and Conditions 180
 9.1.4 Syntactic Wrinkles ... 181
 9.1.5 Essential Control Structures 182
 9.2 Sample Short Algorithms ... 186
 9.3 Two Larger Algorithms ... 188
 9.3.1 Solving Laplace's Equation 188
 9.3.2 File Output/Input ... 190
11 Solving Ordinary Differential Equations 267

11.1 Sample Problems 268

11.1.1 Projectile in a Viscous Medium 268
TABLE OF CONTENTS

11.12 Radioactive Decay .. 271
11.13 Exponential and Logistic Growth ... 272
11.14 Forced, Driven, Damped Harmonic Oscillation 272
11.15 An LRC Resonant Circuit .. 274
11.16 Coupled Oscillators .. 274
11.17 Motion under Central Forces ... 275
11.18 Standing Waves in a String .. 277
11.19 The Schrödinger Equation in One Dimension 278
11.2 Laplace Transforms ... 279
11.4 Solving ODEs Symbolically with MAPLE 280
 11.4.1 Projectile in a Viscous Medium .. 281
 11.4.2 Logistic Growth .. 283
 11.4.3 Damped Harmonic Oscillator .. 285
 11.4.4 Chain Radioactive Decay .. 286
 11.4.5 Coupled Oscillators .. 287
 11.4.6 Standing Waves in a String .. 288
 11.4.7 Infinite Depth Quantum Well ... 289
 11.4.8 Finding Solutions by Series Methods 290
11.6 Algorithms for Solving ODEs Numerically 291
 11.6.1 Euler’s Method .. 291
 11.6.2 Improved Euler Method ... 293
 11.6.3 Runge-Kutta Methods .. 294
 11.6.4 Assessing Accuracy ... 295
 11.6.5 Adaptive Methods ... 298
 11.6.6 Multistep Methods ... 299
11.10 Solving ODEs Numerically with PYTHON 300
 11.10.1 Using Elementary Commands .. 300
 11.10.2 The PYTHON Command \texttt{odeint} 303
 11.10.3 Defining ODEs for \texttt{odeint} 304
 11.10.4 Chain Radioactive Decay .. 305
 11.10.5 Damped Harmonic Oscillator .. 307
 11.10.6 Planetary Orbits ... 309
 11.10.7 Standing Waves in a String .. 312
 11.10.8 The Quantum Harmonic Oscillator 315
 11.10.9 Keywords that Modify \texttt{odeint} 320
 11.10.10 \texttt{py}-files in the Public Library 321
 11.10.11 Other ODE Solvers in PYTHON 322
11.12 Solving ODEs Numerically with MAPLE 323
11.14 Solving ODEs Numerically with FORTRAN 325
 11.14.1 FORTRAN Programs from Scratch 325
 11.14.2 Using Numerical Recipes .. 327
11.15 Solving ODEs Numerically with C .. 332
 11.15.1 C Programs from Scratch ... 332
 11.15.2 Using Numerical Recipes ... 333
11.16 Exercises ... 339
 11.16.1 ... using Symbolic Methods ... 339
 11.16.2 ... using Numerical Methods .. 342
 11.16.3 ... using Numerical Recipes .. 346
11.A Listing of \texttt{decay.f} .. 347
11.B Listing of \texttt{decayrk4.f} .. 348
11.C Listing of \texttt{decayrkqs.f} .. 349
11.D Listing of \texttt{decay.c} .. 350
11.E Listing of \texttt{decayrk4.c} .. 351
11.F Listing of \texttt{decayrkqs.c} .. 352

13 Evaluating Integrals .. 353
 13.1 Sample Problems .. 353
 13.1.1 One-Dimensional Trajectories 353
 13.1.2 Center of Mass ... 354
 13.1.3 Moment of Inertia; Radius of Gyration 355
13.3 Evaluating Integrals Symbolically with MAPLE
- 13.3.1 Relativistic Motion Under a Constant Force 362
- 13.3.2 Center of Mass ... 362
- 13.3.3 Moment of Inertia; Radius of Gyration .. 364
- 13.3.4 Electrostatic Potential of a Finite Line Charge 364
- 13.3.5 The Helmholtz Coil ... 366
- 13.3.6 Period of a Pendulum: Correction as Amplitude Grows 370
- 13.3.7 Fourier Coefficients for Half-Rectified Signal 371

13.5 Algorithms for Numerical Integration
- 13.5.1 Newton-Cotes Quadrature ... 373
- 13.5.2 Rearrangements for Computational Efficiency 375
- 13.5.3 Assessing Error ... 377
- 13.5.4 Iterative and Adaptive Algorithms .. 379
- 13.5.5 Gaussian Quadrature ... 379

13.9 Evaluating Integrals Numerically with PYTHON
- 13.9.1 Using Elementary Commands .. 382
- 13.9.2 Built-In Integration Routines .. 385
- 13.9.3 Moment of Inertia .. 388
- 13.9.4 Quantum Probabilities .. 389
- 13.9.5 Integrals as Functions of the Upper Limit ... 390
- 13.9.6 The Error Function ... 390
- 13.9.7 The Cornu Spiral .. 390
- 13.9.8 Integrals as Functions of an Internal Parameter 392
- 13.9.9 The Off-Axis Electrostatic Potential of Two Rings 393
- 13.9.10 Keywords that Modify Function Integrators 394

13.11 Evaluating Integrals Numerically with MAPLE
- 13.11.1 Quantum Probability .. 396
- 13.11.2 The Error Function ... 397
- 13.11.3 The Off-Axis Electrostatic Potential of Two Rings 397

13.13 Evaluating Integrals Numerically with FORTRAN
- 13.13.1 Writing Programs from Scratch ... 399
- 13.13.2 Using Numerical Recipes ... 401

13.14 Evaluating Integrals Numerically with C
- 13.14.1 Writing Programs from Scratch ... 404

13.15 Exercises
- 13.15.1 ... using Symbolic Methods ... 409
- 13.15.2 ... using Numerical Methods ... 412
- 13.15.3 ... using Numerical Recipes ... 416

13.A Listing of trapezoidal.f ... 418
13.B Listing of trapezoidal.c ... 419

14 Finding Roots
- 14.1 Sample Problems ... 421
 - 14.1.1 Classical Turning Points ... 422
 - 14.1.2 A Max-Min Problem: Equilibrium Points 422
 - 14.1.3 Natural Frequencies of Oscillating Systems 423
 - 14.1.4 Range of Projectile in Viscous Medium .. 424
 - 14.1.5 Energy Levels in a Quantum Well ... 427
- 14.2 Symbolic Approaches ... 428
- 14.4 Finding Roots Symbolically with MAPLE .. 429
 - 14.4.1 Classical Turning Points ... 430
 - 14.4.2 Equilibrium Points ... 431
 - 14.4.3 Natural Frequencies ... 431
TABLE OF CONTENTS

14.6 Algorithms for Finding Roots Numerically 434
 14.6.1 The Method of Bisection ... 434
 14.6.2 Newton’s Method .. 434
 14.6.3 Other Methods ... 435
 14.6.4 Assessing Accuracy .. 436
14.10 Finding Roots Numerically with PYTHON 437
 14.10.1 Classical Turning Points .. 438
 14.10.2 Natural Frequencies .. 440
 14.10.3 Range of Projectile ... 440
 14.10.4 Energy Levels in Quantum Well 444
14.12 Finding Roots Numerically with MAPLE 446
 14.12.1 Classical Turning Points ... 447
 14.12.2 Range of Projectile ... 447
 14.12.3 Energy Levels in Quantum Well 448
14.14 Finding Roots Numerically with FORTRAN 451
 14.14.1 FORTRAN Programs from Scratch 451
 14.14.2 Using Numerical Recipes ... 454
14.15 Finding Roots Numerically with C 457
 14.15.1 C Programs from Scratch ... 458
 14.15.2 Using Numerical Recipes ... 460
14.16 Solving Simultaneous Equations 464
 14.16.1 Systems of Linear Equations 464
 14.16.2 Systems of Nonlinear Equations 467
14.17 Exercises ... 470
 14.17.1 … using Symbolic Methods .. 470
 14.17.2 … using Numerical Methods 472
 14.17.3 … using Numerical Recipes .. 475
 14.17.4 Finding More than One Unknown 475
14.A Listing of bisect.f ... 480
14.B Listing of bisect.c .. 481

A Introduction to \LaTeX

 A.1 Creating a Simple Document ... 484
 A.1.1 Structuring a \LaTeX{} Source File 484
 A.1.2 Creating a PostScript File 486
 A.1.3 Creating a PDF File ... 487
 A.1.4 Displaying the Document on the Screen 488
 A.1.5 Printing the Document .. 488
 A.2 Specification of Global Style: The Preamble 489
 A.3 In-Text Specification of Local Style 491
 A.3.1 Type Style ... 491
 A.3.2 Type Size ... 492
 A.3.3 White Space ... 493
 A.3.4 Environments ... 494
 A.3.5 \LaTeX{} Packages .. 495
 A.3.6 Miscellaneous Other Capabilities 495
 A.4 Including Equations .. 496
 A.5 Including Lists .. 497
 A.6 Including Tables .. 498
 A.7 Including Illustrations ... 500
 A.7.1 Using Cut and Paste .. 500
 A.7.2 Using the graphicx Package 501
 A.7.3 Using the tikz Package .. 503
 A.7.4 Using the picture Environment and pict2e Package 506
 A.8 Including TOC, LOF, and LOT ... 506
 A.9 Including an Index .. 507
 A.10 Including Hyperlinks .. 509
 A.11 Converting .eps and .ps Files to .pdf 510
 A.12 Using Conditional Expressions in \LaTeX} 512
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.13</td>
<td>Error Messages Generated by \LaTeX{}</td>
<td>513</td>
</tr>
<tr>
<td>A.14</td>
<td>The Page Previewer for \texttt{.dvi} Files</td>
<td>514</td>
</tr>
<tr>
<td>A.15</td>
<td>The Spell Checker in \texttt{UNIX}</td>
<td>515</td>
</tr>
<tr>
<td>A.16</td>
<td>A Sample Document</td>
<td>516</td>
</tr>
<tr>
<td>A.17</td>
<td>Miscellaneous Other Features</td>
<td>517</td>
</tr>
<tr>
<td>A.18</td>
<td>References</td>
<td>525</td>
</tr>
<tr>
<td>A.19</td>
<td>Exercises</td>
<td>525</td>
</tr>
<tr>
<td>A.A</td>
<td>Listings</td>
<td>529</td>
</tr>
<tr>
<td>A.A.1</td>
<td>... for \texttt{Windows}</td>
<td>529</td>
</tr>
<tr>
<td>A.A.2</td>
<td>... for \texttt{UNIX}</td>
<td>530</td>
</tr>
<tr>
<td>A.A.3</td>
<td>... for \texttt{Windows and UNIX}</td>
<td>531</td>
</tr>
<tr>
<td>Z</td>
<td>Contacting Software Vendors</td>
<td>533</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>537</td>
</tr>
</tbody>
</table>
Chapter 1

Preliminaries

Over the past two decades, acquaintance with computational approaches to problems—and with the computational resources that facilitate those approaches—has come to be critically important for success in the sciences. This book aims to develop familiarity with a variety of computational tools and techniques in application particularly to problems in physics. Rather than selecting a single application program, we presume that productive use of contemporary computational resources requires acquaintance with several different sorts of tools, including:

- an array processing program (e.g., IDL®, MATLAB®, OCTAVE, PYTHON, ...);
- a computer algebra system (e.g., MAPLE®, Mathematica®, MAXIMA, ...);
- a standard scientific programming language (e.g., FORTRAN, C, PYTHON, ...), both for programming ab initio and, more particularly, for creating driving programs to invoke publicly or commercially available subroutines; and
- a tool for graphical visualization of scalar and vector functions of one, two, and three independent variables (e.g., IDL, MATLAB, OCTAVE, PYTHON, MAXIMA, MAPLE, Mathematica, ...).

Further, to make effective use of these tools, the user must

- be acquainted with the main capabilities of at least one operating system (e.g., UNIX, Windows, Macintosh OS, ...),
- be fluent in the use of a text editor (e.g., gedit, xemacs, vim, winedt, ...) and of a program for creating drawings (e.g., tgif, ...), and
- of a publishing package (e.g., TExlive, LATEX, MiKTEX, OzTEX, ...) capable of formatting elaborate equations, incorporating PostScript figures, creating symbolic references within documents, generating tables of contents and indices,

This book introduces intermediate-level physics students to a selected spectrum of these tools, helps them learn enough of the tools’ capabilities to know what the tools can do, and builds their confidence both in using the tools and in reading vendor-supplied documentation. Ultimately, we expect that students launched into the computational world as sophomores, say, will, as juniors and seniors,

\footnote{Many of the specific examples in this list are identified by names that are trademarks belonging to the vendor of the identified software and registered in the United States Patent and Trademark Office. Those that the author knows to have that status are identified with the symbol ® at the first occurrence of the name. Full contact information for the vendors of the software (and the owners of the trademarks) is compiled in Appendix Z.}
be motivated to use computational resources intelligently and successfully on their own initiative, whenever it seems to them appropriate to exploit those tools. As a resource, the computer should parallel the library; this book aims to help students develop the skills to support that view.\footnote{Uses of internet resources are conspicuously absent from the list of skills in this opening paragraph. While such uses are playing an increasingly important role both in education and in professional life, they are explicitly excluded from the purview of this book.}

In this book, the ultimate objective described in the previous paragraph is pursued in several steps:

1. You learn to manipulate the system you have and to work efficiently with whatever text editor is available. For the most part, this step is the task of the \textit{Local Guide}.

2. You learn the basic commands for one or more tools (how to start the tool, how to stop the tool, how to construct the primary entities—mathematical expressions, numerical arrays, …—on which the tool works, how to manipulate those entities, how to generate output—both textual and graphical—from the tool, etc.). This step is the business of the first portion of this book and of the appendices.

3. You learn ways in which these tools can be used to advantage to address prototype problems in a variety of areas of physics. This step is the business of the second portion of this book, each chapter of which begins by describing several representative problems that involve a particular type of computation (solving ODEs, integrating, finding roots, …). Then, each chapter addresses those problems with a succession of computational tools, some symbolic, some numeric—exploiting graphical displays whenever appropriate to the exercise at hand. Each chapter concludes with numerous exercises to direct your own further study of the tools and techniques addressed in the chapter.

You need not, of course, complete all of one step before proceeding to some of the next step. Once you have learned to manipulate your computer system and use an available text editor, you can pick and choose the tools and examples of greatest—or most immediate—interest to you. To be sure, some portions of earlier chapters are prerequisite to some portions of later chapters, but the linkages are neither deep nor extensive. Thus, you can hop around in this book as your needs and interests dictate.

In the remainder of this chapter, we address several general items relating to the design and use of computers and to the structure of this book. Here and there, specific items may well be site dependent. Thus, as a companion to this book, you must obtain from your local site administrator a copy of the \textit{Local Guide}, which supplements this book with detailed information that relates specifically to your site.

Be aware, in particular, that many of the chapters in this book are at least in part tutorial in nature. Full study of the material here presented requires you to replicate the illustrated “conversations” with the computer. To do so, you must—of course—be logged into an appropriate computer system, as described in the \textit{Local Guide}. This paragraph, however, is the only point in the book at which the wisdom of being logged in is explicitly mentioned.

\section*{1.1 An Orientation to Computers}

We begin by inventing (at least some aspects of) a computer, in the process motivating some of its main features and discussing briefly a few important underlying concepts and structures.
1.1.1 A Simple Responsive Machine

Consider first a typewriter. In broad outline, its user commands the printing mechanism (hereafter *printer*) to perform a desired sequence of actions by pressing the corresponding sequence of keys on the keyboard. Most keys cause the printer to print a particular character on the paper *and advance* the printhead to its next position. When the key labeled ‘a’ is pressed, for example, the character ‘a’ is printed on the paper and the printhead is advanced; when the shift key is held down while the key labeled ‘5’ is pressed (sometimes denoted (SHIFT/5)), the character ‘%’ is printed and the printhead is advanced; etc. A few keys command the printer to perform other actions. Pressing the space bar, for example, advances the printhead without printing a visible character. (Actually, it is useful to think that the space character, denoted ⟨SP⟩, has been “printed”.) Pressing the key labeled RETURN “prints” the carriage return character (denoted ⟨CR⟩), which moves the printhead to the beginning of the line *and* advances or feeds the paper one line further along.

We can, however, imagine a more general “typewriter”—i.e., a *computer*—in which an obedient and instructable “agent”—hereafter the *central processing unit* (CPU)—has been interposed between the keyboard and the printer. Further, let us build this expanded machine so that (a) pressing a key at the keyboard sends a (probably electrical) code identifying that key to the CPU and (b) the printer interprets and responds to each code received from the CPU. This machine reverts to our original typewriter if we tell the CPU to carry out or *execute* the *statements* or *commands*.

```plaintext
LOOP
  Read code from keyboard
  Send code to printer
END_LOOP
```

The action of the machine in response to representative key strokes would then be described as follows:

- When the key labeled ‘a’ is pressed, the keyboard sends the code for the character ‘a’ to the CPU, which then transmits that code to the printer.
- When the shift key is held down while the key labeled ‘5’ is pressed, the keyboard sends the code for the character ‘%’ to the CPU, which then transmits that code to the printer.
- When the space bar is pressed, the keyboard sends the code for the character ⟨SP⟩ to the CPU, which then transmits that code to the printer.
- When the key labeled RETURN is pressed, the keyboard sends the code for the character ⟨CR⟩ to the CPU, which then transmits that code to the printer.

In the first three cases, the printer displays the character identified by the received code and *also* advances the printhead. In the fourth case, the printer should both return the printhead *and* feed the paper. In fact, most printers treat returning the printhead and feeding the paper as two *distinct* operations. Receipt of the code for the character ⟨CR⟩ will effect the former operation; receipt of a different code, that for the line-feed character ⟨LF⟩, will effect the latter. While it is convenient to have a *single* keystroke at the keyboard accomplish both operations, most printers must receive two *separate* codes to accomplish the desired action. Thus, we must tell the CPU that receipt of the code for the character ⟨CR⟩ from the keyboard must trigger the sending of the codes for the *pair* of characters ⟨CR⟩⟨LF⟩ to the printer. To simulate a typewriter, we must embellish the above statements to:

3The special words `LOOP` and `END_LOOP` bracket a group or block of instructions that are as a block to be executed repeatedly. We shall here ignore concerns about stopping the loop.

4The special words `IF`, `THEN`, and `END_IF` convey a *conditional* execution of one or more statements. The statement(s) between the `THEN` and the `END_IF` will be executed only if the condition following the `IF` is true when the entire construction is encountered.
In this listing, we have introduced the word program to identify a complete set of instructions for the performance of some task, and we have introduced the special words PROGRAM and END_PROGRAM to bracket a program. We have also provided a way to designate an appropriate name for the program.

Note that, while a particular code is always associated with a character, not all codes are associated with printing characters. Non-printing characters are called control characters. When received by a printer (or other peripheral device), they result not in the display of a particular symbol but in the performance of some other function. We have already met ⟨CR⟩ and ⟨LF⟩. Other control characters familiar to the user of an ordinary typewriter are the backspace ⟨BS⟩, which causes the printhead to back up one space; the horizontal tab ⟨HT⟩, which causes the printhead to advance to the next pre-set (horizontal) tab position; and the vertical tab ⟨VT⟩, which advances the paper to the next preset (vertical) tab position.

1.1.2 Character Codes

To facilitate visualizing the codes seen by the CPU, imagine that the CPU receives its signals by "looking at" a row of eight light bulbs. Further, declare that pressing a particular key on the keyboard turns some of the bulbs on and leaves the rest off, and endow the CPU with a capacity to sense which bulbs are on and which off. If we represent a light bulb that is off by the symbol 0 and a light bulb that is on by the symbol 1, then we can convey a particular pattern by a string of eight 0's and 1's. The string 10011101, for example, represents the sequence on-off-on-on-on-on-off-on.

Although a particular pattern of 0's and 1's unambiguously conveys the character associated with it, it is useful to interpret this pattern alternatively as an integer in the binary (base-2) number system—a system in which only the two characters 0 and 1 are used to express numbers. In the more familiar decimal (base-10) number system, the digits of an integer reckoned from right to left are the 1's digit (10 to the zero power), the 10's digit (10 to the first power), the 100's digit (10 squared), etc. Similarly, in the binary number system, the bits in an eight-bit integer, again reckoned from right to left, are the 1's bit (2 to the zero power), the 2's bit (2 to the first power), the 4's bit (2 squared), the 8's bit (2 cubed), the 16's bit (2 to the fourth power), the 32's bit (2 to the fifth power), the 64's bit (2 to the sixth power), and the 128's bit (2 to the seventh power). Just as the decimal integer 324 means

\[3 \times 10^2 + 2 \times 10^1 + 4 \times 10^0 \]

the binary integer 10011101 means

\[1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \]

or, converting to decimal,

\[1 \times 128 + 0 \times 64 + 0 \times 32 + 1 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1 = 157 \]

The number eight is, of course, arbitrary but conventional. Because computers work internally in the binary (base-2) number system, powers of two—\(8 = 2^3\)—are especially convenient.

Actually, the codes will be sent as a stream of bits, each of which is an electrical voltage level that will be either "high" or "lo", often said to be "on" or "off".
The largest three-digit decimal integer is 999; the largest eight-bit binary integer is 11111111, which translates to the decimal integer 255.

An array of eight bits—called a byte—can assume 256 different patterns or values (00000000, 00000001, 00000010, ..., 11111111). Our choice of the byte for internal coding therefore permits us to distinguish 256 codes. *Internally*, the CPU sees only binary patterns (light bulbs that are on or off; electrical signals that are either high or low; areas on a magnetic tape that are either magnetized or unmagnetized; etc.), and these patterns are conveniently represented by sequences of bits. *Externally*, binary integers are cumbersome, so various more compact representations are often used. The binary pattern can be interpreted as a decimal integer (as above), but the conversion from binary to decimal is awkward. A more convenient but still compact notation involves grouping the bits in an *eight*-bit binary integer in the pattern xx-xxx-xxx and using the eight symbols 0, 1, 2, ..., 7 to represent the three-bit binary integers 000, 001, 010, 011, 100, 101, 110, and 111. The integer 10011101, for example, would then have the translation

\[
10011101 = 10-011-101 = 235
\]

into this *octal* (base-8) number system. (The first grouping has only two bits and hence can have only the values 0, 1, 2, or 3.) Here, the octal integer 235 is interpreted in decimal as \(2 \times 8^2 + 3 \times 8^1 + 5 \times 8^0 = 2 \times 64 + 3 \times 8 + 5 \times 1 = 157\). The largest eight-bit binary integer 11111111 has the representation 377 in octal. This is, of course, the same integer as 255 (decimal).

A still more compact representation of an eight-bit binary integer involves dividing the byte into two four-bit *nybbles*. Then, with the representation 0000=0, 0001=1, 0010=2, 0011=3, 0100=4, 0101=5, 0110=6, 0111=7, 1000=8, 1001=9, 1010=A, 1011=B, 1100=C, 1101=D, 1110=E, and 1111=F, the binary integer can be represented by two “digits”. For example, the integer 10011101 = 1001-1101 = 9D. This representation expresses the integer in a base-16 or *hexadecimal* number system. The largest eight-bit binary integer 11111111 has the translation FF into hexadecimal, a value to be compared with 377 in octal and 255 in decimal.

1.1.3 The ASCII Character Set

The code transmitted by a particular key on the keyboard is determined by the electrical structure of the keyboard, not by the label on the key. A given key transmits a particular code regardless of the label on the key. Likewise, a code received by a printer identifies, for example, a particular orientation of the printwheel regardless of what character happens to be embossed on the finger at that position. The codes merely identify positions on the keyboard or orientations of the printwheel; no code has any necessary connection with any particular character, and in some contexts associations other than the conventional are adopted.

There are, however, a number of conventional associations of codes with characters. The most commonly used scheme is the American Standard Code for Information Interchange (ASCII, pronounced ass’-key). In this code, characters are associated with eight-bit binary patterns. While the *second* 128 of the 256 distinguishable patterns [i.e., characters 128–255 (decimal)] have a variety of assignments to characters, the *first* 128 patterns [i.e., characters 0–127 (decimal)] have the standard assignments enumerated in Table 1.1. The control characters (non-printing characters) all have (decimal) ASCII codes in the range 0–31. Further, the ASCII code for each uppercase letter is 32 less than the code for the corresponding lowercase letter; i.e., turning off the 32-bit in the code for a lowercase letter generates the code for the corresponding uppercase letter. Finally, the ASCII code for a control character is 64 less than the code for the associated uppercase letter; i.e., turning off the 64-bit in the code for an uppercase letter (say C) generates the code for the corresponding control character ((CTRL/C)). Numerical digits occur in ascending order and before the characters in the alphabet; punctuation marks and other symbols (+, -, *, /, @, [, ...] are distributed where the previous assignments leave gaps.
1.1.4 Representation of Data in a Computer

A computer consisting of no more than a keyboard, a CPU with only the above described capabilities, and a printer would, of course, be of little value. Let us expand our computer by adding an internal storage capacity (memory and auxiliary hard disks\(^7\)) consisting of individual cells, each identified by its address, which simply counts the cell’s position from the first cell, and each capable of storing (the code for) a single character. Further, let us endow the CPU with an ability to write codes to and read codes from individual cells in this memory. We understand that a (new) code written into a cell always replaces or overwrites the (previous) contents of that cell, thereby rendering the previous contents no longer retrievable. We declare, however, that reading a code from a cell does not change the contents of the cell.

Typical present-day computers will have a capacity to store an enormous number of bytes—gigabytes, even terrabytes—of information. As we have described it so far, each byte stores an eight-bit pattern of 0's and 1's, each pattern being associated with a particular (printing or control) character. The association with characters, however, is not the only possible interpretation of the information stored in one or more bytes of a computer’s memory. Several other interpretations are necessary. Beyond the association of eight-bit patterns with characters (and successions of such patterns with character strings), the CPU might represent integers of various sizes by interpreting

- an eight-bit byte as an unsigned eight-bit integer, assigning its 256 different patterns to the (positive) integers ranging (in decimal) from 0 to 255.
- an eight-bit byte as a signed eight-bit integer, assigning its 256 different patterns to the (negative and positive) integers ranging (in decimal) from \(-128\) to \(+127\). (The range is not symmetric because we must assign one of the patterns to the integer 0.) The highest order bit normally conveys the sign of the value and the remaining seven bits convey the value, though the connection between bit patterns and values—especially negative values—is not always as straightforward as one might naively assume.\(^8\)
- a sixteen-bit combination of two consecutive bytes as an unsigned sixteen-bit integer, with its \(256^2 = 65536\) values assigned to the (positive) integers ranging (in decimal) from 0 to 65536.
- a sixteen-bit combination of two consecutive bytes as a signed sixteen-bit integer, with its 65536 values assigned to the (positive) integers ranging (in decimal) from \(-32768\) to \(+32767\).
- a 32-bit combination of four consecutive bytes as an unsigned 32-bit integer, with its \(65536^2 = 4294967296\) values assigned to the (positive) integers ranging (in decimal) from 0 to 4294967296.
- a 32-bit combination of four consecutive bytes as a signed 32-bit integer, with its 4294967296 values assigned to the (positive) integers ranging (in decimal) from \(-2147483684\) to \(+2147483683\).

Some architectures even use 64-bit unsigned and signed integers to expand the range of available integers even further.

Especially for scientific computations, integers alone will not suffice. Computers provide for storage of numbers with decimal points and exponents by designing the CPU to interpret

- a 32-bit combination of four consecutive bytes as a single-precision floating point number. In the IEEE standard for this format, eight bits (one byte) are assigned to store the proper

\(^7\)For purposes of this discussion we will ignore the very considerable differences between (volatile) memory and (non-volatile) hard disks.

\(^8\)Negative values are frequently stored in what is called two’s-complement form, a discussion of which is beyond the needs or scope of this book. (The two’s complement notation is adopted because it simplifies algorithms that perform arithmetic on signed integers.)
Table 1.1: The ASCII character codes. In this table, the first column in each pair lists the decimal code for the character that is identified in the second column of each pair.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NUL</td>
<td>16</td>
<td>DLE</td>
<td>32</td>
<td>SP</td>
<td>48</td>
<td>0</td>
<td>64</td>
<td>@</td>
<td>80</td>
<td>P</td>
<td>96</td>
</tr>
<tr>
<td>1</td>
<td>SOH</td>
<td>17</td>
<td>DC1</td>
<td>33</td>
<td>!</td>
<td>49</td>
<td>1</td>
<td>65</td>
<td>A</td>
<td>81</td>
<td>Q</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>STX</td>
<td>18</td>
<td>DC2</td>
<td>34</td>
<td>"</td>
<td>50</td>
<td>2</td>
<td>66</td>
<td>B</td>
<td>82</td>
<td>R</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>EOX</td>
<td>19</td>
<td>DC3</td>
<td>35</td>
<td>#</td>
<td>51</td>
<td>3</td>
<td>67</td>
<td>C</td>
<td>83</td>
<td>S</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>EOT</td>
<td>20</td>
<td>DC4</td>
<td>36</td>
<td>$</td>
<td>52</td>
<td>4</td>
<td>68</td>
<td>D</td>
<td>84</td>
<td>T</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>ENQ</td>
<td>21</td>
<td>NAK</td>
<td>37</td>
<td>%</td>
<td>53</td>
<td>5</td>
<td>69</td>
<td>E</td>
<td>85</td>
<td>U</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>ACK</td>
<td>22</td>
<td>SYN</td>
<td>38</td>
<td>&</td>
<td>54</td>
<td>6</td>
<td>70</td>
<td>F</td>
<td>86</td>
<td>V</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>BEL</td>
<td>23</td>
<td>ETB</td>
<td>39</td>
<td>'</td>
<td>55</td>
<td>7</td>
<td>71</td>
<td>G</td>
<td>87</td>
<td>W</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>BS</td>
<td>24</td>
<td>CAN</td>
<td>40</td>
<td>(</td>
<td>56</td>
<td>8</td>
<td>72</td>
<td>H</td>
<td>88</td>
<td>X</td>
<td>104</td>
</tr>
<tr>
<td>9</td>
<td>HT</td>
<td>25</td>
<td>EM</td>
<td>41</td>
<td>)</td>
<td>57</td>
<td>9</td>
<td>73</td>
<td>I</td>
<td>89</td>
<td>Y</td>
<td>105</td>
</tr>
<tr>
<td>10</td>
<td>LF</td>
<td>26</td>
<td>SUB</td>
<td>42</td>
<td>*</td>
<td>58</td>
<td>:</td>
<td>74</td>
<td>J</td>
<td>90</td>
<td>Z</td>
<td>106</td>
</tr>
<tr>
<td>11</td>
<td>VT</td>
<td>27</td>
<td>ESC</td>
<td>43</td>
<td>+</td>
<td>59</td>
<td>;</td>
<td>75</td>
<td>K</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FF</td>
<td>28</td>
<td>FS</td>
<td>44</td>
<td>,</td>
<td>60</td>
<td><</td>
<td>76</td>
<td>L</td>
<td>92</td>
<td>\</td>
<td>108</td>
</tr>
<tr>
<td>13</td>
<td>CR</td>
<td>29</td>
<td>GS</td>
<td>45</td>
<td>-</td>
<td>61</td>
<td>=</td>
<td>77</td>
<td>M</td>
<td>93</td>
<td>]</td>
<td>109</td>
</tr>
<tr>
<td>14</td>
<td>SO</td>
<td>30</td>
<td>RS</td>
<td>46</td>
<td>.</td>
<td>62</td>
<td>></td>
<td>78</td>
<td>N</td>
<td>94</td>
<td>^</td>
<td>110</td>
</tr>
<tr>
<td>15</td>
<td>SI</td>
<td>31</td>
<td>US</td>
<td>47</td>
<td>/</td>
<td>63</td>
<td>?</td>
<td>79</td>
<td>O</td>
<td>95</td>
<td>_</td>
<td>111</td>
</tr>
</tbody>
</table>

• a 64-bit combination of eight consecutive bytes as a double-precision floating point number.

In the IEEE standard for this format, eleven bits are assigned to store the exponent (as an eleven-bit signed integer, one bit is assigned to store the sign (0=+, 1=−) of the value, and 52 bits are assigned to store the digits of the (absolute value of the) value itself. In this format, values ranging (in decimal) from 2.225×10^{-308} to $1.798 \times 10^{+308}$ can be represented, though only to a precision of about fifteen decimal digits.9

Must computer architectures conform to these standards. Further, many computers make available one or more extended floating-point formats of their own design.

Clearly, many different data types are in common use. Most importantly, the information stored in a particular byte or aggregate of bytes contains nothing at all to identify its data type. The four bytes of a character string are indistinguishable from the four bytes in a 32-bit unsigned integer and both are indistinguishable from the four bytes in a single-precision floating point number. The bit pattern in those four bytes can be interpreted in any of these ways (and in others as well). It is the programmer’s responsibility to make sure that the program treats stored values in a way appropriate to their data types, usually by referring to memory cells with names that convey the data type. When conversion from one form to another—e.g., character to associated numerical ASCII code—is necessary, the programmer must invoke an appropriate routine to effect the conversion.

9Note that the use of an explicit bit to convey the sign of the value means that there are in this format two zeroes. Plus zero is different from minus zero!
1.2 Files and Directories

At (nearly) the most microscopic level, information in a computer is recorded in bytes stored in memory or, more permanently, on a hard drive. At the next level up, aggregations of these bytes into larger units that must be kept together are called files. Each file will have a name. Some of the files containing portions of or referenced in this book, for example, are named assemble.tex, laplace.f, laplace.c, trapezoidal.xc, and diffract.ps. The part of the name before the dot conveys something of what the file contains; when used, the part after the dot—the extension or file type—conveys the type of file. Some files—called ASCII text files—contain nothing but printing ASCII characters (and perhaps such simple control characters as \textlangle CR \textrangle and \textlangle HT \textrangle) and can be displayed on the screen, printed on a printer, or examined and edited with a text editor. Though some of their bytes can be interpreted as printing characters, other files—called binary files—contain also (perhaps numerous) non-printing characters and cannot be displayed on the screen, examined in (ordinary) text editors, or printed on a printer. Files of this latter type may be special data files created by programs; more often, they are executable files which contain compiled programs, and the bit patterns stored in the file are intended to be interpreted as instructions to the CPU. Whatever the type of file and the nature of the bit patterns it contains, each file is a unit whose component bytes must be kept together as a single entity.

Any computer system will, of course, store a very large number of individual files. To keep these files under some semblance of control, they will commonly be grouped together into aggregates of various sizes, those aggregates will themselves be assembled into higher-level aggregates, those into still higher-level aggregates, \ldots \textellipsis. The process is analogous to the aggregating of individual documents into a file folder, of these folders into file drawers, of the drawers into file cabinets, \ldots. In the computer world, we need then not only the files themselves but a new type of file that basically lists the contents of the aggregate that it represents. The resulting structure for keeping track of files looks like a tree. At the highest level, the tree has a single file—the root directory—that contains the names of the files it contains (and information about their locations on the disks of the computer). Some of those files may themselves describe (sub)directories, in each of which are listed the names of the files it contains. Some of those files in turn may describe (subsub)directories.\footnote{Since directories may ultimately be buried many levels deep, we shall suppress the multitude of sub’s that might appear, understanding that the simpler word ‘directory’ will refer to a directory without regard to its position in the overall hierarchy.} Locating a specific file in the entire structure then requires not only giving the file name but also describing its path—the sequence of directories through which we must pass from the root directory to reach the file. In UNIX, the root directory for the entire storage system is named /; the forward slash is also used to separate directory files in an extended path. Thus, to specify the location of a file buried several directories down from this universal starting point, we would have to supply an identifier like

```
/usr/people/cook/CCLI/intro/intro.tex
```

which indicates that the file intro.tex—the \LaTeX source file for this chapter—will be found in the intro directory in the CCLI directory in the cook directory in the people directory in the \texttt{usr} directory in the / (root) directory of the computer system in which it resides.

In the previous paragraph (and in the rest of this book), we use UNIX style file specifications. The corresponding specifications appropriate to the computing system(s) available at your site are described in the Local Guide.\footnote{In Windows, for example, the backslash character \textbackslash is used to separate directories in a path.} That document also explains conventions about (and restrictions imposed on) file names and types, user accounts, and other matters that vary so much from site to site that this book cannot sensibly explain them all.

\footnote{The extension \texttt{.tex} conventionally identifies a Te\TeX or \LaTeX source file; \texttt{.f} and \texttt{.c} identify files containing source code for FORTRAN and C programs; in this book, \texttt{.xc} identifies the executable file generated when a C program is compiled; \texttt{.ps} identifies a PostScript file.}
1.3 Operating Systems

Underneath it all, everything that a computer does is controlled by its operating system, which makes available a variety of standard commands to instruct the computer to carry out common tasks. In some cases, the user invokes a command by typing its name (and any necessary arguments) in a text-entry window or command-line interface (CLI). In other cases, the user clicks a mouse button on an icon or drags an icon to a new location on the desktop in a graphical user interface (GUI). However a command is conveyed to the operating system, it at base simply invokes a program that carries out the selected task and then returns control to the operating system for the next command. At the very minimum, the operating system must make available commands for

- logging in and logging out, paying attention on multi-user systems to user authorization (normally controlled through usernames and passwords).
- setting and changing the default directory, which is the directory to which file names refer when no path is specified.
- copying a file to another directory or deleting it altogether from its current directory.
- establishing various levels of file protection file by file and changing those specifications.
- creating ASCII files through the use of a text editor.
- customizing the user’s environment through the creation of environment variables, aliases, and other shorthands.
- retrieving and editing a previously executed command before it is submitted again for execution.
- displaying a file on the screen.
- printing a file to a printer.
- copying a selected portion of the screen to a file.
- converting files from one format to another.

The details of the ways in which these several capabilities are invoked and conventions about assigning user names, passwords, and default directories vary considerably among operating systems and are, even with the same operating system, site-specific. The Local Guide for your site describes those details.

1.4 Glossary, Conventions, and Understandings

In this section, we enumerate and define a number of terms to be used throughout this book, and we make a variety of observations that otherwise would have to be repeated several times.

- Typographically, we use the typewriter font for all program listings and for command lines displayed in the text. We also use this font for command and function names embedded in the text itself without enclosing these names in quotation marks (unless the absence of quotation marks creates ambiguity or confusion).
- In describing mouse operations, we use ML, MM, and MR for the left, middle, and right mouse buttons, respectively.13 The Local Guide explains how to translate these symbols if your mouse has fewer than three buttons.

13If you have invoked a feature of your operating system that permits reversing the conventional association of mouse buttons with actions, then you will have to read our MR to mean your ML, etc.
• As a shorthand, we use the phrase ‘Select …’ for the operations of moving the cursor over the indicated item (which may involve pulling down a menu) and then clicking ML.

• We use italic type for window names, small caps to identify menus, and single quotation marks to enclose the names of buttons or menu items. Thus, for example, in a tutorial segment, we might instruct you to “Select ‘Print’ from the File menu in the WinEdt window”.

• The lines dividing statements from commands from instructions are difficult to draw. In this book, we strive to refer to a complete instruction in some programming language as a statement and to reserve the word command for the keyword that introduces a statement. For example, we would speak of the command integrate but refer to the construction

\[
\text{integrate(\sin(k\times x), x, 0, \pi/2)}
\]

as a statement. Even this distinction is difficult to draw, however, because statements can be nested to produce compound statements that could, with justification, themselves be referred to as statements.

• The lines dividing functions from procedures from subroutines are also difficult to draw. Indeed, some computer languages regard these terms as synonymous. When a distinction is made, a function is a construction which, when executed, accepts arguments as input but returns a value to the variable(s) to which the function is assigned; the function SQRT, for example, would be invoked with a statement like

\[
R = \text{SQRT(} X^2 + Y^2 \text{)}
\]

Procedures and subroutines, however, (normally) have only arguments, some of which will supply input and others of which name the variables into which returned values will be placed; a procedure—call it SQRTPRO—to return in its second argument the square root of its first argument would be invoked with a statement like

\[
\text{SQRTPRO(} X^2 + Y^2, R \text{)}
\]

having no variable or equal sign at its beginning.\(^{14}\)

• The conventional file type for FORTRAN programs is .f in some operating systems, .for in others. In this book, we use .f.

• The conventional file type for C programs is .c or .cc. We use .c in this book.

• Most of the statements presented in this book can be submitted as they stand and executed by the program in whose command language the statement is written. Occasionally, we illustrate the general format of a statement without being sufficiently explicit to render the statement executable. Statements in the former category will be preceded by the appropriate prompt; statements in the latter category will be presented without a prompt. As a general rule, statements preceded with a prompt can—and should—be executed as you work your way through the material. Statements without a prompt should not, and most often could not, be executed.

• Especially in constructing statements for computer algebra systems and presenting their output, we will not always present the output in exactly the form or with exactly the appearance it will actually have. In particular, we will frequently use unsubscripted variables, e.g. \(x_1\) or \(x_f\), in the statement to be executed but render these variables as subscripted, e.g., \(x_1\) or \(x_f\), in the displayed output.

\(^{14}\)In some languages, procedures can optionally be written \(\text{err = SQRTPRO(} X^2 + Y^2, R\text{)}\), in which case the procedure returns a value to the variable \(\text{err}\) to convey that the procedure encountered a problem in its execution. Testing \(\text{err}\) after the procedure is invoked can then be used to trap errors and alert you to possible incorrect output.
1.5 Assumed Background

Mathematically, we assume in this book that you understand the notions of derivatives, integrals, and ordinary differential equations and that you have some acquaintance with linear algebra (matrix operations, eigenvalues and eigenvectors, ...). Physically, we suppose that you have taken a couple of introductory, calculus-based courses in physics and are continuing with intermediate courses in
This book makes contact with many intermediate-level physics courses, but it is not focused on any particular one of those courses. It draws on topics covered in several such courses whenever appropriate.

In addition, we include here a brief discussion of two mathematical topics that are necessary for some of what follows but that may well not have been treated in any of the courses viewed as prerequisite for the study of this book.

1.5.1 The Gamma Function

The factorial function \(n! \), which is defined when \(n \) is an integer as the product of all integers from \(n \) down to 1, i.e., by

\[
 n! = n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 2 \times 1
\]

(1.1)
is usually familiar. The double factorial function \(n!! \), which is defined (again when \(n \) is an integer) as the product of every other integer, i.e., by

\[
 n!! = n \times (n-2) \times (n-4) \times (n-6) \times \cdots \times \begin{cases} 4 \times 2 & n \text{ even} \\ 3 \times 1 & n \text{ odd} \end{cases}
\]

(1.2)
is less familiar but occurs frequently as well. Whether \(n \) is even or odd, the double factorial can be recast in terms of single factorials. If, for example, \(n \) is even, say 10, we can recast its double factorial in the form

\[
 10!! = 10 \times 8 \times 6 \times 4 \times 2 = 2^5 \times 5 \times 4 \times 3 \times 2 \times 1 = 2^5 5!
\]

\[\Rightarrow \quad (2n)!! = 2^n n! \]

(1.3)

If \(n \) is odd, say 9, recasting its double factorial takes mildly more work, but is illustrated in the chain

\[
 9!! = 9 \times 7 \times 5 \times 3 \times 1 = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{8 \times 6 \times 4 \times 2} = \frac{9!}{8!!} = \frac{9!}{2^4 4!}
\]

\[\Rightarrow \quad (2n+1)!! = \frac{(2n+1)!}{2^n n!} \]

(1.4)

We might wonder whether it is possible to define a function of a continuous variable that will coincide with the factorial function when its argument is an integer. Consider the function \(\Gamma(\nu) \) defined by the integral

\[
 \Gamma(\nu) = \int_0^\infty t^{\nu-1} e^{-t} \, dt \]

(1.5)

We quickly conclude that

\[
 \Gamma(1) = \int_0^\infty e^{-t} \, dt = 1
\]

(1.6)

With a little more effort, we can evaluate \(\Gamma(1/2) \). We begin by writing the definition of \(\Gamma(1/2) \) and introducing the new variable \(x^2 = t \) in the definition, finding that

\[
 \Gamma \left(\frac{1}{2} \right) = \int_0^\infty \frac{e^{-t}}{\sqrt{t}} \, dt = \int_0^\infty e^{-x^2} \frac{1}{x} x \, dx = \int_0^\infty e^{-x^2} \, dx
\]

(1.7)

Then, we examine the square of the quantity of interest, change to polar coordinates, and find that

\[
 \left[\Gamma \left(\frac{1}{2} \right) \right]^2 = \left(\int_0^\infty e^{-x^2} \, dx \right)^2 = \left(\int_0^\infty e^{-x^2} \, dx \right) \left(\int_0^\infty e^{-y^2} \, dy \right)
\]

\[= \int_0^\infty \int_0^\infty e^{-(x^2+y^2)} \, dx \, dy = \int_0^\infty e^{-r^2} \, r \, dr \int_0^{2\pi} \, d\phi = \pi \]

(1.8)

(1.9)
and we conclude that
\[
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \quad (1.10)
\]

Evaluation of the Gamma function at most other arguments must be done numerically.

The Gamma function, however, has a particularly interesting property that we can deduce if we apply integration by parts to the definition. Provided \(\nu > 1 \), we find that
\[
\Gamma(\nu) = -\int_0^\infty t^{\nu-1} e^{-t} \bigg|_0^\infty + (\nu - 1) \int_0^\infty t^{\nu-2} e^{-t} dt = (\nu - 1) \Gamma(\nu - 1) \quad (1.11)
\]

Applying this recursion relationship when the argument of the Gamma function is an integer, we find, for example, that
\[
\Gamma(5) = 4 \Gamma(4) = 4 \times 3 \Gamma(3) = 4 \times 3 \times 2 \Gamma(2) = 4 \times 3 \times 2 \times 1 \Gamma(1) = 4 \times 3 \times 2 \times 1 = 4! \quad (1.12)
\]

More generally, a similar argument leads to the conclusion that
\[
\Gamma(n+1) = n! \quad (1.13)
\]

and we have indeed succeeded in finding a function that is the natural extension of the factorial function to non-integral arguments. Indeed, one often sees the notation \(\nu! \) as an alternative to the notation \(\Gamma(\nu + 1) \)—and the latter in fact provides a formal definition of the former.\(^{15}\) Note that, since we know quite explicitly that \(\Gamma(1) = 1 \), this connection between the Gamma and factorial functions supports what is sometimes an assertion of convenience, namely that \(0! = 1 \).

1.5.2 The Laplace Transform

One tool used behind the scenes by symbolic solvers of ordinary differential equations is called the Laplace transform, which we describe here to avoid duplicating the discussion at several places in subsequent chapters. While we are not likely to make much use of the Laplace transform directly, knowing its properties may sometimes be valuable as we try to guide a symbolic manipulator that uses the technique. Defined for a function \(f(t) \) by the integral
\[
\mathcal{L}\left(f(t)\right) = \tilde{f}(s) = \int_0^\infty e^{-st} f(t) \, dt \quad (1.14)
\]

this transform has several important properties:

- The Laplace transform of a linear combination of functions is that same linear combination of the Laplace transforms of the separate functions,
\[
\mathcal{L}\left(af(t) + bg(t)\right) = \int_0^\infty e^{-st} \left(af(t) + bg(t)\right) \, dt
\]
\[
= a \int_0^\infty e^{-st} f(t) \, dt + b \int_0^\infty e^{-st} g(t) \, dt
\]
\[
= a \mathcal{L}\left(f(t)\right) + b \mathcal{L}\left(g(t)\right) \quad (1.15)
\]

i.e., in more technical terminology, \(\mathcal{L} \) is a linear operator (because integration itself is a linear operation).

\(^{15}\)The requirement at Eq. (1.11) that \(\nu > 1 \) limits the range of \(\nu \) for which the integral is acceptable as a definition of the Gamma function. Outside that range, we simply take the recursion relationship itself to define the function, so the recursion relationship is always valid while the integral converges only for \(\nu > 1 \).
Table 1.2: A short table of Laplace transforms.

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$\tilde{f}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t^n</td>
<td>$\frac{n!}{s^{n+1}}$</td>
</tr>
<tr>
<td>$\cos \omega t$</td>
<td>$\frac{s}{s^2 + \omega^2}$</td>
</tr>
<tr>
<td>$\frac{dx}{dt}(t)$</td>
<td>$s \tilde{x}(s) - x(0)$</td>
</tr>
<tr>
<td>$\frac{d^2x}{dt^2}(t)$</td>
<td>$s^2 \tilde{x}(s) - s x(0) - \frac{dx}{dt}(0)$</td>
</tr>
</tbody>
</table>

- The Laplace transform of the first derivative of a function $f(t)$ is simply related to the Laplace transform of $f(t)$. We need merely integrate the formal expression for the transform of the derivative by parts to find that

$$\frac{df}{dt}(s) = \int_{0}^{\infty} e^{-st} \frac{df(t)}{dt} dt = e^{-st} f(t)|_{0}^{\infty} + s \int_{0}^{\infty} e^{-st} f(t) dt = s \tilde{f}(s) - f(0) \quad (1.16)$$

- The Laplace transform of a higher-order derivative is also simply related to the Laplace transform of the original function. We merely apply the identity in Eq. (1.16) repeatedly. The Laplace transform of a second derivative, for example, has the evaluation

$$\frac{d^2f}{dt^2}(s) = s \frac{df}{dt}(s) - \frac{df}{dt}(0) = s \left(s \tilde{f}(s) - f(0)\right) - \frac{df}{dt}(0) = s^2 \tilde{f}(s) - sf(0) - \frac{df}{dt}(0) \quad (1.17)$$

As we shall see particularly in the chapter on ordinary differential equations, these last two properties, which convert differential expressions involving $f(t)$ into algebraic expressions involving $\tilde{f}(s)$, can be extended to convert some types of differential equations into algebraic equations. As a consequence, we anticipate that the Laplace transform may well play an important role in some approaches to solving ordinary differential equations.

Provided we can actually do the integral in Eq. (1.14), we can, of course, supplement these general properties by explicit evaluation of any number of Laplace transforms. Each entry in Table 1.2—a very short table of Laplace transforms—was obtained by explicit evaluation of the defining integral for the corresponding function.

1.6 Licensing Issues

Much of the software on every device in computational facilities around the world is proprietary and subject to the provisions both of the applicable copyright laws and of license agreements between the local institution and the vendors of the software. Usually—but not always, the licenses acquired by a given institution will permit simultaneous use on all of the devices in a laboratory at that institution. Almost certainly, the licenses limit use to projects and activities at that institution and prohibit copying of the software, except for purposes of system maintenance and backup. All users of all devices must be constantly mindful of the proprietary nature of much of the available software and must abide by the restrictions imposed by the copyright laws and by the license agreements. Those restrictions for each software package available at your site are described in the Local Guide.
Chapter 5

Introduction to PYTHON

Note: All program (*.py) and data (*.dat) files referred to in this chapter are available in the directory $HEAD/python, where (as defined in the Local Guide) $HEAD must be replaced by the appropriate path for your site. At some sites, this directory or some other directory containing these files may also have been placed in PYTHON's default search path. (See Section 5.16.2.) If so, the files can be found by PYTHON without explicit specification of a path. Otherwise, you will have to use the full path to copy them into your default directory to access them.

PYTHON is a freely distributed software package with capabilities to function as a very fancy interactive calculator, to run properly written programs, to generate graphical displays and animations, and to be essentially infinitely extended through the use of available or user-written modules. A typical interaction with the program will involve (1) creating one or more entities in PYTHON's workspace (either by computing them directly in PYTHON or by importing them into PYTHON from a file created by another program), (2) processing them in some way to produce other entities, and (3) displaying the end results in an appropriate graphical form. In anticipation of such uses in later chapters, this introduction describes the elementary commands for creating, processing, and displaying these entities. Further details can be found in the on-line help messages accessible from within PYTHON itself (see Section 5.8) and in assorted PYTHON documentation (see Section 5.17). Throughout this chapter, we have scattered an occasional URL link to a specific topic in a footnote when the topic is introduced. We shall refer to all of this documentation collectively as the PYTHON manuals.

Currently, PYTHON is available in two versions. PYTHON 2.7, which is the most recent release of Version 2, was introduced in 2010. Because many programs existing for this version will require possibly significant recasting to work with the newer Version 3.x, the developers have agreed to continue supporting PYTHON 2.7 until 1 January 2020, although this version will receive no new major releases. PYTHON 3 is the forward-looking version, and PYTHON 3.6, which was released in 2016, is proclaimed by the developers to be stable. Many add-on modules written originally for PYTHON 2 have been ported to PYTHON 3, but many others have not yet been so ported. This chapter and examples in subsequent chapters have been written assuming that you are using PYTHON 2.7. Fortunately, much of what is here described will work also in PYTHON 3.6, and we will include warnings at any point where that is not the case.

1See www.python.org/psf/license for details on the license to which you must agree before downloading and installing PYTHON. Though you probably will not need access directly to the files in that distribution, they will on your system be installed in a directories whose top level directory we will refer to as $PYTHONHEAD, whose explicit identification will be in your Local Guide.

2See Appendix Z for full contact information.

3A detailed comparison of PYTHON 2.7 with PYTHON 3.6 is provided on the web at the link wiki.python.org/moin/Python2orPython3. Review this document to help you decide which version will be best for your applications.
Two user interfaces to PYTHON are provided, a command-line interface (CLI) and a graphical user interface (GUI), called the Python shell, which facilitates working with files containing PYTHON programs. Statements to PYTHON are entered in a Windows or UNIX Shell window—the CLI—or a PYTHON Shell window—the GUI. With either interface, statements to PYTHON are structured and typed in the same way. Thus, in this chapter, we limit ourselves for the most part to describing the CLI.

5.1 Beginning a PYTHON Session

Detailed instructions for initiating a session with PYTHON will be found in the Local Guide. Usually, PYTHON will be started either (1) by typing the command ‘python’ (for the CLI) or a command like ‘idle’ or ‘python Path/idle.py’ (for the GUI) at the prompt from the operating system, (2) by double-clicking the left mouse button on an appropriate icon on the desktop, or (3) by selecting ‘IDLE (Python GUI)’ or ‘Python (command line)’ from a menu. Presently, the PYTHON prompt >>> will appear, either in a UNIX or Windows shell to the operating system (CLI) or in a newly created PYTHON Shell (GUI).\(^4\)\(^5\)\(^6\)\(^7\)\(^8\)\(^9\) We must from the outset be aware that

1. Internally, PYTHON is case sensitive. A and a do not have the same meaning.

2. Typing the statement quit() or the statement exit() at the PYTHON prompt or selecting ‘Exit’ from the File menu in the PYTHON Shell window will terminate PYTHON and return control to the operating system.

3. (Control-C) instructs PYTHON to abort its present activity more or less immediately. Presently, the PYTHON prompt returns and another statement can be submitted for execution.

4. Every command line in PYTHON must end either
 - with a (RETURN), which triggers the execution of the statement(s) on the line and, in some cases (see Section 5.3.1), the display of the result of executing the statement or
 - with the symbol ‘\’, which tells PYTHON that the statement is continued on the next line.

5. Semicolons can be used to separate independent statements on a single line.

6. In any command line, the number sign “#” can be used to introduce a comment. This sign and all following characters in the line will be ignored. Alternatively, comments occupying many lines can be enclosed in the structure ‘’’Comments ’’’ without use of the character #.

7. Within the PYTHON CLI, we can retrieve previous statements with the up-arrow key; within the Python Shell (GUI), we can retrieve previous statements by moving the cursor to the desired statement and pressing (RETURN). Either action will copy the statement to the current input focus on the screen. At that point, the statement can be edited by using the left and right arrow keys to move the cursor in the line, the backspace key to delete the character to the left of the cursor, the delete key to delete the character to the right of the cursor, and

\(^4\)The PYTHON shell is defined by a PYTHON program, so bringing up the shell involves running a PYTHON program!

\(^5\)Since the path will be interpreted by PYTHON, not the underlying operating system, the forward slash can be used to separate directories along the way no matter which operating system you are using.

\(^6\)In these commands to the operating system, case may be important.

\(^7\)Note that local configurations may have changed this prompt from the off-the-shelf default.

\(^8\)The label in the PYTHON Shell may include an identification of the version in use.

\(^9\)Be aware that the command that brings up the Python Shell in which you can enter statements directly may instead bring up the PYTHON Edit window. The OPTIONS menu in either of those windows offers a means to select which window will appear. See Section 5.6.
other keys to insert characters at the position of the cursor. Pressing (RETURN) will then execute the new statement, regardless of where the cursor happens to be positioned within the line.

Coupled with the multitude of third-party embellishments, PYTHON provides a very large resource for numerous tasks. Pointers to a wide variety of useful information are presented in Sections 5.8 and 5.17.

5.2 Basic Entities in PYTHON

5.2.1 Data Types

While individual items of data can be aggregated into quite complicated structures, the most frequently used data types in PYTHON are int for signed integers, float for floating point values, str for character strings, and tuple or list or set for aggregates of values (not necessarily of the same type) assigned to a single variable name. We need take no particular action to define the data type of any variable. PYTHON determines an appropriate data type automatically and dynamically. Thus, a particular variable may have one type at one point in a session and a different type at another point in the same session.

With one exception, the PYTHON commands int, float, and str, can be used to truncate a float value or convert a compatible string value to a signed integer, to convert an integer or compatible string value to a float value, and to convert an integer or float value to a string, respectively. During some conversions, e.g., the conversion of the floating point value 3.67 with the expression int(3.67), which will yield the value ‘3’, information will be lost in the rounding and cannot be retrieved by invoking the reverse command float.

While PYTHON by default assigns a data type to each entered value, the user can force use of alternative data types through the invocation of one or another commands. For example,

- long(a) converts an “ordinary” integer (data type int to a ”long” integer (data type long). Long integers will be displayed with a suffix L.
- bool(a) converts a to type bool (Boolean for logical operations with value either True or False).
- hex(a) converts an integer a to hexadecimal representation of type str, and
- oct(a) converts an integer a to octal representation of type str.

The PYTHON command type, which in the most common invocation, has a single argument, returns the type of that argument. The argument can be either an explicit value or a variable name that stores an explicit value.

5.2.2 Variable Names

The simplest variables in PYTHON represent either single numbers (type int or float), character strings (type str), or aggregates of several of these types referred to by a single name (type tuple).

10 A string value (e.g., ‘cook’) that does not represent a valid number cannot be converted to a number.
11 As described in Section 5.3.1, rounding floating values up or down to integers is accomplished by functions in the math module.
12 Note, however, that the distinction between “ordinary” and “long” integers is abandoned in PYTHON 3. All integers in PYTHON 3 are “long”, though data type int, not data type long, is used. The command long does not exist in PYTHON 3.
13 Any version of zero (0, 0.0, 0L, 0.0j), empty strings, empty lists, and empty tuples, and a few other values are treated as false; all other values are regarded as true.
14 The URL developer.rhino3d.com/guides/rhinopython/python-datatypes/ links to a more complete discussion of basic data types in PYTHON.
or type list or type set). Variable names must start with a letter or an underscore character, which can then be followed by any number of upper- or lower-case letters, numeric digits, and underscore characters. Except that use of reserved words like True, False, sin, and log—basically the names of built-in functions and constants—must be avoided, any name satisfying the enumerated constraints is valid. Prudence dictates that names should be chosen to have mnemonic significance and excessively long variable names, which will lead to excessively long lines of code, should be avoided. Variable names are sensitive to case. Because the data type of a variable is assigned dynamically, a particular variable may have one type at one point in a session and a different type at another point in the same session.

5.2.3 Assignment of Values to Variables

In PYTHON, the equal sign = plays the role of the assignment operator so, for example,

- the statement `alpha=3.79` creates a variable of type float named `alpha` and assigns the value 3.79 to that variable, i.e., stores in a memory location named `alpha` the floating point binary representation of the value 3.79.
- the statement `beta=3` creates a variable of type int named `beta` and assigns the value 3 to that variable, i.e., stores in a memory location named `beta` the binary representation of the integer 3.
- the statement `name = 'David'` creates a variable of type str and assigns the value David to that variable, i.e., stores the codes for each of the five characters in separate adjacent memory locations.

The difference between the integer 3 and the floating value 3.0 that happens to have an integer value is significant because the two values are stored internally in different formats. Floating point values should always be entered with an explicit decimal point, even if there are no digits after the decimal point, to assure that PYTHON will adopt the proper internal storage format for that value. Note also that string constants may be enclosed in single or double quotation marks but that the returned value will most often be enclosed in single quotation marks.

Beyond setting variables equal to specific values, a variable can be set equal to an expression with the understanding that PYTHON will evaluate the expression to determine the value to be assigned to the variable. To achieve that end, of course, all variables used in the construction of an expression must have previously been assigned explicit values. Thus, for example, the statement

```
x = alpha + beta
```

will add the values currently stored in the variables `alpha` and `beta` and store the result in the variable `x`, creating `x` if the variable does not already exist and overwriting whatever is currently stored in `x` if the variable already exists.

5.2.4 Commands

In PYTHON the variables identify storage areas in memory and provide ways to refer symbolically to the values stored in those areas. Actual processing of values is effected by one or another of PYTHON's commands, the behavior of which is almost always influenced by the value or values of one or more arguments and/or properties. Statements invoking a particular command will usually be expressed in the form

15 Technically, the length of a variable name is limited only by the available memory, but testing that limit is unwise.
16 If a string contains quotation marks of one type, the entire string should be contained in marks of the other type.
where the arguments are separated by commas. The statement begins with the command name, which will be followed by one or more arguments, all enclosed in a single set of parentheses. Some of these arguments are “free” and others are specified by using a keyword. If a command invoked in this way is executed interactively and the command returns a value, that value will be immediately displayed on the screen in a new line.

Alternatively, those commands that return values can be invoked with a statement in the general format

\[
\text{Variable(s)} = \text{command(argument, argument, Keyword=Value, ...)}
\]

in which the value returned by the command is assigned to the user-specified variable(s)—separated by commas if plural—and the value(s) will not be displayed on the screen.

The order of the “free”—or positional—arguments is mandatory, since the position of each argument identifies its role, and all of these arguments must be provided. Arguments specified by keyword-value pairs—keyword arguments—must appear after all positional arguments but can be presented in any order, since the keyword identifies the role of the immediately following value. Most keywords have appropriate default values, so their explicit stipulation is necessary only if the default value is unacceptable. Keywords, which are always strings, are presented in the argument list without quotation marks; any values that are strings, and any positional arguments that are strings are always enclosed in single quotation marks; numeric arguments and numeric keyword values are not quoted.

5.2.5 PYTHON Modules

PYTHON has been deliberately designed with a fairly small off-the-shelf content but with a rich possibility of expanding its capabilities by the “importing” of one or more third-party or user-defined modules. To make the features of one or another module available for use in a PYTHON session in the simplest way, we simply execute either of the statements

\[
\text{import ModuleName} \quad \text{or} \quad \text{from ModuleName import *}
\]

Thereafter, all components of ModuleName will be available for use. If the first statement is used, all references to components of the module must be prefaced with ModuleName; with the second statement, ModuleName can be omitted (though at some risk of confusion if components of the same name exist in two or more imported modules). The alternative statement

\[
\text{import ModuleName as Alias} \quad \text{e.g.,} \quad \text{import numpy as np}
\]

provides an alias so that components can be identified by the (typically shorter) alias. For example, the numpy module array can be referred to as np.array rather than the longer numpy.array.

Further, since many modules are quite large and you may know that you need only a few components from that module, you can import only the needed components and save memory for more valuable use with statements of the form

\[
\text{from ModuleName import Component} \quad \text{e.g.,} \quad \text{from numpy import array}
\]

Imported this way, the function numpy.array can be referred to simply as array, which is convenient but—WARNING—some components in a module may depend on other components in that module and one can’t be sure that components on which a particular component depends will automatically
be imported as well. Further—SECOND WARNING—confusion with identically named components
in other imported modules may still arise.

There are many, many modules. Among the more useful ones, some of which must be installed
separately from the main PYTHON distribution, are

- **math**, which provides numerous mathematical functions, most if not all of which are limited
to accepting scalars as arguments. See Section 5.3.1.

- **numpy**, which is frequently imported with the alias np. This module provides numerous routines
for working with arrays and also embellishes the mathematical functions provided by the math
module so that they can accept arrays as arguments. See Sections 5.3.4 and 5.3.5.

- **matplotlib** and **matplotlib.pyplot**, which provide functions for creating a wide variety of
graphical displays. See Section 5.3.9. The module `matplotlib.pyplot` is frequently imported
with the alias `plt`.

The module os, which in particular provides functions for invoking features of the operating system
from within PYTHON, and the module sys, which provides access to features of the underlying
PYTHON interpreter, are occasionally useful and will be introduced when the need arises. The
operator module includes a few logical functions not included in off-the-shelf PYTHON.

5.3 A Sampling of PYTHON Capabilities

In this section, we present several examples illustrating various capabilities of PYTHON and intro-
ducing some of the most frequently used commands. The “conversation” in this section should start
in a fresh invocation of PYTHON and will work either in the CLI or in the GUI (Python Shell).

5.3.1 Using PYTHON Interactively

A simple use of PYTHON exploits its capacity to function as a sophisticated calculator. Simple
arithmetic can be done simply by entering the expression to be evaluated but not assigning the result
to any variable and then pressing \(\text{RETURN}\), in response to which, PYTHON will evaluate the
expression and display a result. For example, after PYTHON has been launched, the “conversation”
with PYTHON might unfold as follows:\(^{19}\)

\(^{17}\)See Section 5.16.1.

\(^{18}\)See Section 5.4.

\(^{19}\)PYTHON statements are shown on the left; comments describing the statements are shown on the right. Further,
to save space, we will routinely compact PYTHON’s output by omitting blank lines and extra spaces.
5.3. A SAMPLING OF PYTHON CAPABILITIES

```python
>>> 3*4 + 2
14
>>> type(3*4+2)
<type 'int'>
>>> 8/5
1
>>> 8%5
3
>>> 8.0/5.0
0.6
>>> 2**12
4096
>>> 2**0.5
1.4142135623730951
>>> type(2**0.5)
<type 'float'>
>>> pow(2, 12)
4096
>>> round( pow(2,0.5), 3 )
1.414
```

Do simple arithmetic.

Ask for type of value.

Do integer division, which ignores anything after a decimal.\(^{20}\)

Find remainder after integer division.

Do floating division, which gets 8.0/5.0 correct.

Raise integer to power.

Raise to fractional power.

Ask for type of value.

Invoke built-in function `pow`.

Round √2 to 3 digits after the decimal point.

One way to provide common mathematical functions that are not included in off-the-shelf PYTHON is to import the `math` module with the simple statement

```python
>>> import math
```

which adds many functions, including—but certainly not limited to—exponential, logarithmic, trigonometric (forward and inverse), and hyperbolic (forward and inverse). The use of a very few of these functions is illustrated in the statements

```python
>>> math.sqrt(9)
3.0
>>> math.fabs(-6.543)
6.543
>>> math.factorial(12)
479001600
>>> math.exp(2.5)
12.182493960703473
>>> math.sin(math.radians(90.0))
1.0
```

Returns square root with type `float`; error if argument is negative.

Returns absolute value with type `float`.

Returns 12!; error if argument is negative or non-integral; see `math.gamma()`.

Returns e to the power of the argument with type `float`.

Returns the sine of its argument with type `float`; argument must be in radians. Here the function `math.radians(x)` converts degrees to radians.

Other available functions in the `math` module are `math.asin(x)`, `math.cos(x)`, `math.acos(x)`, `math.tan(x)`, `math.atan(x)`, `math.sinh(x)`, `math.asinh(x)`, `math.cosh(x)`, `math.acosh(x)`.

\(^{20}\)We describe here the behavior of PYTHON 2. In PYTHON 3, the statement `8/5` will return `1.6`, i.e., decimal points are not necessary to flag floating division. If you want an integer result in PYTHON 3, you will need to convert the floating result explicitly, e.g., `int(8/5)`.
math.tanh(x), math.atanh(x), and math.erf(x), each of which has a single argument, and math.atan2(x, y), which has two arguments and returns the arc tangent in the proper quadrant determined by the separate signs of x and y. In addition, the available constants include math.pi and math.e, each of which is provided in type float with 15 digits after the decimal point, essentially double-precision floating point values.

Any of the statements in this section could, of course, be recast to assign the result of the evaluation to a variable, e.g.

```python
>>> a = math.sqrt(9)
>>> a
3.0
>>> print a or >>> print(a)
3.0
```

Cast in this way, PYTHON does not automatically display the result stored in the variable used. To display that value, one can either assert the variable name or invoke the PYTHON command print, which can be written either with or without parentheses in PYTHON 2 but must use parentheses in PYTHON 3.

5.3.2 Creating and Examining Strings, Tuples, Lists, and Sets

Entities of type str, tuple, list, and set are the simplest aggregates of the simpler entities integers, floating numbers, and strings. These entities can be created within PYTHON or—see Section 5.6.2—read in from files. Individual elements (or components) in strings, tuples, and lists—but not in sets—can be accessed by specifying one or more indices to identify the location of the desired element in the larger entity. The syntax for creating these entities and, when permitted, examining and assigning values to individual components in these entities is illustrated in the following paragraphs.

While individual strings are normally thought of as single entities, internally they are stored as an aggregate of individual characters. Even so, the equal sign is used to assign strings to variables. To be properly interpreted, the sequence of characters composing the string must be enclosed in single or double quotation marks, though it will most often in either case be subsequently displayed with single quotation marks. We illustrate both assigning a string to a variable and examining it with the statements

21 A full listing of the functions included in the math module and their syntax can be found at the URL docs.python.org/2/library/math.html or the URL docs.python.org/3/library/math.html, depending on whether you need information for PYTHON 2 or PYTHON 3.

22 Be aware that the format of the output from a print statement depends on the data type of its argument(s) and on whether you are using PYTHON 2 or PYTHON 3; sometimes the output will be enclosed in parentheses or brackets, sometimes not; sometimes individual values will be separated by commas, sometimes by spaces. Be warned. We will probably not be entirely consistent in the remainder of this book, so your output from a print statement when replicating illustrated code may not look exactly like the output shown in this book.

23 If you need to include a single quotation mark in the string, you would write either name="don’t" or name = 'don’t'. If name is then displayed, the output will in either case be "don’t" or don’t, depending on whether you simply assert the variable name or use the print command.
Create a `string name`
Display value on the screen.

Display using `print`; note absence of quotation marks.

Display data type of variable.

Find number of characters in string.

Display second element in string (index of elements starts at 0).

Creating tuples, lists, and sets, which are simple structures that more obviously than strings contain more than one element but are technically not the same nor are they vectors or arrays, involves slightly more complicated statements. To create a `tuple`, the list of values must be enclosed in (ordinary) parentheses and individual elements must be separated with commas. We illustrate both assigning a tuple to a variable and examining it with the statements

```python
>>> b = ( 1, 0, 3, 7, 10 )
>>> b
(1, 0, 3, 7, 10)
>>> type(b)
<type 'tuple'>
>>> b[3]
7
>>> len(b)
5
```

Create a `tuple b`.
Display it on the screen.

Display data type of variable.

Display third element; remember that indices begin with 0.

Display number of elements in `b`.

Interestingly, though individual elements in a tuple can be examined, they cannot be edited; the statement `b[3]=5`, for example, will generate an error message. Note that the elements of a tuple are not required to have the same type, though there may be few if any contexts in which exploiting that feature will be useful. Note also that, to create a tuple with a `single` element, the element must be followed by a comma, e.g., `a = (4,)`. **Repeat to be sure you notice:** To create a tuple with a single element, the element must be followed by a comma.

Lists are created in the same way as tuples, but the list of values must be enclosed in (square) brackets instead of parentheses. Individual elements are still separated with commas. We illustrate both assigning a list to a variable and examining it with the statements

```python
>>> c = [ 1, 0, 3, 7, 10 ]
>>> c
[1, 0, 3, 7, 10]
>>> type(c)
<type 'list'>
>>> c[3]
7
>>> c[3] = 5
>>> c
[1, 0, 3, 5, 10]
```

Create a `list c`.
Display it on the screen.

Display data type of variable.

Display third element; remember that indices begin with 0.

Edit third element.

Display edited list.

In contrast to tuples, individual elements in a list can be edited. As with tuples, the elements of a list may be of different types.

\(^{24}\)See Section 5.3.4.
In a similar way, a set can be created by replacing the enclosing parentheses in a tuple or the enclosing square brackets in a list with enclosing braces {...}. Individual elements in a set can neither be addressed nor edited.

Even more complicated entities—lists of lists, tuples of tuples, lists of tuples, lists of lists of lists, . . . —can be constructed. For example, a list of lists can be constructed and examined with the statements

```python
>>> lstlst = [[1,2], [3,4], [5,6]]
>>> lstlst
[[1,2], [3,4], [5,6]]
>>> type(lstlst)
<type 'list'>
>>> lstlst[1]
[3,4]
>>> lstlst[1][1]
4
```

Create a list of lists lstlst. Display it on the screen. Display data type of variable. Display first element; remember that indices begin with 0. Display first element of first element. Note that indices into entities of the sort discussed in this paragraph take the form [1][1], not [1,1] or (1,1).

5.3.3 Interrogating and Adjusting the Symbol Table

To remind ourselves of the variables PYTHON knows at any particular moment and to find out something about those variables, we might use a statement like

```
dir()
```

which will return an alphabetically sorted list of all defined variables (and will include some PYTHON-defined variables that you have not explicitly introduced). Then, should we wish to delete some of these variables to free memory for other purposes, we could use statements like

```
b = None  
```

or

```
del b
```

Here, the first statement retains the variable name but renders the value stored therein empty while the second removes the variable name and its value altogether. Both release some memory for subsequent use.25

5.3.4 Creating and Examining Arrays

Unfortunately, because of the format of their internal storage, strings, lists, tuples, and sets are not arrays. The off-the-shelf implementation of PYTHON, whether PYTHON 2 or PYTHON 3, does not include data types for arrays. Those components, as well as several functions and commands for manipulating them,26 are added if the module numpy (numerical python) is imported with the statement27

```
>>> import numpy
```

25Two other commands—globals() and locals—return dictionaries (data type dict) of some or all defined variables, each of which is associated with its current value. These dictionaries are quite long and may be difficult to parse. The distinction between a global dictionary and a local dictionary is subtle. For purposes of being reminded of defined variables, dir() is sufficient.

26And many other features, including many additional data types and many additional routines for numerical processing.

27Many modules must be installed to complete execution of this statement, and completion may take a bit of time. See Section 5.2.5 for ways to import only those modules needed for the immediate application.
5.3. A SAMPLING OF PYTHON CAPABILITIES

Once this module has been imported, creation of an array involves invoking the command `numpy.array` which has (normally) a tuple or a list as its sole argument. For example, the statements

```python
>>> a = numpy.array( [1,2,3,4,5] )
>>> print( a )
[1, 2, 3, 4, 5]
>>> type(a)
<type 'numpy.ndarray'>
>>> a[2]
3
>>> a.dtype
dtype('int32')
>>> [ a.ndim, a.size, a.itemsize ]
[1, 5, 4]
```

Create a one-dimensional array `a`. Display `a`. Display data type of `a`. Note that a new type has appeared. Display second element in `a`. Remember that indices start counting at 0. Display data type of elements of `a`. Note that `int32` (32-bit signed integer), is specific to `numpy`. It does not exist in off-the-shelf PYTHON. Display dimension of, number of elements in, and size in bytes of each element in `a`.

create a one-dimensional array that represents a row vector and examine some of its properties. We have here encountered two numpy-specific data types (`numpy.ndarray` and `int32`) and four (data) attributes\(^\text{28}\) (`dtype`, `ndim`, `size`, and `itemsize`) possessed by every array.

A two-dimensional array is created by `numpy.array` from a tuple of tuples or a list of lists. For example, the statements

```python
>>> b1 = [ 1, 2, 3, 4 ]
>>> b2 = [ 5, 6, 7, 8 ]
>>> b3 = [ 9, 10, 11, 12 ]
>>> b = numpy.array( [ b1, b2, b3 ] )

>>> print( b )
[[ 1, 2, 3, 4 ],
 [ 5, 6, 7, 8 ],
 [ 9, 10, 11, 12 ]]
```

Create a 4 × 3 array `b`. Display `b`. Display data type of `b`. Display data type of elements of `b`. Note that `int32` (32-bit signed integer), is specific to `numpy`. It does not exist in off-the-shelf PYTHON. Display shape (i.e., number of rows and columns) of `b`. Here, the `L` means that the values are long integers.

The array `b` created somewhat laboriously in the previous paragraph can be created more easily with the single statement

```python
>>> c = numpy.arange(1, 13, 1).reshape(3,4)
```

\(^{28}\)See Section 5.3.8.
where the NumPy function `arange` creates a one-dimensional array with integer elements starting at 1 (the first argument) and continuing in steps of 1 (the third argument, which defaults to 1) until the value reaches (or exceeds) the second argument.\footnote{Note that, if the terminating value is exactly reached, that value will be omitted from the array.} The appended stipulation using `reshape` rearranges the 12 elements in the one-dimensional array into a 3×4 array. All three arguments of `arange` can be non-integral if necessary.

The module NumPy also includes functions to create special arrays. Note in particular the several functions

- `numpy.zeros([n, m])` will create an $n \times m$ array of zeroes.
- `numpy.ones([n, m])` will create an $n \times m$ array of ones.
- `numpy.eye(n)` will create an $n \times n$ array with ones on the main diagonal and zeroes everywhere else.
- `numpy.random.rand(n, m)` will create an $n \times m$ array of values randomly chosen between zero and one, with a different collection generated with each successive execution. Especially when debugging a program that includes random numbers, it may be useful to generate the same sequence of random numbers with each invocation of `numpy.random.rand`. Normally, the seed for generating a sequence of random numbers is chosen arbitrarily. To assist in debugging, the module NumPy provides the function `numpy.random.seed()` that allows the user to stipulate the seed by providing a positive integer argument between 0 and $2^{32} - 1$ (4294967295). The seed needs to be reset each time you want to restart the sequence of random numbers.

In all four cases, the elements will be floating values.

Finally, we note that NumPy includes commands to evaluate the dot and cross products of two one-dimensional arrays. These capabilities are quickly illustrated in the code\footnote{Python 3 provides the symbol `@` to evaluate the dot product with a statement like `a@b`.}

```python
>>> a = numpy.array([1, 2, 3])
>>> b = numpy.array([4, 5, 6])
>>> print(numpy.dot(a, b))  # Evaluate, print dot product.
32
>>> print(numpy.cross(a, b))  # Evaluate, print cross product.
[-3, 6, -3]
```

These two commands will also return the dot and cross products of two three-element tuples and two three-element lists. Further, the command `dot` will return the dot product of one-dimensional arrays, tuples, or lists, however many elements each has (provided only that the two have the same number of elements).

Once an array has been created, we can examine individual elements in the array and edit those elements with statements like

```python
>>> a = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> print(a)
[[ 1  2  3],
 [ 4  5  6],
 [ 7  8  9]]
```
5.3. A SAMPLING OF PYTHON CAPABILITIES

>>> a[1,2]
6
Display the element in the first row and second column of a. Remember that indices start at 0.

>>> print(a[:,2])
[3 6 9]
Print the second column of a as a row.

>>> print(a[1,:])
[4 6 6]
Print the first row of a.

>>> a[1,2] = 22
>>> print(a)
[[1 2 3],
 [4 5 22],
 [7 8 9]]
Edit element 1,2 and display result

We have, of course, barely scratched the surface in identifying functions and commands included in the module numpy. We shall meet other components in due course.\(^{31}\)

5.3.5 Creating and Manipulating Matrices

Very much of computational physics makes use of vectors and matrices of various dimensions. Unfortunately, because of the format of their internal storage, strings, lists, tuples, sets, and arrays are not matrices. The numpy module also includes commands and functions for creating and manipulating matrices. We can create and display two \(2 \times 2\) matrices with the statements

>>> A = numpy.matrix([[1,2],[3,4]])
Create and display matrix A

>>> A
matrix([[1, 2],
 [3, 4]])
Display data type of A

>>> type(A)
<class 'numpy.matrixlib.defmatrix.matrix'>
Create and display matrix B

>>> B = numpy.matrix([[5,6],[7,8]])

>>> print(A)
[[1 2]
 [3 4]]

>>> type(A)
<class 'numpy.matrixlib.defmatrix.matrix'>
Display data type of A

>>> B
[[5 6]
 [7 8]]

Note that commas are included in the output displayed if the variable name is asserted but are omitted if the print command is used.

With two matrices in hand, we can invoke several statements to massage them in various ways. For example, they can be added or subtracted element by element with the statements

>>> A + B
matrix([[6, 8],
 [10, 12]])

>>> A - B
matrix([[-4, -4],
 [-4, -4]])

multiplied element-by-element with the statement\(^{32}\)

\(^{31}\) The URLs docs.scipy.org/doc/numpy-1.13.0/reference/ and docs.scipy.org/doc/numpy/user/quickstart.html point to more detailed enumerations and illustrations of the components in numpy.

\(^{32}\) Two-dimensional compatible arrays a and b can be multiplied element-by-element with the statement a*b or by invoking numpy.multiply. In either case, the result has type numpy.ndarray.
>>> numpy.multiply(A, B)
 matrix([[5, 12],
 [21, 32])

or multiplied by the rules for matrix multiplication with the statement

>>> A * B
 matrix([[19, 22],
 [43, 50])

The two results produced from matrices will be created with data type—actually data class—numpy.matrixlib.defmatrix.matrix. We can evaluate the inverse of a square matrix with the statement

```python
>>> numpy.linalg.inv( A )
    matrix([[-2. , 1.],
            [ 1.5, -0.5])
```

with the result having the data type of a matrix. We can evaluate the transpose of a matrix with the statement

```python
>>> numpy.matrix.transpose( A )
    matrix([[1, 3],
            [2, 4]])
```

Finally, we can find the trace of a matrix with the statement

```python
>>> numpy.trace( A )
    5
```

with the result having—in this case—the data type numpy.int32.

5.3.6 Complex Numbers

PYTHON uses the symbol `j` to flag a complex number. This symbol is understood even in off-the-shelf PYTHON, so the statements

```python
>>> a = 3 + 4j
>>> print(a)
(3+4j)
>>> type(a)
<type 'complex'>
>>> a.real; a.imag
(3.0, 4.0)
```

create and display a complex number and its data type. Complex numbers can be added (+), subtracted (−), multiplied (∗), divided (/), and raised to a power (∗∗ or pow(...)), including fractional powers, using off-the-shelf operations. Many of the functions in the module numpy also

33The inverse of a square array can also be computed with numpy.linalg.inv but the data type of the result will be that of an array.
34The transpose of an array can also be computed with numpy.matrix.transpose but the data type will be that of an array.
work with complex arguments, though one must use caution. For example, `numpy.sqrt(-5)` returns `nan` (not a number) but `numpy.sqrt(-5+0j)` returns the correct value. The alternative module `cmath` (complex math) is more accommodating and will return the proper value with the statement `cmath.sqrt(-5)`. This module also has features for converting complex numbers between Cartesian and polar forms.\(^{35}\)

5.3.7 Solving Linear Equations

PYTHON's matrix operations provide a quick route to solve simultaneous linear equations. Suppose, for example, we had the equations

\[
\begin{align*}
2x_1 + 5x_2 + 3x_3 &= 3 \\
-x_1 + 3x_2 - 4x_3 &= -4 \\
x_1 - x_2 &= 1
\end{align*}
\]

where the matrix expression uses the usual convention for matrix multiplication. We would enter and verify the coefficient matrix and the vector of inhomogenities with the statements

```python
>>> import numpy as np
>>> a = np.matrix( [[2.0,5.0,3.0], [-1.0,3.0,-4.0], [1.0,-1.0,0.0]])
>>> b = np.matrix([[3.0], [-4.0], [1.0]])

>>> print( a )
[[ 2.  5.  3.]
 [-1.  3. -4.]
 [ 1. -1.  0.]]

>>> print( b )
[[ 3.]
 [-4.]
 [ 1.]]
```

Then, recognizing in the abstract that the equation \(a \mathbf{x} = \mathbf{b}\), where \(a\) is a square matrix and \(\mathbf{x}\) and \(\mathbf{b}\) are (column) vectors, implies that \(\mathbf{x} = a^{-1}\mathbf{b}\), we might—though (from the perspective of numerical accuracy) almost always unwisely—seek a solution with the statements

```python
>>> ainv = np.linalg.inv(a)
>>> x = ainv * b
>>> print( x )
[[ 0.85294118]
 [-0.14705882]
 [ 0.67647059]]
```

This solution correctly solves the original equations, as hand substitution—and the statement `print(a*x-b)`—will confirm.

Actually, the numpy module in PYTHON includes another operator that further facilitates the task of solving simultaneous linear equations. After defining \(a\) and \(b\) as above, we might simply have invoked the statement

```python
>>> print( np.linalg.solve(a,b) )
[[ 0.85294118]
 [-0.14705882]
 [ 0.67647059]]
```

\(^{35}\) The URL docs.python.org/?library/cmath.html, where ? is either 2 or 3, links to a full discussion of the `cmath` module.
5.3.8 Data and Method Attributes of Variables

PYTHON variables have what are called attributes, which are accessed by following the variable name with a period (dot) and then by the name of the attribute. Attributes come in at least two types.\(^{36}\) Data attributes, more recently called instance attributes, identify information about the variable that is stored with the variable. For example, the array \(A\) defined in Section 5.3.5 has, among others, the attributes \(\text{ndim, size, itemsize, dtype, and shape}\), all of which we met in Section 5.3.4. The values of these attributes for any particular variable that possesses the attributes can be discovered either by appending the name of the attribute to the variable name, as in the statements

\[
\begin{align*}
\text{>>> } A.\text{ndim} & \quad \text{Display number of dimensions in } A. \\
& \quad 2 \\
\text{>>> } A.\text{size} & \quad \text{Display number of elements in } A. \\
& \quad 4 \\
\text{>>> } A.\text{itemsize} & \quad \text{Display number of bytes occupied by each} \\
& \quad \quad \text{element in } A. \\
& \quad 4 \\
\text{>>> } A.\text{dtype} & \quad \text{Display data type of each element in } A. \\
& \quad \text{dtype('int32')} \\
\text{>>> } A.\text{shape} & \quad \text{Display size of each dimension in } A, \text{ which} \\
& \quad \quad \text{here is a } 2 \times 2 \text{ matrix.} \\
& \quad (2L, 2L)
\end{align*}
\]

Alternatively, we can exploit the built-in command \texttt{getattr} with the statements

\[
\begin{align*}
\text{>>> } \text{getattr(} A, \ '\text{ndim'} \) & \quad \text{Display number of dimensions in } A. \\
& \quad 2 \\
\text{>>> } \text{getattr(} A, \ '\text{dtype'} \) & \quad \text{Display data type of each element in } A. \\
& \quad \text{dtype('int32')}
\end{align*}
\]

Note the quotation marks enclosing the second argument in this function. Either single or double quotation marks can be used.

Rather than identifying a property stored as a characteristic of the variable, method attributes, which are more recently called class attributes, identify a method or a procedure that will be applied to the variable to which the attribute is attached. The statement involving the method attribute \texttt{reshape} used near the end of Section 5.3.4 illustrates this type of attribute.

The attributes of either type that are attached to a particular variable depend on the class and data type of the variable.

PYTHON’s features that allow users to create their own classes and attributes are beyond the scope of this book.

5.3.9 A First Graph

PYTHON’s commands also facilitate the graphing of known univariate functions, but the necessary commands are available only after the module \texttt{matplotlib.pyplot} has been imported. Further, we will need arrays—not tuples or lists or sets—to communicate the data to be plotted to the graphing commands. Consequently, we start by executing the statements

\[
\begin{align*}
\text{>>> import numpy as np} \\
\text{>>> import matplotlib.pyplot as plt}
\end{align*}
\]

\(^{36}\)Unless clarity requires otherwise, we will usually refer to both types simply as attributes.
5.3. A SAMPLING OF PYTHON CAPABILITIES

the make these commands available.

To create a graph of a univariate function of a variable \(x \), we need first a one-dimensional array containing values—usually, but not necessarily, equally spaced—spanning the domain of the independent variable from some starting point to some ending point. The necessary one-dimensional array of can be created with a statement like

\[
\text{Var} = \text{np.arange}(\text{Start}, \text{Stop}, \text{Step})
\]

to store in \(\text{Var} \) a one-dimensional array of equally spaced values starting with \(\text{Start} \), incrementing by \(\text{Incr} \), and stopping at the value closest to \(\text{Stop} \) that does not equal or exceed \(\text{Stop} \). More specifically, the statement

\[
\begin{align*}
&>>> \text{x} = \text{np.arange}(-3, 7, 2) \\
&>>> \text{print}(\text{x}) \\
&[-3 -1 1 3 5]
\end{align*}
\]

creates the indicated array, starting at \(-3\) and incrementing by 2 until the next result equals or exceeds 6. The parameter \(\text{Step} \) defaults to 1 and the parameter \(\text{Start} \) defaults to 0. Exploiting the defaults, the statement

\[
\begin{align*}
&>>> \text{x} = \text{np.arange}(5) \\
&>>> \text{print}(\text{x}) \\
&[0 1 2 3 4]
\end{align*}
\]

results in an array that starts at 0, increments by 1, and does not include what one might think would be the last included value. This command returns integers if its arguments are integers and floating values if its arguments are floating values.

When generating a list of integer indices to control a loop\(^{37}\), the command \text{numpy.arange} is the command of choice. Alternatively (and somewhat more transparently), the desired array can be created with a statement like

\[
\text{Var} = \text{np.linspace}(\text{Start}, \text{Stop}, \text{NoVals})
\]

to store in \(\text{Var} \) a one-dimensional array of \(\text{NoVals} \) values starting with \(\text{Start} \) and ending with \(\text{Start} \). More specifically, the statement

\[
\begin{align*}
&>>> \text{y} = \text{np.linspace}(-3, 5, 5) \\
&>>> \text{print}(\text{y}) \\
&[-3. -1. 1. 3. 5.]
\end{align*}
\]

creates the indicated array, starting at \(-3\), ending at 5, and placing 5 values in that range. In this case, the output contains both specified ending values and produces only floating values, even if its arguments are integers. The parameter \(\text{NoVals} \) defaults to 50 but \(\text{Start} \) and \(\text{Stop} \) must both be provided.

With this background, suppose we want a graph of the hyperbolic cosine function \(\cosh(x) \) over the range \(-3.0 \leq x \leq 3.0\). We would invoke the statements

\[
\begin{align*}
&>>> \text{x} = \text{np.linspace}(-3.0, 3.0, 61) \\
&>>> \text{y} = \text{np.cosh}(\text{x})
\end{align*}
\]

\(^{37}\)See Section 5.4.
to set the independent and dependent variables and then the statements38

>>> plt.plot(x, y)
>>> plt.show()

to generate an internal representation of the graph and then display that graph on the screen. The
graph created by these statements appears in a new window called a \textit{Figure} window, a copy of which
is shown in Fig. 5.1. Typically, the presence of this graph on the screen will block submitting any
additional statements to PYTHON until the graph has been manually closed. Interactive plotting,
which is discussed in Section 5.15.7, is available in some PYTHON backends and permits overriding
this behavior.

Taking control of some of the defaults adopted by the command \texttt{plt.plot} or otherwise emblen-
lishing the graph can be accomplished in several ways. We might, for example,

- use the commands \texttt{plt.xlim} and \texttt{plt.ylim}—each of which has a single argument—a tuple
 specifying the desired ranges \((x_{\text{min}}, x_{\text{max}})\) on the \(x\) axis and \((y_{\text{min}}, y_{\text{max}})\) on the \(y\) axis.
- use the command \texttt{plt.title} to place a title on the graph.
- use the commands \texttt{plt.xlabel} and \texttt{plt.ylabel} to put labels on the \(x\) and \(y\) axes.
- use the command \texttt{plt.grid} to replace short tics along the axes with full grid lines.

Further, we might stipulate values for any of a wide variety of PYTHON \textit{keywords} to customize the
line weight and line style and to change character sizes, \ldots.

Exploiting the additional commands and properties described in the previous paragraph, we
might therefore produce the more readable and useful graph shown in Fig. 5.2 with the statements39

38The command \texttt{plt.plot} is more fully discussed in Section 5.9.

39Note the order of these statements. The original graph must be produced before any of the other embellishments
can be added. Note also that, after execution of \texttt{plt.plot}, any number of additional \texttt{plt.*} commands, including
\texttt{plt.plot} can be executed to add components to the accumulating internal graph. Only when the command \texttt{plt.show}
is finally executed will the accumulated components be displayed on the screen.
In these statements, each of the pairs color='black', linewidth=4, fontsize=20, and fontsize=16 assigns the value given by what follows the equal sign to the keyword identified by what precedes the equal sign. Specifically, they override the default color (blue) for the graph with black, the default linewidth (0.5 pt) with 4 pt, and the default character size (10 pt) with 20 pt or 16 pt.

We have here introduced the keywords fontsize, linestyle and color. The keyword fontsize stipulates the size of the type used in points. The keywords color and linestyle are discussed more fully in Section 5.9.2.

Note, incidentally, the power of the statement \(y = \text{np.cosh}(x) \). The argument of the function np.cosh is an array and contains several values. In response to this statement, PYTHON generates a second array \(y \) having the same number of elements as \(x \). Each element in \(y \) is the hyperbolic cosine of the corresponding element in \(x \). In many languages, we would be obliged to use a more elaborate construction to instruct the computer to work on each element individually. PYTHON automatically understands that intention with this simpler statement. Beyond simpler coding, PYTHON also achieves faster execution than would be achieved in more traditional coding.

5.4 Loops, Logical Expressions, and Conditionals

Among the most ubiquitous programming structures is the loop, which provides a means by which a statement or block of statements can be executed some number of times, typically with small changes controlled by a loop index. At least two such structures are available in PYTHON. The simplest is the for loop, which is most valuable when you know ahead of time how many times the
loop will be executed. Storing the squares of the integers from 1 to 10 in a vector, for example, is readily accomplished with the statements:

```python
>>> y = [0,0,0,0,0,0,0,0,0,0]
>>> for x in range(10):
    y[x] = (x+1)**2
>>> print(y)
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

Here, we have pre-allocated a 10 element list into which our loop can store the values as they are calculated. Then we write a `for` loop on the index `x`, which steps through the values in the list:

```python
range(10) = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

Note the colon at the end of the statement that begins with the keyword `for`. Note also the indentation of the statement beginning `y[x]`. In contrast to many computer languages (which ignore most white space), PYTHON depends critically on indentation to make clear the logical structure of code. Thus, all statements in a loop must be indented to convey to PYTHON that they are, in fact, in the loop. Since we are currently working interactively with PYTHON, we simply terminate the last statement in the loop with two pressings of the (RETURN) key to trigger the execution of the loop. The `for` statement steps `x` one at a time through all values—integers from 0 through 9, inclusive—of the loop index `x`, calculating the square of each plus 1 and storing each in the proper element of `y`. We make two further observations: (1) If the array `y` already exists in PYTHON's workspace with at least 10 elements, the statement pre-allocating `y` can be omitted. This loop will simply install new values in the first ten elements of the existing array and will leave all other elements untouched; a safer procedure would be to invoke the statement `del y` and recreate `y` before executing the loop; (2) PYTHON will also correctly execute the single-line presentation:

```python
>>> y = [0,0,0,0,0,0,0,0,0,0]
>>> for x in range(10): y[x] = (x+1)**2
>>> print(y)
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

With an embellishment of the index, the loop can even be stepped by something other than one, as in the statements:

```python
>>> y = [0,0,0,0,0,0,0,0,0,0]
>>> for x in range(0, 10, 2): y[x] = (x+1)**2
>>> print(y)
[1, 0, 9, 0, 25, 0, 49, 0, 81, 0]
```

In this version, only elements 0, 2, 4, 6, and 8 are computed; elements 1, 3, 5, 7, and 9 are not created.

Alternatively, we might have used the PYTHON attribute `append` to add an element to the end of an existing list (which may initially be empty), thereby avoiding the need to pre-allocate the entire list. For example, the coding:

```python
>>> y = [0,0,0,0,0,0,0,0,0,0]
>>> for x in range(0, 10, 2): y[x] = (x+1)**2
>>> print(y)
[1, 0, 9, 0, 25, 0, 49, 0, 81, 0]
```

40 If you are working in the Python Shell, indenting of the line(s) in the body of a loop will happen automatically. If you are working in the PYTHON CLI, three dots will appear at the start of each line in the loop, but you will have to insert spaces explicitly for the necessary indentation. In either case, after the last line in the loop has been typed, you will need to press (RETURN) twice to execute the loop.

41 If we had imported the module numpy as `np`, we could alternatively have used the statement `y = np.zeros10`, though that would have created an array of floating zeros.

42 The statement `np.arange(10)` would produce the same list.

43 Remember that indices in PYTHON start at 0.

44 Note that, even here, (RETURN) must be pressed twice after the last statement in the loop.
>>> y = []
>>> for x in range(10): y.append((x+1)**2)

>>> y
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

achieves the same objective as the first coding above. We still have to define y as an empty list but do not need to know ahead of time how many elements will be needed.\footnote{\textsc{python} also admits (1) the statement list.insert(index, value) to insert value at the position index in an existing list, moving all following values one position later in the list and (2) the statement list1.extend(list2) to add a second list to the end of a first list.}

The second loop available in \textsc{python} is the \texttt{while} loop. Once started, a \texttt{while} loop continues executing until the condition controlling the loop changes from \texttt{True} to \texttt{False}—which means that the statements in the loop must assure that, sooner or later, that condition changes to \texttt{False}. A \texttt{while} loop that accomplishes the the same task as in the previous paragraph involves the statements\footnote{The substance of footnote 40 applies also here.}

>>> y = []
>>> i = 0
>>> while i < 10:
 y.append((i+1)**2)
 i = i + 1

>>> y
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Again, we pre-define \texttt{y} as an empty list. In addition, we this time had to initialize the loop index \texttt{i} and take explicit responsibility for incrementing it with each pass through the loop. Then, as each pass through the loop begins, that index is tested to see whether it has yet reached the value 10, at which point the loop terminates. Because the index is incremented by one with each pass through the loop, the loop will, in fact, terminate after the tenth pass. Note also that this loop involves two statements in the body of the loop. This \textit{blocking} of two or more statements is communicated to the \textsc{python} interpreter by the indentation in the formatting of the statements.

In constructing the \texttt{while} loop in the previous paragraph, we used \textsc{python}’s operator \texttt{<} (less than) to express our first \textit{logical condition}. \textsc{python}, of course, possesses the standard six such operators, specifically \texttt{<} (less than), \texttt{>} (greater than), \texttt{==} (equal to), \texttt{<>} (not equal to), \texttt{<=} (less than or equal to), and \texttt{>=} (greater than or equal to). Finally, Boolean algebra on logical expressions is facilitated by the \textsc{python} operators \texttt{and} (logical and), \texttt{or} (logical or), and \texttt{not} (logical not). The logical function \texttt{xor} (logical exclusive or) is not included in off-the-shelf \textsc{python} but is available in the \texttt{operator} module made available with the statement \texttt{import operator} and invoked with a statement like \texttt{operator.xor(,)}, where the two arguments are logical conditions or Boolean variables.

Within \textsc{python}, logical conditions have values and, if set to a variable, the variable for each such condition will have type \texttt{bool}. Only two values, however, are allowed: \texttt{True} and \texttt{False}. The statements

>>> i = 5
>>> v = [i < 10, i == 10, i > 10, i <> 10]

>>> v
[True, False, False, True]

reveal those possibilities.

Logical conditions appear not only in controlling loops but also in structuring branches in a sequence of statements. As with most programming languages, \textsc{python} also possesses
CHAPTER 5. INTRODUCTION TO PYTHON

if/elif/.../else constructs, though the elif and else clauses can be omitted if they are not required. Thus, for example, the statements\(^{47}\)

```python
>>> x = [1,-2,3,-4,5,-6,7,-8,9,-10]
>>> for i in range(10):
    if x[i] < 0.0:
        x[i] = -x[i]
>>> x
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

will replace each negative element in the ten-element vector \(x\) with the corresponding positive value and the statements\(^{48}\)

```python
>>> a = -5
>>> if a > 0:
    b = a
else:
    b = -a
>>> b
5
```

will set \(b\) equal to the absolute value of \(a\) (though either of the functions `math.fabs` or `numpy.abs` will do so more easily).

Finally, two reserved words are available and can play a role in structuring loops. The statement `break` results in an immediate termination of the loop, with execution resuming at the first statement after the loop. The statement `continue` omits whatever part of the loop follows the statement and re-tests the condition controlling the loop.

5.5 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of two-dimensional matrices figure prominently in many physical contexts (finding quantum mechanical energies and energy shifts, studying small amplitude oscillations, finding principal axes and moments of inertia, ...). The PYTHON function `eig` in the module `numpy.linalg` takes as arguments the name of the matrix whose eigenvalues and eigenvectors are desired. The function returns either the eigenvalues or the eigenvectors and the eigenvalues, depending on the structure of the variable to which its output is directed. To find both the eigenvalues and the eigenvectors, we need only create the matrix and invoke `eig` with statements like\(^{49}\)

```python
47If the lines in the body of the `for` loop are entered interactively one at a time at the PYTHON prompt in the Python Shell, the second and third lines will be automatically indented as shown here. Evidently, the prompt and its following space are not seen by the interpreter. If the lines are entered in the CLI, the characters ... will appear at the beginning of the second and third lines but the proper indentation will have to be inserted manually.

48Here, if the lines in the body of the `if/else` structure are entered interactively one at a time at the PYTHON prompt in the Python Shell, the line `else:` will automatically start under the `i` of `if`, there will be an error message. Evidently, the prompt and its following space are not seen by the interpreter, which sees the `e` as under the `i` when the `e` appears at the very beginning of the line. If the lines are entered in the CLI, the characters ... will appear at the beginning of the each line and necessary indentation will have to be inserted explicitly.

49To find only the eigenvalues, use the statement `evals = np.linalg.eig(A)`.```
5.5. EIGENVALUES AND EIGENVECTORS

>>> import numpy as np
>>> A = np.matrix( 
[ [1,3,0],
  [3,7,2],
  [0,2,4] ] )
Define matrix whose eigenvalues are sought and display it.

>>> print( A )
[[1 3 0]
 [3 7 2]
 [0 2 4]]

>>> evals, evecs = np.linalg.eig(A)
Invoke eig to find eigenvalues and eigenvectors.

>>> print( evals )
[ 8.94246288 -0.38931525  3.44685237]

>>> print( evecs )
[[-0.33046479 0.89122683 -0.310657 ]
 [-0.87490144 -0.41273167 -0.25337727]
 [-0.3540346  0.18806199  0.91612892]]

Each element in evals is one of the eigenvalues of A and each column in the array evecs is one of the normalized eigenvectors of the matrix A, with evals[0] corresponding to evecs[:,0], ....

The format of the output makes it easy to verify that the results are correct. We want the eigenvalues and eigenvectors to satisfy the simple equation

$$A x = \lambda x$$ (5.2)

where $\lambda$ is an eigenvalue and $x$ is the corresponding eigenvector. For the first eigenvalue and eigenvector, we find that

>>> lamb = evals[0]
Extract first eigenvalue.

>>> x = evecs[:,0]
Extract first eigenvector.

>>> print( np.concatenate([A*x, lamb*x], \
 axis=1) )

To obtain the right hand side, however, we execute the statements

```python
>>> diag = np.zeros([3,3])
>>> for i in [0,1,2]: diag[i,i]=evals[i]
```

to create a diagonal array whose diagonal elements are the three eigenvalues. We then find the right hand side of Eq. (5.2) by multiplying diag and evecs, but we must be careful. Because of the way matrix multiplication works, we recognize that we must evaluate the matrix product in a seemingly unnatural order. Specifically, we invoke the statements

50The name lambda is reserved in PYTHON.
>>> rhs = evecs * diag; print( rhs )
[[[-2.9551691 -0.3469682 -1.0707888 ]
[-7.82377363 0.16068274 -0.87335404]  
[-3.16594128 -0.0732154 3.15776112]]

to assure that each column in the result is the product of the corresponding column in `evecs` times the proper eigenvalue in `evals`. Comparison of these two matrices confirms the correctness of all three eigenvalues and eigenvectors at once. Indeed, knowing that internal arithmetic is done in double precision, we might even examine the differences between these two sides with the statement

```python
>>> print(rhs - lhs)
[[2.66453526e-15 -6.10622664e-16 2.22044605e-16]
[2.66453526e-15 2.16493490e-15 5.55111512e-16]
[-8.88178420e-16 -1.24900090e-16 4.44089210e-16]]
```

Evidently, the two matrices, whose elements are all on the order of 1, differ by rather less than $10^{-15}$, surely equal within the roundoff errors endemic to (double precision) computer calculations.\(^{51}\)

PYTHON’s command `eig` is quite general. The matrix on which it works must, of course, be square, but it need not be symmetric or real. Other functions in `numpy.linalg` include `eigvals`, which computes only the eigenvalues of a general, square matrix; `eigh`, which computes the eigenvalues and eigenvectors of symmetric or Hermitian arrays; and `eigvalsh`, which computes only the eigenvalue of symmetric or Hermitian arrays.

### 5.6 The PYTHON Edit Window and Stored Programs

For quick calculations, entering statements directly in a command window (CLI) or a Python Shell window (GUI) at the PYTHON prompt `>>>` is convenient and quick. Especially when we are doing several similar tasks or developing and debugging an extended sequence of statements, creating a command file or a program in an available text editor (i.e., creating a script), which can be easily edited, saved, and then executed over and over, can be an immense time saver. To facilitate that process, the PYTHON distribution includes a dedicated text editor that is linked to the program itself so that one can enter statements in the text editor and then, after saving the code in the Python Edit window, submit the statements for execution by selecting an item from a menu in the editor. The text editor is most easily launched by selecting ‘New File’ from the File menu in the Python Shell. Launched this way, the label in the bar at the top of the window providing the editor will be ‘Untitled’.\(^{52}\)

#### 5.6.1 A Quick Example of a Stored Program

To illustrate this way to exploit PYTHON, launch the GUI and then select ‘New File’ from the File menu in the Python Edit window. In the resulting Python Edit window, enter the lines

```python
a = 'David'
b = 3.5
c = 100
d = (a, b, c)
print(d)
```

---

\(^{51}\)Note that, because these results are influenced by roundoff, the actual values received may vary from platform to platform and from version to version of PYTHON. All values, however, are essentially zero.

\(^{52}\)The File menu in the Python Shell window also offers both ‘Open...', which brings up a browser in which you can search for an existing file, and ‘Recent Files’, which brings up a list of recently used Python files from which you can select the desired file. Once a named file is displayed in the Python Edit window, the label in the window will be the name of that file.
Then select ‘Save As’ from the File menu in the edit window, browse to a suitable directory, provide a name for the file (perhaps test), and click ML on the ‘Save’ button (or type (CONTROL-S)). Finally, select ‘Run Module’ from the Run menu in the edit window (or type (F5) on the keyboard). The line

```python
('David', 3.5, 100)
```

will appear in the Python Shell window.

The code in the Python Edit window can be edited in any way, saved, and quickly re-executed. To illustrate, replace all of the lines in the Python Edit window with the lines

```python
y = [0,0,0,0,0,0,0,0,0,0]
i = 0
while i < 10:
 y[i] = (i+1)**2
 i = i + 1
print(y)
```

save this code by selecting ‘Save’ from the File menu (or by typing (CONTROL-S)), and execute it by selecting ‘Run Module’ from the Run menu (or by typing (F5) on the keyboard). Presently, the line

```python
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

will appear in the Python Shell window. Note that, via the route described in this section, the coding you create in the Python Edit window is not mixed with the PYTHON prompt on many lines and can be saved for subsequent reading back into the Python Edit window by selecting ‘Open …’ from the File menu and browsing for the desired Python command file.

Even more convenient, a saved py-file can be executed directly from a Command window to the operating system by making the default directory the directory containing the command file and submitting the statement

```python
python FileName.py
```

where python must be defined as a known command to the operating system and the file type, almost always .py, must be explicitly present. This capacity, of course, means that you can create command files in any text editor, save those files, and then execute them directly from a Command window to the operating system; using the Python Edit window is convenient but it is by no means the only editor you can use to create PYTHON programs.

A saved file can also be executed from the PYTHON prompt in the PYTHON command-line interface (CLI) or the Python Shell (GUI). After the file has been stored with a suitable name and the current directory has been set to the directory containing the file, the single statement

```python
>>> execfile('FileName.py')
```

in PYTHON 2 or the single statement

```python
>>> execute('FileName.py')
```

---

53 Any command file called by PYTHON should be saved as a py-file, so named because the file itself by convention is named with a file type `.py`.

54 If python has not been defined as a legitimate command to the operating system, you will have to supply the full path to python.exe in your system.

55 Since this second route to executing a command file returns control to the operating system when the execution is complete, this route is useful only if that single command file contains a complete program.

56 See Section 5.16.1.
>>> exec(open( 'FileName.py' ).read() )

in PYTHON 3 will instruct PYTHON to execute the statements in the file and ultimately produce whatever output the statements were designed to generate.

Be aware that, in contrast to many programming languages, PYTHON is an interpreted language, not a compiled language. Statements typed directly to PYTHON in the CLI or the GUI and statements input from a stored PYTHON program must be translated—i.e., interpreted—from the source code every time they are presented for execution. Even statements contained in a loop will be interpreted at each pass through the loop. This feature has advantages when developing programs but it also means that production runs of programs will require more time than would be the case if the source code could be translated once to machine code (i.e., compiled) to avoid the repeated interpretation of statements as the code is executed.

Hereafter, we shall suppress the explicit display of the PYTHON prompt and assume that all code is entered into the Python Edit window, saved, and executed by one of the methods described in this section. The statements can, of course, also be executed by copying and pasting them at the PYTHON prompt `>>`. 

### 5.6.2 Reading Data From a File; Radioactive Decay

Frequently, we need to read data into PYTHON from an appropriately structured ASCII file, which may have been written by another program or created with a text editor. Procedures for reading such files into PYTHON are described in this section. Before the data can be read, PYTHON needs information about the structure of the file (type of data, size and number of arrays in the file, etc.). If the file has any headers, PYTHON needs to be told where to start reading the real data.

We illustrate the process with the file\(^57\) radio.dat, which was created by a FORTRAN program that simulates the decay of a radioactive material into a material that is itself unstable. The file begins with a single line containing labels as text and continues with 201 additional lines, each containing four numerical values, each separated from the next with one or more spaces.\(^58\) The first value in each line is a time, and the second, third, and fourth values are the quantities of the initial material, the intermediate material, and the final (stable) material, respectively, at that time.\(^59\) We read the data from this file with the statements\(^60\)

```python
import matplotlib.pyplot as plt
import numpy as np
f = open('radio.dat', 'r')
ln=f.readline()
data = []
for line in f:
 data.append([float(x) for x in line.split()])
f.close()
dataarray = np.array(data)
```

57 We assume that the file radio.dat is stored in the current directory. (See Section 5.16.1 for ways to set the current directory.) If that is not the case, then the first statement in the illustrated code must include the full path $HEAD/python/radio.dat to the file. See the note at the beginning of this chapter.

58 Commas and other characters can also be used to separate values in a line. By default, the function `split` will assume that one or more spaces separate values. Any other separator should be provided as an argument to the function `split`.

59 Do not fail to copy this file into your directory and examine its structure with a text editor.

60 Here, `f.readline` reads the next as yet unread line from the file. Alternatively, the statement `f.read()` inputs the entire file, preserving the end-of-line characters and all spaces but inserting no other characters, while the statement `f.readlines()` creates a comma-separated list of the entire file, also preserving the end-of-line character and all spaces.
The first line of the file is now stored in the (string) variable `ln` (and—except to note that `\n` ends with the end-of-line character `\n`—we shall pay no further attention to it), and the numerical values in the file are stored in the `201 row \times 4 column` array `dataarray`.\(^{61}\) We might, for example, plot the time evolution of the quantities of the three materials with the statements

```python
\text{Extract } t, \ A, \ B, \ C \text{ as arrays.}
```

```python
t = dataarray[:,0]; A = dataarray[:,1];
B = dataarray[:,2]; C = dataarray[:,3]
```

```python
\text{Add each line to the internal graph.}
```

```python
plt.plot(t, A, color='black', linewidth=3)
plt.plot(t, B, color='black', linewidth=3)
plt.plot(t, C, color='black', linewidth=3)
```

```python
\text{Turn on grid.}
```

```python
plt.grid(color='black')
```

```python
\text{Label each line appropriately.}
```

```python
plt.text(2.5, 850.0, 'A', fontsize=16)
plt.text(2.5, 300.0, 'B', fontsize=16)
plt.text(40.0, 800.0, 'C', fontsize=16)
```

```python
\text{Display graph.}
```

The first two of these statements provide more compact names for each variable. The next three statements generate an internal graph of the three species. Finally, the statements invoking the command `plt.text`, in which locations are expressed in the coordinates of the graph, place the labels `A`, `B`, and `C` at appropriate points on the graph.

For easier reference, we collect the several statements composing this entire script into the lines listed in Section 5.A and store the script in a file named `plotradio.py`.\(^{62}\) Note that we have embellished this script with comments, using the character `#` to introduce brief comments but enclosing more extended comments in the structure `'''...'''`. Several new features of PYTHON have been introduced in this example:

- The command `plt.text`, whose arguments use the units of the graph to specify the `(x,y)` location of the lower left corner of the text string to be positioned at the specified point, and may include a number of properties to control the style of the displayed text. Further, we have assigned the value 16 to the property `fontsize` to override a somewhat smaller default size.

- The command `open`, which opens a file, here in read mode, and assigns to the file a variable name to be used in future reference to the file. Other modes include write mode `'w'` and append `'a'`.

- A strategy for “reading through” unwanted data in a file in the process of extracting the needed data from the file. In the above example, we recognize the presence of the initial labeling line and read past it with the method attribute `readline()`. The null argument reads the entire line; a numeric argument stipulates the number of bytes to be read and may yield less than a full line.

The plot resulting from executing this script by any of the means described in Section 5.6.1 is shown in Fig. 5.3.

### 5.6.3 Writing Data To a File; Formatting Output

Sometimes, data will be generated in one program but needs to be exported from that program in a way that facilitates importing the data for further processing by a different program. PYTHON provides commands for writing data from PYTHON’s memory into a file and to control the formatting of the data written into that file. To start the process, the simple statement

\[ ID = \text{open( 'FileName.typ', 'w' )} \]

\(^{61}\)The statement `print(dataarray.shape)` will return `(201L, 4L)`.

\(^{62}\)See the note at the beginning of this chapter.
will open an *empty* file in the default directory,\(^63\) name it *FileName.typ*, assign to it the “handle” *ID*, and make it available for subsequent statements to store data in the file. Alternatively, the simple statement

\[
ID = \text{open}( \ 'FileName.typ', \ 'a' )
\]

will open an *existing* file named *FileName.typ*, assign to it the “handle” *ID*, and make it available for subsequent statements to append data at the end of the file. After all data have been written to the file, the simple statement

\[
ID.\text{close}()
\]

will complete the creation of the file and sever its connection to the program that created it.

That is the easy part. Writing the actual data to the file in a sensible format is more complicated. We limit our discussion to the creation of *text*—sometimes called *ASCII* files—i.e., files containing printable characters, probably arranged in lines.\(^64\) To be very specific, suppose we have solved a trajectory problem for position as a function of time for some object and that we have stored in memory two one-dimensional arrays *position* and *time*, each containing 25 elements. We wish to store this information in a text file named *motion.dat* that starts with two descriptive lines at the beginning and then continues with 25 lines, each of which contains an entry from *position* and, separated from that entry by some number of spaces, the corresponding entry from *time*. We would begin with the code

```python
f = open('motion.dat', 'w')
f.write('Data on Motion of Pendulum
')
f.write('Generated by David Cook on 1 July 2016
')
```

\(^63\)Destroying any existing file of the specified name.

\(^64\)Writing binary files is beyond the scope of this book.
to open file for writing and write the two descriptive lines to the file. Then, to write the remaining
data to the file and close the file, we might simply use the loop

```python
for i in range(25):
 f.write(str(time[i]) + ', ' + str(position[i]) + '\n')
f.close()
```

Here, we have recognized that the command `f.write` requires a *single string* as its argument. Fur-
ther, we recognize that line feeds are not automatically inserted, so we must provide that stipulation
with the special character `\n`.

The above coding, however, yields a file in which the values are not neatly aligned in columns
because not all values have the same number of digits. We can produce a cleaner output if we format
the values to have, say, 5 digits after the decimal point. If we replace the above statement starting
`f.write` with the statement

```python
f.write(str(round(time[i],5)) + ', ' + str(round(position[i],5)) + '\n')
```

we will arrange for all values to have no more than five digits after the decimal point, but values that
do not require all five digits will not be filled with zeros, so columns in the file will still be awkwardly
unaligned. To address that issue, we need to invoke explicit formatting of values by replacing the
statement beginning `f.write` with the statement

```python
f.write('{0:10.5f}{1:10.5f}'.format(time[i],position[i]) + '\n')
```

invoking format specifiers and the attribute `format`. Here, the structure `{0:10.5f}` specifies that
the first argument—which with the specifier `f` must be a number—of the `format` attribute, 65 as a
string right-justified in a 10-character field with 5 digits after the decimal point (and will fill those
digits with zeros if required), and the structure `{1:10.5f}` achieves the same objective with the
second argument.

In addition to the character `f` for specifying the output of a number which has digits after a
decimal point in the format `xxx.xxx`, PYTHON also provides the character `e` to output a number
in scientific format `x.xxxexxx`, the character `d` to output an integer, and the character `s` to output a
string. Providing output in a carefully controlled, aesthetic format can be a very complicated task.
We have here described only one of numerous routes provided by PYTHON, though we have picked
an approach that works in both PYTHON 2 and PYTHON 3. A full elucidation of the controls
provided by PYTHON is beyond the scope of this book. 66

### 5.7.1 Format of a Function Definition

In all programming languages, functions (sometimes called subroutines or procedures) provide an
easy way to use the same code in different places in a larger code without having to duplicate the
code in the listing. Functions in PYTHON have the general structure

```python
def FunctionName(arguments):
 Statements creating the output from the inputs
 return Variables to be returned when function exits
```

65 Remember that PYTHON starts counting at zero.

66 See the URL `docs.python.org/?/tutorial/inputoutput.html`, where `?` is either 2 or 3, for more information.
The reserved word `def` is mandatory because it informs the interpreter that the definition of a function follows, and the indentations are critical to define where the function definition ends and where the main program begins. The command `return` is necessary only if the function is to return values to the calling program. For example, the simple function

```python
def sumdiff(x,y):
 sum=x+y
 diff=x-y
 return sum, diff
```

will take two numeric arguments, calculate their sum and their difference, and return both values to the calling program. Once these statements have been executed to define the function, the interactive conversation

```
sumdiff(5,10)
(15, -5)
a,b = sumdiff(5,10)
a
15
b
-5
```

with PYTHON illustrates how to use the function. The somewhat more complicated function

```python
def quad(a,b,c):
 tmp = np.sqrt(b**2-4*a*c)
 rt1 = (b**2-tmp)/(2*a)
 rt2 = (b**2+tmp)/(2*a)
 return [rt1, rt2]
```

will evaluate the two roots of the polynomial $ax^2 + bx + c$ for the coefficients supplied as arguments. Note that these statements will execute successfully to define the function, even if `numpy` has not yet been imported, but the function itself cannot be executed without prior execution of the statement

```
import numpy as np
```

though `numpy` need not be imported within the function; it can be imported in the calling program and will be known globally. The statement

```
quad(1,-1,-6)
[-2.0,3.0]
```

illustrates how `quad` might be called.

### 5.7.2 The Function `luplot`  

Suppose we had frequent need to plot several different functions on various occasions. We might create a file named `luplot.py` containing the lines shown in Table 5.1. This coding defines the function `luplot` that plots the function `funct`, evaluating it at $N+1$ equally spaced points spanning the interval $\text{start} \leq x \leq \text{stop}$. The function itself is invoked by typing `luplot` followed by the requisite arguments in parentheses. For example, if `luplot` is stored in the current directory, the statements

```
This function will display an error message if the roots of the quadratic polynomial are complex, i.e., if $b^2 - 4ac < 0$. A more refined function would test for and deal sensibly with that case.
```
5.7. DEFINING FUNCTIONS

Table 5.1: The PYTHON function luplot.py.

```python
Program luplot.py

LUPLOT - Plots user-specified function.
Function luplot is passed a function identified by the
(string) variable funct and then, in order, the number of
segments into which the interval is to be divided, the
starting value of x, and the stopping value of x for the plot.
It returns a plot of the function but assigns no value to the
variable fct.

def luplot(funct, N, start, stop):
 x = np.linspace(stop, start, N) # Create array of independent variable
 y = funct(x) # Evaluate dependent variable
 plt.plot(x, y, 'k', linewidth=2) # Create internal graph
 plt.show() # Display graph
```

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> execfile('luplot.py')
or
exec(open('luplot.py').read())
>>> luplot(np.cos, 200, 0.0, 10.0)
```

will generate a graph of the cosine function \( \cos(x) \) over the interval \( 0 \leq x \leq 10 \), dividing the interval into 200 segments (i.e., plotting 201 points uniformly distributed over the interval). Note that, in this context, the name of the function in the first argument of `luplot` is not enclosed in quotation marks.

What if, however, we wanted to use `luplot` to graph a function that is not built into PYTHON? In that case we would first write a py-file defining the function of interest. For example, suppose we wanted a graph of the Lorentz lineshape defined by

\[
y(x) = \frac{a^2}{b^2 + (x-x_0)^2}
\]  

for particular values of \( a \), \( b \), and \( x_0 \). We would begin by writing a py-file defining the Lorentz lineshape, perhaps using the coding listed in Table 5.2. Then, after the file `lineshape.py` has been stored in the current directory, we simply use statements like

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> execfile('lineshape.py')
or
exec(open('lineshape.py').read())
>>> luplot(np.cos, 200, 0.0, 10.0)
```

5.7.3 Using Global Variables

With the approach of the previous section, we would have to edit the function py-file if we wanted to graph the Lorentz line shape for a different set of parameters. Because of the way `luplot` is
CHAPTER 5. INTRODUCTION TO PYTHON

Table 5.2: The PYTHON function lineshape.py.

Program lineshape.py

LINESHAPE - Plots Lorentz line shape.
The function lineshape returns the value of the Lorentz
distribution for given argument x. The parameters a, b, and
x0 are explicitly coded in the function.

```python
def lineshape(x):
 a = 1.0
 b = 1.0
 x0 = 2.0
 y = a**2/(b**2 + (x-x0)**2)
 return y
```

Table 5.3: The PYTHON function lineshape1.py.

Program lineshape1.py

LINESHAPE1 - Plots Lorentz line shape.
The function lineshape returns the value of the Lorentz
distribution for given argument x. The parameters a, b, and
x0 must be declared assigned values prior to invoking
lineshape1, which then uses the values in those
global variables.

```python
def lineshape1(x):
 global a, b, x0
 y = a**2/(b**2 + (x-x0)**2)
 return y
```

written, however, we cannot simply add these parameters as arguments to lineshape. Were we to
adopt that approach, we would want to set the parameters a, b, and x0 at PYTHON’s command
level and have them known not within luplot itself but within a function that luplot calls. The
easiest means to achieve this passing of a parameter from PYTHON’s command level into a function
that is not directly called from the command level involves using global variables. In essence, at the
command level, we assign values to appropriate variables—here a, b, and x0—at the command level.
Then, we declare these same variables to be global in the function that is to access those values
and use them symbolically. In this way, we circumvent PYTHON’s automatic isolation of variables
in functions from variables of the same name in other functions, rendering the variables known in
any function that declares them global—and only in those functions. To this end, we might rewrite
lineshape to be as listed in Table 5.3 and store it in the file lineshape1.py. Here, the statement
global a, b, x0 tells the function that it is to find the values of the variables a, b, and x0 in
variables named $a$, $b$, and $x_0$, which will have been assigned values at command level. Then, we
invoke the already-defined `luplot` with this function using the statements

```python
>>> a = 1.0; b = 1.0; x0 = 2.0
>>> execfile('lineshape1.py') # Define lineshape1.py
 exec(open('lineshape1.py').read())
>>> luplot(lineshape1, 200, -10.0, 10.0)
```

Assign values to global variables. Define `lineshape1.py` Graph function.

at the PYTHON prompt in a Python Shell window to produce again the graph shown in Fig. 5.4.
This time, however, our approach is more flexible, since we can more easily change the values of the
parameters and produce another graph.

The above py-files have made use of PYTHON’s capacity for self-documentation. We have
again introduced short comments with the number sign `#` and enclosed more extensive comments in
the structure `'''...'''`. In addition, for any function (user-defined or built-in) that is available at
the PYTHON prompt, the simple statement

```python
>>> help(FunctionName)
```

where `FunctionName` is presented without quotation marks and without the file type, will display on
the screen at least the line following the reserved word `def` in the function definition as a reminder
of the number and nature of the arguments to be provided and, if the file is properly constructed
(see PYTHON manuals), may display much more.

The wisdom of documenting user-written functions thoroughly cannot be overstressed, and this
particular feature of PYTHON makes it easy to keep the documentation coordinated with—and in
the same file as—the coding itself.
5.8 On-Line Help

Several helpful resources are included in the standard PYTHON installations and can be accessed directly via commands from the keyboard:

- The statement `python --help` issued at a prompt in a command window to your computer’s operating system will display a list of options that can be appended to the command `python` followed by a list of the several environment variables that may play a role in PYTHON’s behavior, perhaps only when PYTHON is launched by the command `python` to your operating system.

- The HELP menu in the Python Shell and the Python Edit window contains three links:
  - ‘About IDLE’, which provides information about the version of PYTHON and the IDLE in use.
  - ‘IDLE Help’, which brings up a screen providing information about the content of the menus available along the top of both the Python Shell and the PYTHON Edit window.
  - ‘Python Docs F1’, which brings up a fully indexed and linked manual for PYTHON.

- The statement `help` issued at the PYTHON prompt >>> brings up a single line explaining how to use the help utility, either interactively or to display help on a specific topic, module, or function. For example, `help(range)` will yield information about the built-in command `range`; `help(plt.plot`) will yield information about the `plot` command in the module `matplotlib.pyplot`, but only if that module has been imported as `plt`. Typically, seeking help on a specific object via this route brings up far more detail than was sought.

- For those modules in which the attribute `info` has been provided, that attribute can be invoked to obtain more focused information. For example, if the module `numpy` has been imported as `np`, the statement like `np.info(np.sin)` produces a more informative output.

- Searching in your browser for the particular item of interest, e.g., `matplotlib.plotly.plot` will frequently bring up several links to quite specific information.

Books and resources available by searching on the web are enumerated in Section 5.17.

5.9 Graphing Scalar Functions of One Variable

The most common—and simplest—graph is a two-dimensional plot of a function of one variable, i.e., a graph of dependent variable versus independent variable. The most commonly used PYTHON module for producing publication-quality graphs of all sorts is `matplotlib`.\(^{68}\) Creating the data to be graphically displayed will almost certainly require the module `numpy` as well. Both modules must be explicitly imported into PYTHON with the statements

```python
import matplotlib
import numpy
```

These statements import all components of the modules. For our present purposes, it is more convenient to import all of `numpy` and a portion of `matplotlib` but to provide aliases by using the statements\(^{69}\)

```
import matplotlib
import numpy
```

\(^{68}\) This module is often not included in the initial PYTHON distribution and must be separately installed on your computer before it can be used in PYTHON programs.

\(^{69}\) See Section 5.2.5.
import matplotlib.pyplot as plt
import numpy as np

At some point, you will learn which components you will actually need and will be able to modify these statements to conserve memory by importing only those components that are needed.

The basic command in this module for producing a simple graph of one variable versus another is

```python
plt.plot(x, y, Keywords/Values)
```

where $x$ and $y$ are one-dimensional arrays that are most conveniently created using components present in the module `numpy`, and `Keywords/Values` abbreviates numerous optional stipulations that can be use to modify the basic graph. The graph itself is constructed by drawing straight line segments connecting consecutive points identified in the arrays. Both arrays must, of course, have the same number of elements.

By using one or more of the `Keywords`, the action of `plt.plot` can be modified in a variety of ways. The more commonly used keywords include

- **linewidth**, e.g., `linewidth=2`, where the width is measured in points, with the default value being 1.
- **linestyle**, e.g., `linestyle='dashed'`, with the default being a solid line.
- **color**, e.g., `color='red'`, with the default being blue.
- **marker**, e.g., `marker='+',` which marks individual points with the specified marker, here a plus sign, with the default being no marker.
- **markersize**, e.g., `markersize=12`, where the size is specified in points.

Other keywords will be introduced as the need for them arises.

Before illustrating how to produce more elaborate graphs, we present a very quick example. The statements

```python
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.0, 10.0, 101)
y = np.sin(x)
plt.plot(x, y, color='red')
plt.show()
```

will generate a crude graph of a sine curve. Here, we have used `np.linspace` to create an array containing (here) 101 floating point values equally distributed in the interval $0 \leq x \leq 10$ and `np.sin` to create a second array containing values of the sine function corresponding to the values in $x$.

The command `plt.plot` creates the graph but does not display it, so—if desired—other commands can be used to add features to the graph before displaying it explicitly with `plt.show()`.

Be aware that, once a graph is displayed on the screen, no further commands can be submitted to PYTHON until that graph has been closed.

### 5.9.1 The Basic Strategy

Now for a more complicated example. Suppose that we desire a graph of the magnetic field on the $z$ axis of a circular current loop in the $xy$ plane. As a function of position, this field is given in dimensionless form by

$$B(z) = \frac{1}{(1 + z^2)^{3/2}}$$

(5.4)

---

70The various functions in the `math` module admit only single values as arguments. To submit an array as an argument to these functions, we must use the corresponding functions in the `numpy` module.
Suppose that we want a graph over the interval $-4.0 \leq z \leq 4.0$ with 100 divisions of the interval (101 points plotted). We would then execute the PYTHON statements

```python
import matplotlib.pyplot as plt
import numpy as np
z = np.linspace(-4.0, 4.0, 101)
B = (1.0 + z**2)**(-1.5)
plt.plot(z, B, color='black', linewidth=3)
plt.title('Magnetic Field on z axis', fontsize=20)
plt.xlabel('Dimensionless Position, z', fontsize=14)
plt.ylabel('Magnetic Field, B_z', fontsize=14)
plt.grid(color='black')
plt.show()
```

This sequence of statements will produce the graph shown in Fig. 5.5.\footnote{See Section 5.10.2 for how to export the graph to an .eps or a .pdf file for printing or incorporation in other documents.} We have here illustrated not only how to generate a simple graph but also how various keywords (color, linewidth, fontsize) can be invoked to modify the default behavior of particular statements. Note also (1) the need to extend the range in the argument of `np.arange` by a bit so that the desired final value is included in the created array\footnote{In contrast to `np.linspace`, `np.arange`, whose arguments are (in order), the starting value, the ending value, and the increment between values—creates equally spaced values starting at the specified value but stopping at the largest value that does not actually reach the specified stopping value.} and (2) strings can include \LaTeX-like components that will be properly rendered in the displayed graph.

### 5.9.2 Plotting Several Graphs on One Set of Axes

Many times we may want to place several different graphs on the same set of axes. The simplest way to achieve this end is to specify the horizontal and vertical coordinates of each graph in pairs in
the same invocation of the command `plt.plot`. We might, for example plot superimposed graphs of the sine and cosine functions with the statements

```python
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.0,10.0,101)
y = np.sin(x); yc = np.cos(x)
plt.plot(x,y, x,yc)
```

One useful feature of this approach is that each new superimposed graph will be displayed in a different color, so color is used to distinguish which graph is which.

Alternatively, we can use linestyle rather than color to distinguish different graphs on the same axes. For example, the plot of undamped and damped sine waves on the same axes shown in Fig. 5.6 is produced with the statements shown in Table 5.4. Here, we have illustrated use of an abbreviated way to specify the color and line style of a line in a graph without using any keywords. In the `plt.plot` statement, `'k'` and `'k--'` specify the line color to be black and, in the second instance, the line style to be dashed. Table 5.5 enumerates the available line styles and some of the available colors. Note that, as illustrated with `'k--'`, the abbreviations for these colors can be combined with the code for line styles. Note also that the keyword `linestyle` also is defined, so the stipulation `'k--'` could also be written `color='black',linestyle='--'`. Finally, be aware that keyword specifications must follow all non-keyword arguments, so specification of the linewidth in the above `plt.plot` command must necessarily follow all non-keyword arguments and hence will apply to all graphs in the display.

---

The sequence of colors can be printed on the screen by executing the statement `print plt.rcParams['axes.prop_cycle']`). Unfortunately, each color in the nine-color sequence is identified by its six-character hexadecimal value, so identifying the actual color is difficult. The first four colors are blue, orange, green, and red.

Equivalent to `color='black'`.

Equivalent to `color='black'` and `linestyle='--'`. 
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.0,20.0,101)
sine = np.sin(x)
dampsine = np.exp(-x/10.0) * sine
plt.plot( x, sine, 'k', x, dampsine, 'k--', linewidth=3 )
plt.title( 'Damped and Undamped Sine Waves', fontsize=20 )
plt.xlabel('x', fontsize=14 )
plt.ylabel('$\sin(x), e^{-x/10} \sin(x)$', fontsize=14 )
plt.grid( color='black' )
plt.show()
Figure 5.7: Polar plot of the cardioid

The Cardioid

5.9.4 Multiple Plots In a Single Window

Sometimes we wish to plot several separate graphs in a single Figure window. PYTHON gives us substantial flexibility in formatting the layout of these graphs by providing the command subplots in the matplotlib.pyplot module. This command provides a means to control how many plots appear and where they appear in the Figure window. For a $2 \times 2$ array of plots in a single figure window, we begin by creating an empty Figure window with the command\footnote{Note that the name fig and the names ax* are entirely arbitrary. They are not reserved words.} \footnote{In the present context, we need to create a subdivided Figure window before populating each subdivision with the intended display. If the display is to fill the entire window, the first execution of plt.plot will automatically create an appropriate Figure window for the display.}

\begin{verbatim}
fig, ( (ax1, ax2 ), ( ax3, ax4 )) = matplotlib.pyplot.subplots(2,2)
\end{verbatim}

or, if matplotlib.pyplot has been imported as plt,

\begin{verbatim}
fig, ( (ax1, ax2 ), ( ax3, ax4 )) = plt.subplots(2,2)
\end{verbatim}

This statement creates a Figure window and establishes names for the sub-windows in the pattern

\begin{verbatim}
    ax1  ax2
    ax3  ax4
\end{verbatim}

which names will be included in statements directing output to particular sub-windows. The adjustments needed to accommodate a different pattern should be clear.

In addition, if we accept all of the defaults for the margins around the subplots and for the separations between subplots both vertically and horizontally, titles and other information surrounding the subplots may overlap the subplots. Hence, the matplotlib.pyplot module includes the subplots_adjust attribute on the name of a figure. The value of this attribute can be specified by attaching a component in the form
to the name given to the figure that will contain the subplots. In this way, the user can specify—as a fraction of the width or height of the window—how much space is to be incorporated on the left, bottom, right, and top of the window and—as a fraction of the average axis width and height—how much space is to be left between subplots. Every parameter has a default, and only those that need adjustment need be specified.

As a quick example using this capability, suppose we wish to plot the sine and cosine functions along with their analogous hyperbolic functions. We wish to plot a $2 \times 2$ array of graphs, so we will use the `plt.subplots` command as described above and, after some trial and error, use the `subplots_adjust` attribute to modify the spacing in the display. In total, we produce the plot shown in Fig. 5.8 with the statements

```python
import matplotlib.pyplot as plt
import numpy as np
fig, (ax1, ax2, ax3, ax4) = plt.subplots(2,2)
fig.subplots_adjust(wspace=0.4, hspace=0.5)
z = np.linspace(-4.0, 4.0, 101)
v = np.sin(z); w = np.cos(z); x=np.sinh(z); y=np.cosh(z)
ax1.plot(z,v, 'k', linewidth=3)
ax2.plot(z,w, 'k', linewidth=3)
ax3.plot(z,x, 'k', linewidth=3)
ax4.plot(z,y, 'k', linewidth=3)
ax1.set_title('Sine', fontsize=14)
ax2.set_title('Cosine', fontsize=14)
ax3.set_title('Hyperbolic Sine', fontsize=14)
ax4.set_title('Hyperbolic Cosine', fontsize=14)
ax1.set_xlabel('z'); ax2.set_xlabel('z'); ax3.set_xlabel('z'); ax4.set_xlabel('z')
ax1.set_ylabel('$\sin(z)$'); ax2.set_ylabel('$\cos(z)$'); ax3.set_ylabel('$\sinh(z)$'); ax4.set_ylabel('$\cosh(z)$')
plt.show()
```

Note (1) that we have used semicolons to separate individual statements placed on a single line and (2) that the subdivision of the Figure window is specific to the particular window here created, so that subdivision need not be explicitly undone unless the same window is to be reused in a different context.

### 5.9.5 Plotting Experimental Data

As a final example of two-dimensional graphing, we describe PYTHON’s ability to produce plots of experimental data complete with error bars, representing each of the data points with a plotting symbol not connected with lines and using logarithmic scales on either (or both) axes. PYTHON will also allow us to set the range of the axes and annotate the graph with a legend. This example uses data from an experiment on an RC high-pass filter. Suppose the file `rcdata.dat` containing the data was created with a text editor and stored in the current directory. When printed, the file produces a two-column display, the first column containing the frequencies at which gains were measured and the second containing the measured gains. In all, the file contains twenty-one measurements (twenty-one lines). The two values in each line are separated by spaces. The data are read into the PYTHON workspace with the statements

```python
You can, of course, copy this file from the directory `$HEAD/python` into your current directory and examine its structure with a text editor. Make sure the default (working) directory is set to the directory containing the file `rcdata.dat`. See Section 5.16.1. The command `numpy.loadtxt` has numerous keywords, all of whose defaults are appropriate here. More information can be found by Googling `numpy.loadtxt`.
```
5.9. GRAPHING SCALAR FUNCTIONS OF ONE VARIABLE

Figure 5.8: Graphs of sine, cosine, hyperbolic sine, and hyperbolic cosine on the interval $-4 \leq x \leq 4$.

Table 5.6: Some of the available symbols for use with the keyword Marker. A full listing can be found at the URL matplotlib.org/api/markers_api.html.

<table>
<thead>
<tr>
<th>Value of Marker</th>
<th>Symbol Drawn</th>
<th>Value of Marker</th>
<th>Symbol Drawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>point</td>
<td>v</td>
<td>triangle (down)</td>
</tr>
<tr>
<td>o</td>
<td>circle</td>
<td>`</td>
<td>triangle (up)</td>
</tr>
<tr>
<td>x</td>
<td>times sign</td>
<td>&lt;</td>
<td>triangle (left)</td>
</tr>
<tr>
<td>+</td>
<td>plus sign</td>
<td>&gt;</td>
<td>triangle (right)</td>
</tr>
<tr>
<td>star</td>
<td></td>
<td>p</td>
<td>pentagon</td>
</tr>
<tr>
<td>s</td>
<td>square</td>
<td>h</td>
<td>hexagon</td>
</tr>
<tr>
<td>D</td>
<td>diamond</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

import matplotlib.pyplot as plt
import numpy as np
data = np.loadtxt('rcdata.dat')
plt.semilogx(data[:,0], data[:,1], 'o', 
             linestyle='none', markerfacecolor='none', 
             markeredgecolor='black')
plt.title('Experimental Data for High Pass Filter', 
fontsize=20)
plt.xlabel('Frequency (Hz)', fontsize=14)
plt.ylabel('Gain (Vout/Vin)', fontsize=14)

In the plt.semilogx command, the first two arguments provide one-dimensional arrays containing the horizontal and vertical coordinates of the points to be plotted, the argument ‘o’ stipulates marking the points with a circle, the keywords markerfacecolor and markeredgecolor select the fill and edge colors for the markers, and setting the keyword linestyle to ‘none’ suppresses the connecting of the points with straight line segments. The full graph, whose beginnings have been created by the above statements (and whose completion will be described in what follows), is presented in Fig. 5.9. The full program rcfilter.py is listed in Section 5.B.
A graph of experimental data, however, is not complete without error bars. PYTHON’s command `errorbar` is up to the task, though we need to be careful to suppress its default connecting of the points with straight lines. Supposing a symmetric uncertainty in the vertical coordinate of ±5%,\(^{81}\) we add the error bars with the statements

```python
unc = 0.05*data[:,1] # Compute uncertainties at 5%. (This array might alternatively be read from a properly expanded input file.)
plt.errorbar(data[:,0], data[:,1], unc,
 ecolor='black', linestyle='none',
 capsize=2) # Draw error bars at each point, using the calculated uncertainties as the third argument.
```

Here, we set the color of the error bars with the keyword `ecolor`, suppress the connecting of the data points with straight line segments with the keyword `linestyle`, and add horizontal bars of length 2 units at each end of each error bar with the keyword `capsize`. Note also that, once the logarithmic scale has been established with a previous invocation of `semilogx`, the logarithmic scaling will not be altered by subsequent plotting statements.

A graph of experimental data should also include a plot of predicted theoretical results. The equation for the theoretical gain of this circuit is

\[
G = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{\sqrt{1 + (f_0/f)^2}} \quad \text{where} \quad f_0 = \frac{1}{2\pi RC} \quad (5.6)
\]

Because we are using a logarithmic scale on the horizontal axis, however, we must calculate the vector of independent variables carefully. The variable \(f\) needs to have a range from \(10^1\) Hz to \(10^4\) Hz. For the most satisfactory plotting, we need to create a vector of values that will represent this range uniformly on a logarithmic scale. To achieve that objective, we begin by creating a vector—call it `temp`—containing a suitable number of values uniformly distributed on a linear scale from 1.0 to 4.0. Then, we take the values of \(f\) to be the base-10 exponential of the values in `temp`, i.e.

\[
f = 10^{\text{temp}} = \left(e^{2.3026}\right)^{\text{temp}} = e^{2.3026*\text{temp}} \quad (5.7)
\]

The theoretical gain function is then evaluated using these values of \(f\). When the logarithm of the independent variable is taken to create the logarithmic scale, the plotted points will in fact be equally spaced on the logarithmic scale.\(^{82}\)

Having thus determined suitable values of \(f\), we evaluate the theoretical gain and overplot this function on the existing graph with the statements

```python
r = 1.5e4 # Set value of R.
c = 0.0442e-6 # Set value of C.
f0 = 1/(2.0*np.pi*r*c) # Calculate implied reference frequency.
temp =np.linspace(1.0, 4.0, 26) # Create array with values from 1.0 to 4.0.
f = np.exp(2.3026 * temp) # Create frequencies from \(10^1\) to \(10^4\).
gtheory = 1.0/np.sqrt(1.0 + f0**2/f**2) # Calculate theoretical curve.
plt.plot(f, gtheory, 'k--', linewidth=2) # Add theoretical curve.
```

Here, we have used the values \(R = 15\) k\(\Omega\) and \(C = 0.0442\) \(\mu\)F and then invoked `plt.plot` to add the theoretical curve with a dashed linestyle to the accumulating internal display. Again the semilog format propagates from the earlier invocation of `plt.semilogx`.

Finally, to annotate the graph with a legend reminding us of the meaning of each of its pieces, we would use the statements

---

\(^{81}\)As described in the PYTHON manuals, the command `errorbar` has numerous options, including the possibility of drawing asymmetric limits and of drawing horizontal as well as vertical limits.

\(^{82}\)See also the function `numpy.logspace` described in the PYTHON manuals.
Figure 5.9: Data from the RC high-pass filter experiment.

![Experimental Data for High Pass Filter](image)

plt.plot([500.0, 900.0], [0.325, 0.325], 'k--')
plt.text(1000.0, 0.30, 'Theoretical', fontsize=16)
plt.plot([700.0], [0.23], 'o', markerfacecolor='none', markeredgecolor='black')
plt.text(1000.0, 0.20, 'Experimental', fontsize=16)
plt.grid(color='black')

The first of these statements uses `plt.plot`—remember, we have already set the logarithmic scale on the horizontal axis—to draw a line from data coordinate (500.0, 0.325) to the data coordinate (900.0, 0.325). The second then uses `plt.text` to place the label “Theoretical” near to the line, with the label starting at the point (1000.0, 0.3). The remaining statements place a circular plotting symbol and label it “Experimental”.

5.10 Making Hard Copy

5.10.1 ... of Text

To print textual results from PYTHON when PYTHON is being run in the Python Shell on an X-window device or in Windows, we can use the cutting and pasting capabilities of the X-window system/clipboard to copy the information from the window running PYTHON to the input window of the text editor in use. That file can then be edited to extract or reformat only the portions wanted. There appears to be no easily discovered way to create a file containing PYTHON output written to a Windows command window.

5.10.2 ... of Graphs

After a function or an array has been plotted on the screen, we sometimes wish to have a hard copy of the graph. Making that hard copy requires two steps. First, we must create a file containing a PostScript or PDF description of the plot.\textsuperscript{83} Then, we must send that file to the printer. The second

\textsuperscript{83}Since many word processing and publishing packages have the capability to import PostScript and/or PDF files, these files are also useful when the graph is to be incorporated in a larger document.
of these steps is a task for the operating system and is described in the Local Guide. The first step, however, is a task for PYTHON. Conveniently, the PYTHON Figure window has several buttons at the left end of its bottom (PYTHON 2) or top (PYTHON 3) edge. One of these buttons is labeled with a picture of an old-style small floppy disc. Clicking ML on that button will bring up a browser in which you can migrate to the desired directory and then select the desired file type—png, pdf, eps, ps, and pgf are among those available—and specify the desired name of the file. Finally, clicking ML on the button labeled 'Save' will store the contents of the Figure window with the specified name in the selected directory. In contrast to the behavior of some other programs, the resulting file produced in PYTHON appears to preserve the positioning of items in the display, all line widths, and all font sizes and styles.

The procedure described in the previous paragraph can be invoked only if you are interactively generating the desired display, invoking `plt.show()` to direct the display to a window on the screen, and manually carrying out that procedure. If you wish to incorporate the creation of a file containing an elaborate display by running a program in the background, that procedure is inappropriate. You can, however, replace the statement `plt.show()` in the activity that created the on-screen display with an invocation of the command `plt.savefig`. In its simplest form, we might create a file containing a crude graph of the sine function with the statements

```python
import numpy as np; import matplotlib.pyplot as plt
x = np.linspace(0, 10, 101); y = np.sin(x)
plt.plot(x,y)
plt.savefig('sinecurve.pdf')
```

The result will store the graph in a PDF file named `sinecurve.pdf` in whatever is the current directory. The command `plt.savefig` has only one “free” argument (the filename, in which the file type determines the format of the resulting file), but it also supports numerous keywords to modify the output.  

5.11 Graphing Scalar Functions of Two Variables

Suppose the function we wish to explore graphically is a function of two independent variables, for example,

\[ z(x, y) = \sin(2\pi x) \sin(3\pi y) \]  

which defines the shape of the [2, 3] mode of oscillation for a square membrane, or

\[ I(\xi, \eta) = \left( \frac{\sin \xi}{\xi} \right)^2 \left( \frac{\sin \eta}{\eta} \right)^2 \]  

which is related to the intensity in the diffraction pattern produced by a square aperture. In graphing a function of a single variable, we used as input to `plot` the values of the function at a selected set of (regularly or irregularly spaced) values spanning the desired range of that variable. Here, we need as input to any graphing routine the values of the function at a regular, two-dimensional grid of selected points \((x_{ij}, y_{ij})\) or \((\xi_{ij}, \eta_{ij})\) covering the portion of the \(xy\) or \(\xi\eta\) plane within which we seek to display the function graphically. In the broadest of terms, our task then will involve three steps:

1. Create two arrays, one \((x, xi, \ldots)\) containing the first coordinate \((x, \xi, \ldots)\) of all the points in the grid and the other \((y, eta, \ldots)\) containing the second coordinate \((y, \eta, \ldots)\) of those points.

\[\text{pdf}, \text{png}, \text{ps}, \text{and eps} \text{ are usually available.}\]

\[\text{See the URL matplotlib.org/api/aa_gen/matplotlib.pyplot.savefig.html for a full description of these options.}\]

\[\text{With more than one independent variable, the use of irregular grids poses a particularly imposing challenge for creating the ultimate display. We elect to limit our discussion to a regular grid of values for the independent variable.}\]
2. Evaluate the function over that grid, i.e., generate the array containing values of the dependent variable at the points identified in the arrays containing the independent variables. Because routines available in the PYTHON module numpy can process arrays element by element, a single statement, which would have the forms

\[
\begin{align*}
z &= \text{np.sin}(2.0\cdot\text{np.pi}\cdot x) \ast \text{np.sin}(3.0\cdot\text{np.pi}\cdot y) \\
I &= \left(\frac{\text{np.sin}(xi)}{xi}\right)^2 \ast \left(\frac{\text{np.sin}(\eta i)}{\eta i}\right)^2
\end{align*}
\]

for the functions in Eqs. (5.8) and (5.9), will usually suffice.

3. Invoke one or another graphical display routine, specifying the array \((z, I, \ldots)\) containing the dependent variable as input and perhaps specifying one or more further arguments to control details of the display.

In this section, we describe how to create the necessary arrays containing values of the independent variables and then illustrate how to create different displays of these functions using numpy.meshgrid, plot_wireframe, plot_surface, and matplotlib.pyplot.contour.

### 5.11.1 A Preliminary: The Function meshgrid

In PYTHON, the command meshgrid in the numpy module provides the two-dimensional analog of the statement \(x = \text{numpy.linspace}(\text{Start}, \text{Stop}, \text{NoVals})\). The command meshgrid creates a pair of two-dimensional arrays, one containing the \(x\) coordinates of a grid of points uniformly spaced in a region of the \(xy\) plane and the other containing the \(y\) coordinates of points in that grid. Thus, for example, the statements

```python
>>> import numpy as np
>>> xx = np.linspace(-3.0, 3.0, 4)
>>> yy = np.linspace(-1.0, 1.0, 5)
>>> x,y = np.meshgrid(xx, yy)
```

create the arrays

```python
>>> print(x)
[[-3. -1. 1. 3.]
 [-3. -1. 1. 3.]
 [-3. -1. 1. 3.]
 [-3. -1. 1. 3.]]
>>> print(y)
[[-1. -1. -1. -1.]
 [-0.5 -0.5 -0.5 -0.5]
 [0. 0. 0. 0.]
 [0.5 0.5 0.5 0.5]
 [1. 1. 1. 1.]]
```

where each entry in a column of \(x\) has the same value and each entry in a row of \(y\) has the same value. Once these two arrays have been created, we can create an identically sized array containing values of the function with the single statement, say

```python
>>> z = x**2 + y**2
>>> print(z)
[[10. 2. 2. 10.]
 [10. 2. 2. 10.]
 [10. 2. 2. 10.]
 [10. 2. 2. 10.]]
```
Here, each entry in the array $z$ is the value of the function $z = x^2 + y^2$ at the point whose $x$ coordinate is at the corresponding position in the array $x$ and whose $y$ coordinate is at the corresponding position in the array $y$.

To illustrate both the use of `meshgrid` and the nature of its output, we above chose an example that is far too small to produce a useful display of any function. We would create a more useful display if the array providing input to the several graphing routines had more entries. To prepare for subsequent examples, then, we execute the statements

$$
xx = np.linspace(0.0,1.0,40); yy = np.linspace(0.0,1.0,40)
x, y = np.meshgrid( xx, yy )
z = np.sin(2.0*np.pi*x) * np.sin(3.0*np.pi*y)
xixi = np.linspace(-3.0*np.pi,3.0*np.pi,50)
etaeta = np.linspace(-3.0*np.pi,3.0*np.pi,50)
xi, eta = np.meshgrid( xixi, etaeta )
I = (np.sin(xi)/xi)**2 * (np.sin(eta)/eta)**2
$$
to create more refined arrays $z$ and $I$ for the two examples of Eqs. (5.8) and (5.9).

### 5.11.2 Surface Plots: The Commands `plot_wireframe` and `plot_surface`

For generating an assortment of plots of functions of two variables, we need to import two additional modules, specifically

```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
```
to provide plotting tools and a capacity to create projections into two dimensions of three-dimensional displays. The simplest PYTHON function from these tools for displaying two-dimensional arrays is `plot_wireframe`. The statements

```python
fig1 = plt.figure(1)
ax1 = plt.axes(projection='3d')
ax1.plot_wireframe(x,y,z, color='black', rstride=2, cstride=2)
ax1.set_xlabel('x', fontsize=14)
ax1.set_ylabel('y', fontsize=14)
ax1.set_zlabel('z', fontsize=14)
ax1.set_zlim((-1.0,1.0))
plt.title('[2,3] Mode', fontsize=18)
plt.show()
```

will generate a three-dimensional wire-mesh surface conveying the altitudes in the two-dimensional array $z$. Here, we

---

87 We shift at this point to assuming the growing program will be created as a file in a PYTHON Edit window.

88 Note that placing an even number of points in `xixi` and `etaeta` avoids having the value zero in the middle of each array, thereby avoiding several divisions by zero in calculating the function $I$.

89 The module `mpl_toolkits` is included with the `matplotlib` distribution.
5.11. GRAPHING SCALAR FUNCTIONS OF TWO VARIABLES

Figure 5.10: A wireframe representation of the function $z$ in Eq. (5.8). The figure in (a) produced with `wireframe` is a bit confusing because the wireframe is treated as transparent, so some lines in the background actually are visible in this display. The figure in (b) produced with `plot_surface` hides the confusing lines. Note that, in the perspective shown, the $x$ axes run positively to the east southeast, the $y$ axes run positively to the northwest, and the $z$ axes run positively to the north (vertical).

1. Create an empty `Figure` window
2. Add axes named `ax1` in that window with the keyword `projection` set to '3d' to stipulate three-dimensional data will be supplied.
3. Use `plot_wireframe` to generate the basic graph of $z(x, y)$. Here, the arguments $x$ and $y$ force `wireframe` to scale the $x$ and $y$ axes to the physical values, and the property `color` specifies the color of the wire frame. The properties `rstride=2` and `cstride=2` specify that the wireframe diagram display only every second row (`rstride`) and every second column (`cstride`) so that the diagram is not filled too densely with lines.
4. Exploit several attributes to set a label on each axis, the limits on the $z$ coordinate, and a title on the full display.
5. Finally, display the graph on the screen.

The resulting graph is shown in Fig. 5.10(a).

Unfortunately, because the wireframe is transparent, lines in the background are shown in and confuse this figure. To remove that confusion, we have to invoke `plot_surface` by replacing the `plot_wireframe` statement in the above code with the statement

```python
ax1.plot_surface(x, y, z, rstride=2, cstride=2, color='white',
 shade=False, edgecolor='black')
```

A similar coding will produce a graph of the function $I(\xi, \eta)$ defined in Eq. (5.9). While the string `$\xi$` apparently is not accepted even though the string `$\eta$` does seem to work, we will here adopt a uniform method for generating both $\xi$ and $\eta$ to label the axes in the graph of $I$.\(^{90}\) Specifically, we use the statements

\(^{90}\)See Section 5.15.1 for a more detailed discussion.
Figure 5.11: A wireframe representation of the function $I$ in Eq. (5.9). Note that, in the perspective shown, the $x$ axes run positively to the east southeast, the $y$ axes run positively to the northwest, and the $z$ axes run positively to the north (vertical).

![Diffraction (Square Aperture)](image)

import unicodedata
Gxi=unicodedata.lookup("GREEK SMALL LETTER XI")
Geta = unicodedata.lookup("GREEK SMALL LETTER ETA")

to find and assign the unicode values for $\xi$ and $\eta$ to the variable that will then be used in the xlabel and ylabel commands. Then, the coding

```python
fig2 = plt.figure(2)
ax2 = plt.axes(projection='3d')
ax2.plot_surface(xi, eta, I, color='white', shade=False, edgecolor='black')
ax2.set_xlabel(Gxi, fontsize=14)
ax2.set_ylabel(Geta, fontsize=14)
ax2.set_zlabel('\$I\$', fontsize=14)
ax2.set_zlim((0.0,1.0))
plt.title('Diffraction (Square Aperture)', fontsize=18)
plt.show(2)
```

will produce the graph in Fig. 5.11.

The axis keywords `azim`, specifying rotation around the $z$ (vertical) axis, and `elev`, specifying the elevation angle of the $xy$ plane, are set to angles in degrees in the `view_init` attribute of an axis object. These keywords allow adjustment away from the default orientation `azim=-60, elev=30`. For example, the statement\(^{91}\)

```python
ax1.view_init(azim=30, elev=40)
ax2.view_init(azim=30, elev=40)
```

\(^{91}\)A full list of keywords and attributes is at matplotlib.org/2.0.2/mpl_toolkits/mplot3d/api.html.
Figure 5.12: Alternative views of the wireframe representations of the functions $z$ and $I$ in Eqs. (5.8) and (5.9), respectively.

Examination of Figs. 5.11 and 5.12(b) suggests that the pattern might have weak peaks (bright spots) in areas outside the main central peak. We have adopted a vertical scaling to show the high central peak. To show the secondary peaks more clearly, we could make use of the adjust the vertical scaling to specify a scale on the vertical axis that ignores the central peak. For example, we might replace the vertical scaling in the coding that produced Fig. 5.11 with the statement

```python
ax2.set_zlim((0.0,0.1))
```

to forces the $I$ axis to be confined to the range $0.0 \leq I \leq 0.1$ (and the central peak simply goes off scale). The resulting display, shown in Fig. 5.13, reveals the secondary peaks in the diffraction pattern and even hints at some of those not on the main axes.

### 5.11.3 Contour Plots: The Command `contour`  

The command `contour`, whose general syntax is similar to that of the command `plot_surface`, draws contour lines for two-dimensional arrays. Using all of the defaults, we would produce a contour map for the [2,3]-mode of the membrane with the statement

```python
plt.contour(x,y,z)
```

where the first and second arguments define the scales for the two axes while the third argument provides the data for generating the display. Exploiting a few properties, however, we could produce a more meaningful contour map with the statements

```python
plt.contour(x, y, z, 20, colors='black')
```

The fourth argument—here 20—specifies the number of levels to be drawn, overriding the default, and the keyword `colors` (note the 's') replaces the default coloring of contour lines and makes them all black. Evidently, when a single color is used, positive contours are drawn automatically with
solid lines and negative contours automatically with dashed lines. Otherwise, the color of each line is determined by the value of the function on that line.

Alternatively, we could replace the specification of the number of contour lines with a list giving the numerically increasing values at which contour lines are to be drawn as, for example, in the statement

```python
lns=[-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8]
plt.contour(x, y, z, lns, colors='black')
plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16)
```

Even better, we could add labels to the contour lines by modifying the `contour` statement and invoking `clabel` with the statements

```python
gr = plt.contour(x, y, z, lns, colors='black')
plt.clabel(gr, lns)
```

Finally, we could recognize that we are dealing with a square membrane and add the statement

```python
plt.axis('square')
```

to establish a 1:1 aspect ratio for the display.\textsuperscript{92} The end result of these several operations is the display shown in Fig. 5.14. Further details not only for the command `contour` but also for the related command `contourf`, which draws filled contour maps, can be found in the PYTHON manuals.\textsuperscript{93}

\textsuperscript{92}A fuller discussion of the command `axis` is presented in Section 5.15.4.
\textsuperscript{93}See the URL matlotlib.org/api/_as_gen/matplotlib.pyplot.contour.html.
Figure 5.14: Contour plot of the function $z$ in Eq. (5.8). This view shows the membrane from above, where solid lines represent regions in which the membrane is displaced towards the viewer and dashed lines represent regions in which the membrane is displaced away from the viewer.

5.11.4 Shaded Surfaces: The Command plot.surface Again

The commands plot_wireframe and plot_surface (as we used them in Section 5.11.2) display a two-dimensional array using a “wire-mesh” technique in which data points are connected to adjacent points using lines. The command plot_surface can also generate an alternate display in which a smooth surface conveys the values in a two-dimensional array. To produce this representation of the function $z(x, y)$, for example, we might accept all defaults and execute the statements

```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import unicodedata
fig=plt.figure(4)
ax4 = plt.axes(projection='3d')
ax4.plot_surface(x, y, z)
```

which will produce a surface in a single color (blue by default) that also shows (faintly) some of the wireframe lines as well.

With a bit more care, we can produce a more sophisticated display. For example, we might arrange to fill in each “facet” with a color determined by the value of $z$ at that facet. To do so, we need to include the statement

```python
import matplotlib.cm
```

to provide a multitude of color maps (cm) from which to choose. We can then create a more interpretable surface plot with the statements

```python
import matplotlib.cm
```

94 See the URL matplotlib.org/examples/color/colormaps_reference.html for a full enumeration of the available color maps.
Figure 5.15: Shaded surface representation of the function $z$ in Eq. (5.8).

[3,2] Mode

Figure 5.16: Shaded surface representation of the function $I$ in Eq. (5.9).

```python
ax4.plot_surface(x, y, z, cmap=cm.Greys, edgecolor='black')
ax4.set_xlabel('x', fontsize=14)
ax4.set_ylabel('y', fontsize=14)
ax4.set_zlabel('z', fontsize=14)
ah4.set_zlim((-1.0, 1.0))
plt.title('[3,2] Mode', fontsize=18)
plt.show(4)
```

Here, the first statement replaces the simpler statement in the previous code and selects both a grey-scale color map and darkens the wire frame lines, both of which help to make the shape of the surface clearer. These statements—and nearly identical ones for the function $I(\xi, \eta)$—generate the displays shown in Fig. 5.15 and 5.16.
5.11.5 Features of the *Figure* Window

Exploration of the nature of a surface in two dimensions is greatly facilitated by several features of the *Figure* window. Note that

- Moving the cursor anywhere on the graph itself causes a message conveying the physical coordinates of the location of the cursor in the graph to appear along the right end of the bar at the bottom of the window.

- Pressing and holding ML when the cursor is somewhere on the display picks up the display and permits reorientation of the graph (including axis labels but not titles) in real time by moving the mouse. When the mouse button is released, the display is fixed at its new perspective. Note that, when the mouse button is being held, a pop-up message at the right of the bottom edge displays the azimuth and elevation of the current orientation—values that could well be useful in the subsequent construction of a statement exploiting the command `view_init`—See the text associated with Fig. 5.12—to produce the identical view from the command line.

- Pressing and holding MR when the cursor is somewhere on the display and moving the cursor effects zooming of the graph.

- Pressing and holding ML when the cursor is somewhere on the display and moving the cursor effects panning of the graph.

- Clicking ML on the left-most button along the bottom of the *Figure* window will restore the original view after other actions have “disturbed” it.

- Clicking ML on the button showing a magnifying class and then drawing a rectangle on the graph while holding ML will zoom to the rectangle when ML is released.

- Clicking ML on the button showing a floppy disk will bring up a window in which you can provide information for saving the display in a file of any of several types. (See Section 5.10.2.)

5.11.6 Functions of Two Variables in Polar Coordinates

Graphing a function \( z = f(r, \phi) \) defined in polar coordinates involves evaluating the function on a grid of polar coordinates but then converting the \( r \) and \( \phi \) coordinates to Cartesian values before invoking plotting procedures already described. If, for example, the function we wish to plot is

\[
z = (1 - r^2) e^{-r} \cos(\phi)
\]

and we sought a graph over the intervals \( 0 \leq r \leq 5.0, \ 0 \leq \phi \leq 2\pi \), we would begin by importing the necessary modules, defining the independent variables, creating the two-dimensional grids, and evaluating the function with the statements

```python
import numpy as np
import matplotlib.pyplot as plt
rr = np.linspace(0.0, 5.0, 25)
phiphi = np.linspace(0.0, 2.0*np.pi, 36)
r, phi = np.meshgrid(rr, phiphi)
z = (1-r**2)*np.exp(-r)*np.cos(phi)
```

Next, we would convert the polar coordinates to their Cartesian equivalents with the statements

```python
x = r*np.cos(phi); y = r*np.sin(phi)
```
Finally, for a crude graph, we complete the task of generating a wire frame graph with the statements

```python
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_surface(x, y, z, color='white', edgecolor='black')
plt.show()
```

The result is shown in Fig. 5.17. Adding labels and a title is left to the reader.

A similar procedure will create a polar contour plot. We simply replace the last four statements above with the three statements

```python
fig = plt.figure()
plt.contour(x, y, z, 20, colors='black')
plt.show()
```

to produce the display shown in Fig. 5.18.

The purpose of this brief section is to illustrate the strategy. You are on your own to embellish it as needed in your context.

### 5.12 Graphing Scalar Functions of Three Variables

Scalar functions of three variables also occur regularly in physics. Displaying them graphically, however, is complicated because there are four quantities (three independent variables; one dependent variable) to be conveyed. The task involves developing ways to represent four-dimensions in three and then, even more, to project those three onto the two-dimensional screen of a computer workstation. However that is accomplished, the input to the process will have to be a three-dimensional matrix,
5.12. GRAPHING SCALAR FUNCTIONS OF THREE VARIABLES

Figure 5.18: Contour map of the function $z$ in Eq. (5.10).

To be explicit, we determine values of $p(x,y,z)$ over the region $-10.0 \leq x,y,z \leq 10.0$, dividing each axis into 32 segments, which will entail evaluating $p(x,y,z)$ over a grid containing 33 values of $x$, 33 values of $y$, and 33 values of $z$—a total of $33 \times 33 \times 33 = 35937$ points.

Using PYTHON to generate a three-dimensional array containing values of this probability density at a grid of points in the desired region is straightforward, since the command `meshgrid` can accept not only two ranges (to produce two two-dimensional arrays) but also three ranges (to produce three three-dimensional arrays). An array containing values of the probability density in Eq. (5.11) is created using the statements

```python
import numpy as np

xx = np.linspace(-10.0, 10.0, 33)
yy = np.linspace(-10.0, 10.0, 33)
zz = np.linspace(-10.0, 10.0, 33)
x, y, z = np.meshgrid(xx, yy, zz)
pfactor = 1.0/(2.0*np.pi*27.0**3)
zs = z**2
hos = x**2 + y**2 + zs
rho = np.sqrt(rhos)
p = pfactor * np.exp(-2.0*rho/3.0) * (9.0*zs**2 - 6.0*zs*rhos + rhos**2)
```

Import numpy.
Calculate grid.
Calculate premultiplier.
Calculate $z^2$.
Calculate $\rho^2$.
Calculate $\rho$.
Calculate $p(x,y,z)$. 

Each of whose entries gives the value of the function at the point $(x_{ijk}, y_{ijk}, z_{ijk})$ in a regular, three-dimensional grid of points spanning the region of space within which we want to examine the function.

For the sake of a more specific example, we choose the normalized probability density $p(x,y,z)$ for the electron in the $(n,l,m) = (3,2,0)$ state in the hydrogen atom. This probability density is given as a function of Cartesian coordinates $(x,y,z)$ with the nucleus located at the origin by

$$
p(x,y,z) = \frac{1}{2\pi(27)^{3/2}} e^{-2\rho/3} \left( 3\frac{z^2}{\rho^2} - 1 \right)^2 = \frac{1}{2\pi(27)^{3/2}} e^{-2\rho/3} (9z^4 - 6z^2\rho^2 + \rho^4)
$$

where the coordinates are all measured in units of the Bohr radius and

$$
\rho = \sqrt{x^2 + y^2 + z^2}
$$

To be explicit, we determine values of $p(x,y,z)$ over the region $-10.0 \leq x,y,z \leq 10.0$, dividing each axis into 32 segments, which will entail evaluating $p(x,y,z)$ over a grid containing 33 values of $x$, 33 values of $y$, and 33 values of $z$—a total of $33 \times 33 \times 33 = 35937$ points.
The first statement provides numerical routines, the next four statements establish the grid, and the remaining statements lead ultimately to an evaluation of the function $p(x, y, z)$ whose values are stored in the three-dimensional array $p$, which will provide the input for the production of a variety of displays.

5.12.1 Reduction to Two-Dimensional Displays

One way to show the characteristics of a function of three variables is to display two-dimensional subsets of the three-dimensional data, that is, to examine the behavior of the function in planes that intersect the volume. The simplest planes to extract are those for which $z$ has a fixed value, since the expression $p[:,:,5]$, for example, will extract a two-dimensional array containing the values of $p(x, y, z)$ for which the third coordinate is five (or—better—whatever value of $z$ corresponds to the integer 5 in the original scaling, $z = z_0 + 5 \times dz = -10.0 + 5 \times 20.0/32.0 = -6.875$). Thus, the statements\footnote{We must extract two-dimensional arrays from all three arguments, since these statements will not behave properly with three-dimensional arrays in any position.}

```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

fig1 = plt.figure(1)
ax1 = plt.axes(projection='3d')
ax1.plot_surface(x[:,:,5],y[:,:,5],p[:,:,5], color='white',
 shade=False, edgecolor='black')
plt.show(1)

fig2 = plt.figure(2)
ax2 = plt.axes(projection='3d')
ax2.plot_surface(x[:,:,5], y[:,:,5], p[:,:,5], cmap=cm.Greys,
 edgecolor='black')
plt.show(2)

fig3 = plt.figure(3)
plt.contour(x[:,:,5], y[:,:,5], p[:,:,5], 20, colors='black')
plt.axis('square')
plt.xlabel('x', fontsize=16); plt.ylabel('y', fontsize=16)
plt.show(3)
```

will produce mesh surface, contour, and shaded surface representations of the probability density in the plane parallel to the $xy$ plane at the specified value of $z$.

Extracting data in a plane perpendicular to the $x$ or $y$ axes is more complicated, since the expression $p(15,:,:)$ will not achieve the desired end. Instead, we must be more deliberate. The statements
5.12. GRAPHING SCALAR FUNCTIONS OF THREE VARIABLES

Figure 5.19: Wireframe representation of the function $p$ in Eq. (5.11) in the plane $x = x_0 + 15 \ast dx = -10.0 + 15 \ast 20.0/32.0 = -0.625.$

```python
px = np.zeros((33,33))
for i in np.arange(33):
 for j in np.arange(33):
 px[i,j] = p[15,i,j]
yyy = np.linspace(-10.0,10.0,33)
yy,zz = np.meshgrid(yyy, yyy)

fig4 = plt.figure(4)
ax4 = plt.axes(projection='3d')
ax4.plot_surface(yy, zz, px, color='white', shade=False, edgecolor='black')
ax4.set_xlabel('y', fontsize=14)
ax4.set_ylabel('z', fontsize=14)
ax4.set_zlabel('p', fontsize=14)
plt.show(4)

fig5 = plt.figure(5)
plt.contour(y[:,:,0], z[:,:,0], px, 20, colors='black')
plt.xlabel('y', fontsize=14)
plt.ylabel('z', fontsize=14)
plt.axis('square')
plt.show(5)
```

Preallocate storage for array.

Extract data in plane parallel to $yz$ plane.

Create arrays for scaling axes.

Generate and label wireframe plot.

Generate and label contour plot.

for example, will extract data in a plane parallel to the $yz$ plane and generate first a wireframe surface and then a contour map of those data. The figures produced by these commands are presented in Fig. 5.19 and Fig. 5.20.

While quick, the method of the previous paragraph is restricted to planes in which one has data, to planes perpendicular to one or another of the coordinate axes, and to a small portion of the data.
5.12.2 Isosurfaces

Another method of viewing a three-dimensional scalar field is to look at isosurfaces, or sets of locations at which the function has a constant value. Both the mayavi module and the plotly module include resources for producing isosurfaces and may provide resources for displaying contour maps in planes representing oblique slices through volumetric data. Both of these modules are quite involved and, of course, must be installed—usually separately from the PYTHON installation—before their features can be invoked. For the sake of a simple illustration, we here assume that the plotly module and the supporting skimage module have been installed on your platform, and we limit ourselves to creating an isosurface within the data generated in the variable p defined in Eq. (5.11) and already created in the Python Shell at the beginning of Section 5.12.96 We begin by importing the necessary modules with the statements

```python
import plotly as pl
import plotly.figure_factory as ff
from skimage import measure
```

Then, we calculate the vertices, faces, and other aspects of the isosurface at the value \( p = 1.2 \times 10^{-4} \) and extract the coordinates of the vertices that define the isosurface with the statements

```python
verts, faces, normals, values = measure.marching_cubes_lewiner(p, level=1.2e-4)
x1,y1,z1 = zip(*verts)
```

Here, the asterisk in the argument of the command `zip` stipulates that an already zipped variable is to be unzipped. Next, we create the internal description of the display with the statement

```python
fig = ff.create_trisurf(x1, y1, z1, faces, title="Isosurface", \
show_colorbar=False, colormap=["rgb(255,255,255)"])
```

96 Refer to the URL plot.ly/python/isosurfaces-with-marching-cubes/ for full detail on the plotly module.
Here the stipulated value of the keyword colormap specifies that the isosurface itself be displayed in white; the lines that help define the surface will by default be shown in black. Finally, we display the result with the statement

\[
\text{pl.offline.plot(fig, filename='c:/users/cookd/trial.html')}
\]

which, because of the offline stipulation, writes the display into the html file specified on your local computer (rather than to your account in the cloud) and automatically displays that file in your default browser.

Unfortunately, the above described process labels the axes with the indices of the values in the \(33 \times 33 \times 33\) in the original arrays \(x, y,\) and \(z\), i.e., with values in the range \(0.0 \leq x, y, z \leq 32.0\). Physically, the range of these variables was \(-10.0 \leq x, y, z \leq 10.0\). One way to obtain the correct labeling involves merely rescale \(x_1, y_1,\) and \(z_1\) to span this new range with statements like

\[
x_2 = \text{np.array}( x_1 );\quad x_11 = 0.625 \times x_2 - 10.0
\]
\[
y_2 = \text{np.array}( y_1 );\quad y_11 = 0.625 \times y_2 - 10.0
\]
\[
z_2 = \text{np.array}( z_1 );\quad z_11 = 0.625 \times z_2 - 10.0
\]

With this change, executing the two statements

\[
\text{fig = ff.create_trisurf(x11, y11, z11, faces, title="Isosurface", }\
\text{ show_colorbar=False, colormap=['rgb(255,255,255)'])}
\]
\[
\text{pl.offline.plot(fig, filename='c:/users/cookd/trial.html')}
\]

produces the desired isosurface with more appropriate labels on the axes. Note that the image on the screen can be reoriented by pressing and holding ML with the cursor somewhere within the display and moving the mouse around.

The display resulting from the above commands is shown in Fig. 5.21. Note that, to incorporate this display, originally captured in an .html file, into a L\(\text{T}\text{E}X\) document, we display the graph on the screen, use a screen-copy tool to create a .jpg file of the graph, and exploit the ability of \(\text{L}\text{T}\text{E}X\) to include .jpg files in the \texttt{\includegraphics} command.

This section has provided the skimpiest of orientation to using \texttt{plotly} for creating isosurfaces. Anything more is beyond the scope of this book.

### 5.13 Graphing Vector Fields

Graphical display of vector functions of two or three variables is more complicated than display of scalar functions, but PYTHON has at least one function designed to produce such displays. To illustrate the general procedures briefly and without much detail, let us consider the electromagnetic field in a transverse electric (TE) wave in the rectangular waveguide shown in Fig. 5.22 when the electric field has only a \(z\) component, the magnetic field has only \(x\) and \(y\) components, and none of these components depends on \(z\). In this case, the only non-zero components of the electric field \(E\) and the magnetic field \(H\) are given at time \(t = 0\) by

\[
E_z = \cos \kappa_x b \tau \sin n\pi y
\]

\[\text{97}\]The coefficients in these linear transformations were obtained by solving the equations \(-10.0 = 0.0 \ast a + b\) and \(10.0 = 32.0 \ast a + b\) by the method described in Section 5.3.7. Note that converting \(x_1, y_1,\) and \(z_1\) to arrays is necessary before the linear rescaling can be achieved.

\[\text{98}\]For a discussion of the electromagnetic fields in wave guides, see \textit{The Theory of the Electromagnetic Field by David M. Cook (Prentice-Hall, Englewood Cliffs, NJ, 1975) or Introduction to Electrodynamics, Third Edition, by David J. Griffiths (Prentice-Hall, Upper Saddle River, NJ, 1999). The first of these books, out of print since the early 1990’s, was available for awhile after January, 2003, in a Dover reprint, but that reprint has since not been kept in print.}
Figure 5.21: An isosurface of the probability density $p$ in Eq. (5.11) using components of the \texttt{plotly} and \texttt{skimage} modules.

Figure 5.22: A waveguide with rectangular cross section.
5.13. GRAPHING VECTOR FIELDS

\[
H_x = \sin \kappa \beta \cos n\pi \gamma \quad (5.13)
\]
\[
H_y = \frac{-\kappa \beta}{n\pi} \sin \kappa \beta \sin n\pi \gamma \quad (5.13)
\]

where the fields are measured in units in which the amplitude of \(E_z\) is one. Further, \(b\) is the \(y\)-dimension of the guide, \(n\) is a positive integer, \(\bar{x} = x/b\) and \(\bar{y} = y/b\) are dimensionless coordinates within the guide, and

\[
\left(\frac{\kappa \beta}{n\pi}\right)^2 = \left(\frac{\omega b}{n\pi c}\right)^2 - 1 \quad (5.14)
\]

where \(c\) is the speed of light and \(\omega\) is the frequency of the wave. The field depends on two parameters, \(n\) and \(\kappa \beta\), where \(\kappa \beta\) is determined from Eq. (5.14) by \(\omega\), \(b\), and \(c\). Since \(\kappa \beta\) must be real if the wave is to propagate down the guide, we must require that \((\omega b/n\pi c)^2 > 1\) or that \(\omega > n\pi c/b\). For the sake of a specific example, we choose \(b = 1\) and \(n = 2\), and then we choose \(\omega\) so that \(\kappa \beta/2\pi\) turns out to have the value 1. With these choices, the fields are given by

\[
E_z = \cos 2\pi \bar{x} \sin 2\pi \bar{y} \quad (5.15)
\]
\[
H_x = \sin 2\pi \bar{x} \cos 2\pi \bar{y} \quad (5.15)
\]
\[
H_y = -\cos 2\pi \bar{x} \sin 2\pi \bar{y} \quad (5.15)
\]

where \(\bar{x}\)—the coordinate along the guide can range over any values—we choose \(0 \leq \bar{x} \leq 1\)—but, to be inside the guide, \(\bar{y}\) is confined to the region \(0 \leq \bar{y} \leq 1\).

Each component of these fields can now be represented by a two-dimensional array. The \(\mathbf{H}\) field, which has two non-zero components, then is translated into two such arrays; the \(\mathbf{E}\) field, which has only one non-zero component, requires only one such array. These arrays are readily created with the PYTHON statements\(^{99}\)

```python
import numpy as np
import matplotlib.pyplot as plt

xx = np.linspace(0.0, 1.0, 26)
yy = np.linspace(0.0, 1.0, 26)
x, y = np.meshgrid(xx, yy)
xp = 2.0*np.pi*x; yp = 2.0*np.pi*y
Ez = np.cos(xp) * np.sin(yp)
Hx = np.sin(xp) * np.cos(yp)
Hy = -np.cos(xp) * np.sin(yp)
```

### 5.13.1 The Function `quiver`

The PYTHON function `quiver` produces a two-dimensional vector field plot. At each grid point, `quiver` draws an arrow which conveys both the direction and the magnitude of the field at that point. The calling statement for this function is

```python
plt.quiver(x, y, u, v)
```

where \(x\) and \(y\) are either one-dimensional arrays containing the actual coordinates of the grid points on the two axes or two-dimensional arrays containing the coordinates of all points in the grid at which vectors are to be drawn, and \(u\) and \(v\) are the \(x\) and \(y\) components of the two-dimensional field, respectively, at the grid points conveyed by \(x\) and \(y\). Thus, for example, the two components of \(\mathbf{H}\) in PYTHON’s memory can be displayed in this form by executing the statement

\(^{99}\)From here on in this section, we drop the overbars.
Figure 5.23: Magnetic field of Eq. (5.15) at \( t = 0 \) in a rectangular wave guide using \texttt{quiver}. The illustrated structure, of course, propagates along the guide toward positive \( x \) as time unfolds.

\begin{verbatim}
fig1 = plt.figure(1)
plt.quiver( x, y, Hx, Hy )
plt.xlabel( '$x$', fontsize=14 )
plt.ylabel( '$y$', fontsize=14 )
plt.show(1)
\end{verbatim}

The resulting display is shown in Fig. 5.23.

### 5.13.2 More Elaborate Displays

Numerous additional displays can be created. We illustrate the possibilities with a plot in which the \( x \) and \( y \) components of the magnetic field displayed with \texttt{quiver} are superimposed on a contour map of the \( z \) component of the electric field. The statements

\begin{verbatim}
lns = [-0.9,-0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9]
plt.contour( x, y, Ez, lns, colors='black' )
plt.title('Magnetic Field in a Rectangular Wave Guide', fontsize=16 )
\end{verbatim}

will add contour lines to Fig. 5.23, producing the display shown in Fig. 5.24. Here, we have used arguments to \texttt{contour} to specify that contours for positive values should be drawn with a solid line (the default linestyle) while contours for negative values should be drawn with a dash-dot line (linestyle ‘-.’). Thus, the electric field is coming out of the page in regions where its component is indicated with a solid line and going into the page in regions where its component is indicated with a dash-dot line.
5.13. GRAPHING VECTOR FIELDS

Figure 5.24: Plot showing both magnetic and electric fields of Eq. (5.15) at $t = 0$ in wave guide. The magnetic field lines are closed curves in the plane of the paper. The electric field is directed perpendicular to the paper and has at each point a component whose magnitude is conveyed by the contour lines. The illustrated structure, of course, propagates along the guide toward positive $x$ as time unfolds.

5.13.3 Three-Dimensional Vector Fields

When a vector field has non-zero components in more than two coordinate directions, a picture of the field is much harder to draw and even more difficult to interpret without the aid of a tool that will allow easy viewing of the picture from a variety of viewing angles. One can, of course, use `plt.quiver` to draw pictures of the projections of the field in any given plane parallel to a coordinate plane into that plane. In addition—and more usefully—if one executes the statements

```python
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np

xx = np.linspace(-1.0,1.0,6)
yy=np.linspace(-1.0,1.0,6)
zz=np.linspace(-1.0,1.0,6)
x, y, z = np.meshgrid(xx, yy, zz)
r2 = x**2 + y**2 + z**2; r3 = r2**1.5
Ax= x/r3; Ay=y/r3; Az=z/r3

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.view_init(azim=-41, elev=22)
```

and then creates arrays providing three-dimensional grids for the coordinates $x, y, z$ and calculates the three components $A_x, A_y, A_z$ for the vector field to be displayed. For example, the statements
Figure 5.25: A three-dimensional vector field.

\[ \vec{V} = \frac{\vec{r}}{r^{3/2}}, \quad \vec{r} = x \hat{i} + y \hat{j} + z \hat{k} \]  

(5.16)

of a point electric charge over the interval \(-1 \leq x, y, z \leq 1\) and produce the on-screen display shown in Fig. 5.25. Viewed on the screen, this display can be reoriented by dragging it with ML to help visualize the three-dimensional vector field. Further exploration of these capabilities is left to the exercises.

5.14 Animation

5.14.1 The Basic Command

Along with all of its computational and graphing capabilities, PYTHON can also display a sequence of images in rapid succession to produce an animated display. In essence, one creates and stores each image in turn and then displays each of those images one at a time. For producing animations from a succession of images, the important function is imported and invoked with the statements

```python
from matplotlib import animation

anim = animation.FuncAnimation(fig, func, frames=Integer, init_func=InitFuncName,
 interval=Integer, repeat=TrueOrFalse)
```

where

- `fig` names the `Figure` window created by `plt.figure()` and in which each frame will be displayed.

```python
ax.quiver(x,y,z, Ax,Ay, Az, length=0.2, normalize=True)
plt.show()
```

will evaluate the vector field

\[ \vec{V} = \frac{\vec{r}}{r^{3/2}}, \quad \vec{r} = x \hat{i} + y \hat{j} + z \hat{k} \]  

(5.16)
5.14. ANIMATION

- **func** identifies a function that returns the graphic display for the next image in the animation. Its first argument must be an integer variable that numbers the images. If needed for the execution of the function, further arguments can be added.
- **frames** is (most often) an integer specifying the number of frames to be included in the animation. Other possibilities are described at the URL following this bulleted list.
- **init_func** identifies a function that sets the initial image. It is optional and, if it is omitted, the initial image will simply be the first image provided by func.
- **interval** specifies in milliseconds the delay to be introduced after each image is displayed (and provides a means to prevent the animation from unfolding too rapidly). It defaults to 200. The amount of computation needed to create each image may impose an upper limit on the speed at which images can be displayed.
- **repeat** is a logical variable. It defaults to True. If False, the succession of images will be shown once. If True, the succession will be endlessly repeated.

Further description of this function and several additional keywords can be found at the URL matplotlib.org/api/as_gen/matplotlib.animation.FuncAnimation.html.

5.14.2 Motion of a Vibrating String

As a first illustration, we create an animated display showing the vibration of a flexible string oscillating in one of its harmonics. The function

\[ u(x, t) = \cos(\omega t) \sin(n \pi x) \] (5.17)

describes that motion. We begin by executing the statements

```python
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
```

and prepare an empty figure with the statements

```python
fig = plt.figure()
ax = plt.axes(xlim=(0,1), ylim=(-1.5,1.5))
ax.grid()
```

thereby assuring that the scaling will remain the same in each generated frame and a grid will be included in each frame. The last line here creates a variable to anticipate the successive creation of the data points to be plotted for each frame, preparing for later insertion of data by providing two empty lists with the empty square brackets and stipulating the desired linewidth and color.

We also need to define two functions—see Section 5.7—that will be provided as arguments to the routine that creates the animation. One of these functions, specifically

```python
def init():
 line.set_data([], [])
 return line,
```

will be used to initialize the variable line as creation of each image in the animation is started. The other, specifically
def animate(i, harm):
    x = np.linspace(0.0,1.0,101)
    y = np.cos(i*np.pi/50.0)*np.sin(harm*np.pi*x)
    line.set_data(x,y)
    return line,

will be invoked to provide the data for each line in turn. Here, the names init and animate are entirely arbitrary, and the argument i to the function animate records the frame number at each step. Further, the variable harm will be assigned an integer value in the main program and will influence here the harmonic whose animation is generated when the program is run. The variable harm is defined in the main program and passed through FuncAnimation to animate by using the keyword fargs.

With the above preparations, we are ready to invoke the command animation.FuncAnimation that will generate and store the several frames. In the present context, we select a particular harmonic and create the animation with the statements

```python
harm = int(input('Specify harmonic: '))
anim = animation.FuncAnimation(fig, animate, init_func=init, \
 frames=100, interval=20, repeat=True, fargs=(harm,))
```

Finally, the statement plt.show() will create the actual animation on the screen. This animation will run freely until it is stopped by clicking ML in the large × in the upper right corner of the Figure window.

The full listing of the program stwave.py is appended in Section 5.C. The program can be executed by loading it into the PYTHON Edit window and selecting 'Run Module' from the Run menu or typing (F5). Alternatively, provided the current directory is properly set in each case, the program can be run from within the Python Shell with the statement

```python
execfile('stwave.py')
```

or from a command window to the operating system with the statement

```python
python stwave.py
```

However the program is launched, it asks for the entry of a harmonic number before generating the animated display.

5.14.3 Motion of an L-Shaped Drumhead

For a more complicated illustration, we use a data file containing forty-one 33 × 33 arrays, each of which conveys the displacement of an L-shaped membrane at a particular moment in time. The file was created by using lsode—the Livermore solver for ordinary differential equations—to effect a numerical solution of the wave equation for the membrane.

\[100\] Explicit conversion of the value returned by the input command works in both PYTHON 2 and PYTHON 3, and is necessary in PYTHON 3. In PYTHON 2, string entries must be enclosed in quotation marks but integers, floating values, and Boolean values will be dynamically and properly typed. In PYTHON 3, all values are stored initially as strings and must be explicitly converted if necessary.

\[101\] See Section 5.16.6 for a way to trap the input of an invalid value for harm and offer the user a second chance. Otherwise, an invalid entry will crash the program.

\[102\] The file was created by using lsode—the Livermore solver for ordinary differential equations—to effect a numerical solution of the wave equation for the membrane.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation

Then, we read in the data with the statements

```python
f = open('ldrum.dat', 'r') # Open file for reading.
data = [] # Initialize variable for data
for line in f: # Read each line containing six
 # values, converting each to
 # a number.
 data.append([float(x) for x in line.split()])
f.close() # Close file
```

At this point, the structure of the file data consists of 1353 groups, each of which contains six lines in the form

```
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0]
```

Each such group contains the 33 values that must be concatenated to construct a single row in one of the $33 \times 33$ arrays describing the shape of the membrane at a single instant, and 33 of these rows must then be assembled to construct the array itself. The coding

```python
i = 0
k = 0
drm=np.zeros((41,33,33))
while k <= 40:
 tmp = []
 j = 0
 while j <= 32:
 nxtln = np.concatenate([data[i],data[i+1],data[i+2],
 data[i+3],data[i+4],data[i+5]], axis=0)
 tmp =np.concatenate([tmp, nxtln], axis=0)
 i=i+6
 j=j+1
 drm[k] = np.reshape(tmp, (33,33))
k = k+1
```

ultimately constructs the three-dimensional array `drm` that contains forty-one $33 \times 33$ arrays providing the input for the animation we seek. The inner while loop controlled by the index j will be executed 33 times. In each pass, six lines are read from the array data and concatenated into a one-dimensional array named tmp (which is initialized outside the loop). On exit from this inner loop, tmp contains $33 \times 33 = 1089$ values which are reshaped to a $33 \times 33$ array and stored in the element `drm[k][:][:]` by the statement that immediately follows that loop. Finally, this whole structure is placed inside the outer while loop controlled by the index k. When this coding has finished executing, we have stored in the variable `dram` forty one $33 \times 33$ two-dimensional arrays constructed from the data in the original file `ldrum.dat`. 
Beating the data the original file into a form that facilitates generating the animation has taken some effort. To complete the task, we need merely initialize the axes for the animation to come with the statements

\[
x = \text{np.linspace}(0.0,1.0,33); \quad y = \text{np.linspace}(0.0,1.0,33)
\]
\[
x, y = \text{np.meshgrid}(x, y)
\]
\[
\text{fig = plt.figure()}
\]
\[
\text{ax = fig.add_subplot(111, projection='3d')}
\]
\[
\text{ax.set_xlim( (0.0,1.0) )}
\]
\[
\text{ax.set_ylim( (0.0,1.0) )}
\]
\[
\text{ax.set_zlim( (-0.25,0.25) )}
\]

define the function required by the animation routine with the statements\(^\text{103}\)

\[
def \text{surf(k):}
\]
\[
\text{ax.clear()}
\]
\[
\text{ax.set_zlim( (-0.25,0.25) )}
\]
\[
\text{pic = ax.plot_surface( x,y,drm[k], color='white', edgecolor='black' )}
\]
\[
\text{return pic,}
\]

and at last create the animation with the statements

\[
\text{anim = animation.FuncAnimation( fig, surf, frames=41, repeat=True )}
\]
\[
\text{plt.show()}
\]

The full listing of the program \texttt{drumhead.py} is appended in Section 5.D. Provided the current directory is properly set in each case, the program can be run from within the \textit{Python Shell} with the statement

\[
\text{execfile( 'drumhead.py' )}
\]
\[
\text{or exec( open('drumhead.py ' ).read() )}
\]

or from a command window to the operating system with the statement

\[
\text{python drumhead.py}
\]

\section{5.14.4 Trajectory of a Projectile in Uniform Gravity}

In addition to animating the time evolution of functions of one and two independent variables (plus time) as illustrated in Sections 5.14.2 and 5.14.3, one sometimes wants to animate a display of the motion itself of some physical system. PYTHON has rich capabilities to respond to that desire. Because this capability is not a major focus of this book, however, we here merely whet your appetite by laying out a very simple example showing the motion of a projectile fired at an angle up from the horizontal\(^\text{104}\). Suppose the projectile starts at \((x, y, z) = (0.0, 0.0, 0.0)\) m and is fired with initial velocity \((v_x, v_y, v_z) = (v_{x0}, v_{y0}, 0.0)\) m/s. Until it hits the floor, its position relative to its starting point is then given as a function of time \(t\) by

\[
x(t) = v_{x0} t \quad ; \quad y(t) = -\frac{1}{2}gt^2 + v_{y0} t \quad , \quad z(t) = 0.0 \quad (5.18)
\]

The motion continues as long as \(y(t) > 0\).

\(^{103}\)We place this definition at the beginning of the file.

\(^{104}\)Full details can be found by going to the URL \texttt{vpython.org} and selecting 'Documentation' in the resulting screen.
Since, for this example, we are working in PYTHON 3.6.5 using VPYTHON 7.4.6, we construct our animation from components in the vpython module,\textsuperscript{105} which must be installed in your system before it is available for use. While more advanced commands allow you to create and name the canvas on which your animation is to be drawn, a default canvas named scene is created automatically. Note also that, while your program is run as always in PYTHON, \textit{the display is created in a window that opens up in your default browser}, and there may be a fair delay after starting the program before the display appears.

The features of vpython are made available by importing everything in the vpython module with the statement\textsuperscript{106}

\begin{verbatim}
from vpython import *
\end{verbatim}

and then invoking whatever statements are needed to create the desired display. The statements

\begin{verbatim}
scene.autoscale = False
scene.title = 'Projectile'
scene.background=color.white
scene.width=500
scene.height=500
scene.center=vector(10.0,0.0,0.0)

# Place text 'PROJECTILE' in scene, centered at (10.0, -4.0, 0.0).
text(text='PROJECTILE', align='center', pos=vector(10.0,-4.0,0.0), color=color.black, height=1.0, font='sans')
\end{verbatim}

set the characteristics of the scene.

We next define the objects in the scene—a sphere for the projectile and a box for the ground above which the ball moves—and stipulate that the moving ball is to leave a trail of its path with the statements\textsuperscript{108}

\begin{verbatim}
b = sphere( pos=vector(0.0,0.0,0.0), radius=0.3, color=color.red, make_trail=True, trail_color=color.blue)

floor = box( pos=vector(10.0,0.0,0.0), size=vector(20.0,-0.3,0.0), color=color.green)
\end{verbatim}

Here, the keyword \texttt{pos} specifies the location of the \texttt{center} of the object while the keyword \texttt{size} provides the \textit{x}, \textit{y}, \textit{z} dimensions of the box.

Then, we provide values for the constants and establish the initial velocity of the ball with the statements\textsuperscript{109}

\begin{verbatim}
g = 9.8; vx0 = 8.0; vy0=12.0

ball.velocity = vector(vx0,vy0,0.0)
\end{verbatim}

\textsuperscript{105}The corresponding module for PYTHON 2 is the \texttt{visual} module, whose syntax is noticeably different from that of the vpython module. The \texttt{visual} module is being deprecated along with PYTHON 2, though it will remain available until 2020. Information about this module can be found at the URL vpython.org/contents/docs/VPython_intro.pdf and an instructional PowerPoint presentation can be found at the URL www.cs.unc.edu/~lin/COMP089H/LEC/VPython.pptx. Apparently, the \texttt{visual} module works only with PYTHON 2.7.x installed from python.org. It will not work with PYTHON 2.7.x installed from other sources.

\textsuperscript{106}We import vpython using the construction \texttt{from vpython import *}, allowing us to use components from the module without prefacing each with \texttt{vpython}. Had we used the construction \texttt{import vpython as vp}, say, the characters \texttt{"vp."} would have to precede any invocation of a component, e.g. \texttt{vp.scene}, \texttt{vp.text}, \texttt{vp.color.red}, \texttt{\ldots}.

\textsuperscript{107}We are imagining a scene in which the horizontal coordinate runs from 0 at the left edge of the screen to 20 at the right edge. Thus, we position the center of the scene as here established and, later, set the center and width of a box to span from the horizontal coordinate from 0 to 20.

\textsuperscript{108}We here use the built-in objects \texttt{sphere} and \texttt{box}. The VPYTHON literature describes many other available objects.

\textsuperscript{109}Some trial and error preceded the selection of the values for the initial velocity.
Note that the second statement also adds a previously non-existent attribute to the object \texttt{ball}. Finally, we create the \texttt{while} loop

\begin{verbatim}
t=0.0
deltat=0.01
while ball.pos.y > -0.001:
    rate(25)
    ball.pos = vector( ball.velocity.x*t, \
                     -0.5*g*t**2+ball.velocity.y*t, 0.0 )
    t = t + deltat
\end{verbatim}

controlled by the \textit{y} position of the ball to update the velocity. In addition, the statement \texttt{rate(25)} controls the speed of the animation by specifying that a delay of at least $1/25 = 0.04$ s occur before the next frame is displayed.\footnote{The delay will, of course, be longer if the processing of the loop requires more than 0.04 s.} In each cycle through the loop, the position of the ball is updated to the new time. With each update of the position by the program, the display on the screen is automatically updated. A complete listing of this program \texttt{projectile.py} is presented in Section 5.E.

Once \texttt{projectile.py} has been stored in an accessible directory, the program can be run in PYTHON 3 in any of at least three ways, specifically by

- opening the program in the IDLE \texttt{Edit} window and
  - selecting ‘Run Module’ from the Run menu in that window or
  - making that window the active window and typing \texttt{F5} on the keyboard,
- setting the default directory in a command window to the operating system to the directory containing \texttt{projectile.py} and entering the statement \texttt{python projectile.py}, or
- setting the directory in the Python Shell to the directory containing \texttt{projectile.py} (See Section 5.16.1) and typing the command \texttt{exec(open('projectile.py').read())}
at the PYTHON 3 prompt.

We have here barely scratched the surface of the capabilities of VPYTHON. Numerous objects can be introduced into the scene.\footnote{See footnote 108.} One can add buttons and sliders to the graphical display window. Further enumeration and illustration of these capabilities and many others is beyond the scope of this book.\footnote{More complete details can be found at any of several on-line references, including documentation and examples from links at the URL \texttt{www.vpython.org}.}

\section{Advanced Graphing Features}

\subsection{Mathematical Symbols and Greek Characters}

As illustrated in Fig. 5.5 and the associated PYTHON code, subscripts and italicized characters in text displayed on the screen can be produced by placing the characters to be so-represented in \LaTeX\ mode, e.g., \texttt{$\sin(\theta)$} and \texttt{$z$}, in the character strings creating those textual displays. PYTHON also recognizes the names of major mathematical functions and Greek letters placed in \LaTeX\ mode, though any backslash characters must be “escaped” by duplicating them, e.g., \texttt{'$\sin(\theta)$'}.\footnote{Alternatively duplicating backslashes in the character string can be avoided by preceding the string with the character \texttt{r}, e.g., \texttt{r'...\sin(\theta)...'}.\footnote{This inclusion tells the PYTHON interpreter to pass the character string literally to the construction of the display.}}
5.15. ADVANCED GRAPHING FEATURES

Figure 5.26: Space curve of a charged particle moving in a constant magnetic field along the $z$ axis.

5.15.2 Space Curves

Sometimes it is desirable to view the trajectory of a particle in three-dimensional space. PYTHON has the ability of taking vectors of the $x$, $y$, and $z$ coordinates of points on a three-dimensional path, projecting these points onto the two-dimensional screen, and then connecting consecutive points with lines. To illustrate this feature, consider the equations

$$x = \cos t \quad ; \quad y = \sin t \quad ; \quad z = \alpha t$$

where $\alpha$ is a constant, describing the trajectory of a charged particle moving in a constant magnetic field directed along the $z$ axis. The starting point is, of course, to evaluate $x$, $y$, and $z$. Then, we invoke the function plot3 (not to be confused with the plain vanilla function plot) to plot the graph. The statements

```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
t = np.linspace(0.0,30.0,201)
alpha = 0.5;
x = np.cos(t); y = np.sin(t); z = alpha*t
fig=plt.figure()
ax=plt.axes(projection='3d')
ax.set_xticks([-1.0,-0.5,0.0,0.5,1.0])
ax.set_yticks([-1.0,-0.5,0.0,0.5,1.0])
ax.set_zticks([0,5,10,15])
ax.plot(x,y,z,linewidth=2,color='black')
plt.show()
```

will produce the graph in Fig. 5.26.

5.15.3 Using Multiple Windows

PYTHON allows for the simultaneous presence of two or more separate windows on the screen. For example, the simple coding
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.0,10.0,101)
y1 = np.cos(x); y2 = np.sin(x)
fig1=plt.figure(1)
fig2=plt.figure(2)
ax1 = fig1.add_subplot(111)
ax1.plot(x,y1, linewidth=2, color='black')
ax1.set_title('$x$ versus $\cos(x)$', fontsize=14)
ax2 = fig2.add_subplot(111)
ax2.plot(x,y2, linewidth=2, color='black')
ax2.set_title('$x$ versus $\sin(x)$', fontsize=14)
plt.show()

will create two separate figures internally and then display them in separate windows in response to the statement plt.show(). Essentially, to display multiple windows, one needs to create all of them internally and then display them with a single invocation of plt.show().

5.15.4 Scaling so Circles are Circles

Drawing circles that look like circles requires extra care in the specification of the axes, especially if the default coordinate ranges are different. Either with plt.axis or ax.axis (if the axis name ax has been defined), the relationship between the two axes in a 2D graph can be set, among others, to\textsuperscript{114}

- auto, which accepts the default aspect ratio for the plot window and scales each axis to embrace the data presented,
- equal, which accepts the default aspect ratio for the plot window but also sets the scaling on each axis so that equal coordinate increments correspond to equal lengths on the axes,
- square, which sets the aspect ratio so that the plot window is square and, if necessary, extends the range on each axis so that equal coordinate increments correspond to equal lengths on the axes, and
- tight, which accepts the default aspect ratio for the plot window and sets the limits on each axis so that there is little or no extra space around the graph.

To expose the differences among these options, we execute the statements shown in Table 5.7 to produce the display shown in Fig. 5.27. Notice that only the specifications equal and square create circles that appear as circles.

5.15.5 Customizing Axes

In PYTHON-generated graphs, a box around the graph will by default be generated, tick marks will be provided on each axis, and labels will be placed at the tick marks. For example, the simple unembellished coding listed on the left in Table 5.8 produces a 2D graph of the sine curve enclosed in a box with labeled tick marks along the left and bottom edges but no grid and the coding on the right produces a 3D graph of a displaced 2D membrane with grided, shaded planes on the left, back, and bottom sides of the graph and labels on all three coordinate axes.

The PYTHON module matplotlib.pyplot makes available several ways to modify the axes. The statement(s)

\textsuperscript{114} Additional options include off and on.
5.15. ADVANCED GRAPHING FEATURES

Table 5.7: Coding to illustrate making circles circles.

```python
import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0.0, 2.0*np.pi, 101)
y = np.sin(t)
x1 = np.cos(t) + 1.25; x2 = x1 - 2.5

fig, (ax1, ax2), (ax3, ax4) = plt.subplots(2, 2)
fig.subplots_adjust(hspace=0.35)
ax1.plot(x1, y, color='black')
ax1.set_title('Axis auto', fontsize=14)
ax2.plot(x1, y, color='black')
ax2.set_title('Axis equal', fontsize=14)
ax2.axis('equal')
ax3.plot(x1, y, color='black')
ax3.set_title('Axis square', fontsize=14)
ax3.axis('square')
ax4.plot(x1, y, color='black')
ax4.set_title('Axis tight', fontsize=14)
ax4.axis('tight')
plt.show()
```

Figure 5.27: The effect of different axis configurations.
Table 5.8: Coding to produce 2D and 3D graphs with default axis positions.

```python
In 2D
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.0,10.0, 101)
y = np.sin(x)
plt.plot(x,y)
plt.show()
```

```python
In 3D
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
xx = np.linspace(0.0,1.0,33)
yy = np.linspace(0.0,1.0,33)
x, y = np.meshgrid(xx, yy)
z = np.sin(2.0*np.pi*x) * np.sin(3.0*np.pi*y)
fig=plt.figure()
ax = fig.add_subplot(111, projection='3d')
a.plot_surface(x, y, z, color='white',
edgecolor='black')
plt.show()
```

- `plt.box('off')` added by itself in the 2D code above turns off the box around the graph but leaves the tick marks and their labels; added by itself in the 3D code, it has no effect.

- `plt.axis('off')` added by itself in the 2D code above turns off the box and the tick marks and labels, leaving the graph alone; added by itself in the 3D code above it turns off the tick marks, the labels, and the grid, shaded planes, leaving the graph alone.

- `plt.[x|y]ticks( [List of Values] )` added by themselves in the 2D code above will specify the coordinate values at which tick marks are to be placed. If the lists are both empty, tick marks and labels will be suppressed altogether. Whether the lists are empty or not, the box will remain.

- `ax.set_[x|y|z]ticks( [List of Values] )` added by themselves in the 3D code above will specify the coordinate values at which tick marks are to be placed and labeled. If the lists all empty, tick marks and labels will be suppressed altogether. Whether the lists are empty or not, the shaded planes will remain.

As a more specific example, suppose we wanted to create a graph of \( y = \sin(x) \) over the interval \( 0 \leq x \leq 10 \) with the labeled \( y \)-axis drawn at \( x = 0 \) and the labeled \( x \)-axis drawn at \( y = 0 \). The coding, shown in Table 5.9, is a bit tedious because we have to take responsibility for almost every little detail. The resulting graph is shown in Fig. 5.28.

### 5.15.6 Alternative Specifications of Color

In all previous examples, we have severely limited the colors used. Almost everywhere that the keyword `color` is used in commands in `matplotlib`, the color can be specified with

- one of `'blue'`, `'green'`, `'red'`, `'cyan'`, `'magenta'`, `'yellow'`, `'black'`, and `'white'`.

- one of `'b'`, `'g'`, `'r'`, `'c'`, `'m'`, `'y'`, `'k'`, and `'w'`,

- an RGB tuple, e.g., \((0.1, 0.3, 0.5)\), where the three values specify the amount of red, green and blue, respectively. All values must be in the range from zero to one. Here, \((0.0,0.0,0.0)\) corresponds to black, \((0.5,0.5,0.5)\) corresponds to a gray, and \((1.0,1.0,1.0)\) corresponds to white.

---

\(^{115}\)The symbol | is the standard symbol for 'or'. Thus, `[x|y]ticks` conveys either `xticks` or `yticks`. 
5.15. ADVANCED GRAPHING FEATURES

Table 5.9: Coding to produce graph of \( \sin(x) \) vs. \( x \).

```python
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.0, 10.0, 101)
y = np.sin(x)
plt.plot(x, y, color='black', linewidth=3)
plt.axis('off')
plt.axhline(y=0, color='black')
plt.axvline(x=0, color='black')
plt.hlines([-1.0, -0.5, 0.0, 0.5, 1.0], -0.3, 0.3, colors='black')
plt.vlines([0.0, 2.5, 5.0, 7.5, 10.0], -0.05, 0.05, color='black')
plt.text(10.5, -0.1, 'x', fontsize=14)
plt.text(-1.5, 0.5, '$\sin(x)$', fontsize=14, rotation='vertical')
plt.text(-1.0, -1.02, '-1.0')
plt.text(-1.0, 0.98, '1.0')
plt.text(4.8, 0.1, '5.0')
plt.text(9.7, 0.1, '10.0')
plt.title('Graph of $\sin(x)$ vs. x', fontsize=16)
plt.show()
```

Figure 5.28: Graph of \( \sin(x) \) vs. \( x \).

- a hexadecimal RGB string, e.g., '#RRGGBB', where the three values RR, GG, and BB specify the amount of red, green, and blue, respectively. Each R, each G, and each B must be a hexadecimal digit between 0 and F. Here, '#FFFFFF' corresponds to white, '#0F0F0F' corresponds to a gray, and '#000000' corresponds to black. The specification is case-insensitive.

Many other specifications are supported.\textsuperscript{116}

\textsuperscript{116} See the URL matplotlib.org/users/colors.html for greater detail.
5.15.7 Interactive Plotting

In some contexts, you may not wish to wait until an entire graphical display has been constructed before seeing any of that display on the screen, i.e., you may wish to unblock the default PYTHON behavior that waits for the statement \[ \text{plt.show()} \] before displaying anything. Many—though not all—PYTHON backends admit the statement \[ \text{plt.ion()} \] to turn on interactive mode. Once this statement has been executed with a background that supports interactive mode, the effect of each subsequent plotting statement is rendered immediately in the on-screen display. Thus, for example, if you execute the coding

```python
import matplotlib.pyplot as plt
import numpy as np
plt.ion()
x=np.linspace(0, 10, 101)
y=np.cos(x)
plt.plot(x,y)
plt.xlabel('x', fontsize=16)
plt.ylabel('cos(x)', fontsize=16)
```

each component of the display will be added to the display as the corresponding statement is executed. Note that the statement \[ \text{plt.show()} \] has not been invoked. If you continue from the above with the statements

```python
plt.figure(2)
plt.plot(x,y,color='black', linewidth=3)
```

a second set of axes will be displayed on the screen and a blacker and thicker graph of the cosine function will appear.

Interactive plotting will be turned off by executing the statement \[ \text{plt.ioff()} \]. The PYTHON prompt will return and additional statements can be submitted for execution. Any graphs created, however, will remain on the screen until they are manually removed.

This very brief discussion merely alerts you to a possibility. Many refinements, including the possibility of substituting an alternative backend for the default, are described in the PYTHON manuals or can be discovered by creative exploration.

5.16 Miscellaneous Occasionally Useful Tidbits

5.16.1 Find, Change Current Directory

Access from within PYTHON to a variety of operating system commands is provided by modules in the module \text{os}, which is imported with a statement like

```python
import os
```

Once this module has been imported, the following commands—among many others—provide frequently used actions:

\[ ^{117} \text{We assume that the statement import matplotlib.pyplot as plt has been executed.} \]

\[ ^{118} \text{You can find out the backend in use in your environment by typing the statement plt.get_backend().} \]

\[ ^{119} \text{You can determine if interactive mode is functioning by executing the two statements import matplotlib; matplotlib.is_interactive() after the statement plt.ion() has been executed.} \]

\[ ^{120} \text{Caution: Interactive mode will work only in the PYTHON command window. It is not available in the PYTHON Shell (IDLE).} \]
• `print(os.getcwd())`—report the current directory.

• `os.chdir('Path')`—change the current working directory to the directory identified by `Path`. In defining the path, forward slashes can be used to separate consecutive directories even if the native character for your operating system is not the forward slash.

• `os.system('OSCommand')` invokes the system command `OSCommand`.

• `os.listdir('Path')`—displays in the PYTHON window a list of all files in the directory identified by `Path`. Unfortunately, the list is hard to read because it sprawls across the entire screen; individual entries are not displayed in their own lines. If the module `numpy` has been imported, an easier-to-read listing would be created by the statement

\[
\text{print(numpy.array(os.listdir('Path')))}
\]

Many more features are provided in the `os` module.\(^\text{121}\)

### 5.16.2 Setting the Search Path

In searching for a specified file or module, PYTHON searches in the directories contained in its `search path`, which is set when PYTHON is launched by default or, perhaps, by statements in an initialization file—see Section 5.16.3—created by the user. To find out the search path or modify it, one must start by importing the `sys` module with the statement

```python
import sys
```

Once this module is available, either of the statements `sys.path` or `print(sys.path)` will display a (more or less illegible) list of directories through which PYTHON searches to find a requested item. A more transparent listing is produced with either of the statements

```python
for p in sys.path: print(p) # or print(\n'.join(sys.path))
```

These statements, however, omit the first item in the illegible renditions of the search path. Specifically, the item `' '`, which stands for the current directory, is always at the head of the path.\(^\text{122}\) Furthermore, because `sys.path` is a list, the `n`-th element in the list can be displayed with the simple statement `sys.path[n]`.

The `sys` module also contains components that will allow you to modify the search path. For example the statement

```python
sys.path.append('Path')
```

will add the specified path at the end of the current path and the statement

```python
sys.version # or print(sys.version)
```

will display the version of PYTHON in use.

The module `sys` also contains the command `sys.getsizeof` for determining how much memory is used by a particular variable. The coding

\(^\text{121}\) See the URL [docs.python.org/2/library/os.html](http://docs.python.org/2/library/os.html).

\(^\text{122}\) If your—or your system manager on your behalf—has defined the environment variable `PYTHONPATH`, then the directories in that path will follow the directory `' ' and precede all the specifically PYTHON directories that are included in the search path.
a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sys.getsizeof(a)
    144
b = 'David M. Cook'
sys.getsizeof(b)
    46

reveals that the list \texttt{a} requires 144 bytes of storage while the character string \texttt{b} requires 46 bytes of storage.

5.16.3 Customizing PYTHON

If you find yourself frequently beginning your sessions with PYTHON by executing the same few statements, maybe importing a few modules, you may find it convenient to create a command file with those several statements, store it in an accessible directory, and define the environment variable PYTHONSTARTUP to point to that file. For example, if you are working in a Windows environment and you

- Create the file \texttt{pythonstart.py} containing the lines
  
  import numpy as np
  import matplotlib.pyplot as plt
  import os
  os.chdir('c:/users/myhome/documents/examples/python')

  or whatever directory is appropriate to your task.

- Store this file in an accessible directory, e.g., \texttt{c:/users/cookd/python} and

- In the command window in which you are working, define the environment variable PYTHONSTARTUP with the statement\footnote{The simple statement \texttt{set} will display a list of all environment variables; the statement \texttt{echo %PYTHONSTARTUP\%} will display only the specified environment variable.}

  \texttt{set PYTHONSTARTUP=C:/users/cookd/python/pythonstart.py}

  the startup file will be found and executed if either PYTHON 2 or PYTHON 3 is launched with the command \texttt{python} from the same command window in which the \texttt{set} command was issued but will not be recognized in any subsequently created command window.\footnote{If you wish to set this environment variable so that it will be automatically created when you log in in any command window, you will need the statement \texttt{setx PYTHONSTARTUP C:\users\cookd\python\pythonstart.py}, though you will have to launch a new command window for this change to take effect.}

  If, instead, you are working in a UNIX environment in a C-shell or T-shell\footnote{The commands are slightly different in other shells. See the manual for the shell you are using or consult with a system administrator.} and the startup file \texttt{pythonstart.py} is stored, for example, in the directory \texttt{/home/cookd/python}, the statement\footnote{The simple statement \texttt{setenv} will display a list of all environment variables; the statement \texttt{echo $PYTHONSTARTUP} will display only the specified environment variable.}

  \texttt{setenv PYTHONSTARTUP /home/cookd/python/pythonstart.py}

  will establish that environment variable for use in the current command window. Subsequently, the startup file will be found and executed if either PYTHON 2 or PYTHON 3 is launched with the
command `python` from the same command window in which the `setenv` command was issued but will not be recognized in any subsequently created command window.\footnote{If you wish to set this environment variable so that it will be automatically created when you log in in any command window, you place the command setting the environment variable in the `.cshrc` file in your home directory.}

In none of the above cases in Windows or UNIX will the startup file be found if PYTHON 2 or PYTHON 3 is launched by issuing the command `idle` at a command prompt or by clicking ML on the IDLE (Python GUI) icon, i.e., if you bring up the Python Shell in any way. Further, routes to arrange for that file to be executed automatically when the Python Shell is launched appear to be cumbersome. The easiest route to customize the Python Shell is to execute that startup file from the PYTHON prompt using the command `execfile` (PYTHON 2) or `exec` (PYTHON 3).\footnote{See Sections 5.6.1, 5.7.2, 5.7.3, 5.14.2, 5.14.3, and 5.14.4.}

Note also that, through the item ‘Configure IDLE’ in the the OPTIONS menu in the Python Shell, you can adjust the behavior of that shell. In the several tabs in that menu, one can select the font, the font size, bold font, the size of PYTHON required indents, the colors for highlighting various components of the on-screen text, and many other behaviors. In particular, in the GENERAL tab, you can, among other options, (1) specify whether the Edit window or the Shell window is to be launched when IDLE is launched and (2) specify whether when you run a file from the Edit window you should be prompted to save the file if it has not been saved.

The module `matplotlib` can also be customized in a variety of ways. If, for example, you tire of repeatedly typing the keywords `linewidth` and `fontsize`, you can customize these features of all subsequent graphs by executing the statements\footnote{With `mpl` defined as here, the statement `mpl.rcParams` will display a list of all—almost 300—of the adjustable parameters in the dictionary-like variable `mpl.rcParams` along with the current value of each. The statement `mpl.rcdefaults()` will restore all default parameters.}:

```python
import matplotlib as mpl
from cycler import cycler
mpl.rcParams['lines.linewidth']=4
mpl.rcParams['xtick.labelsize']=16
mpl.rcParams['ytick.labelsize']=16
mpl.rcParams['axes.titlesize']=20
mpl.rcParams['axes.prop_cycle']=cycler('color', ['r'])
```

Most easily, statements can be

- entered individually and interactively at a PYTHON prompt, either in the CLI or in the Python Shell, or
- incorporated in a file of your chosen name, stored in an accessible directory, and executed at a PYTHON prompt with the command `execfile` (PYTHON 2) or `exec` (PYTHON 3),\footnote{Color adjustments is complicated and requires the function `cycler` from the module `cycler`. Adjusting `axes.prop_cycle` can specify a single color or the cycle of colors through which overlayed graphs will pass.}

Alternatively (though this route is more complicated), you can copy the file `matplotlibrc` from the directory in which PYTHON itself is stored,\footnote{You can find the location of the standard `matplotlibrc` file by importing `matplotlib` as `mpl` and then executing the statement `print( mpl.matplotlib_fname() )`.} edit that file to reflect the desired adjustments, and store it in a file named `matplotlibrc` in

- the directory from which you will launch PYTHON in a command window to the operating system,
- the directory pointed to by the environment variable `MATPLOTLIBRC` (which must, of course, be defined), or
• a user-specific subdirectory (usually .config/matplotlib in the UNIX world and .matplotlib on other platforms) in the user’s home directory.

In this case the configuration file will be found automatically but only if PYTHON is launched in a command window to the operating system; it will not be found if the Python Shell is launched by clicking on an icon or by a command to the operating system.\textsuperscript{133}

5.16.4 Restoring PYTHON’s Initial State

The simplest way to restore PYTHON’s initial state is to exit from and then re-launch PYTHON, and this approach will always work, however you started PYTHON in the first instance. Of course, with a restart, PYTHON is returned to its fresh-start state; nothing from your previous activity survives the restart.

If you are creating code in the PYTHON Edit window, PYTHON will be automatically restarted every time you select ‘Run Module’ from the Run menu in the Edit window or, alternatively, whenever you type (F5) when the Edit window is active. Again, nothing from the previous execution of your code survives the restart, and everything needed must be explicit in the code on which you are working.

Suppose, on the other hand, you are working directly and interactively in the Python Shell. Instead of exiting and re-launching PYTHON, you can select ‘Restart Shell’ from the SHELL menu along the top of the window (or type (CONTROL-F6)). Yet again, nothing from your previous activity survives the restart.

Finally, if you execute a PYTHON program directly from the prompt in a shell of the operating system with a statement like

\begin{verbatim}
python standingwave.py
\end{verbatim}

control will be returned automatically to the operating system when the program is completed, and PYTHON will be started afresh with each new command to the operating system.

5.16.5 Reading Data from the Keyboard

The simple command input in a PYTHON program requests input from the keyboard at execution time. In PYTHON 2, the general structure of a statement utilizing this command is

\begin{verbatim}
Variable(s) = input( ‘Prompt: ’ )
\end{verbatim}

The format of the input is dictated by the nature of the specified variables. For example, the statement

\begin{verbatim}
a = input( ‘Enter a value: ’ )
\end{verbatim}

will expect a single quantity to be entered, though that quantity may be a string, a numeric value, a tuple, a list, a logical value, a logical condition, and perhaps many other entities. In PYTHON 2, the data type of the variable \textit{a} will be fixed dynamically, depending on the data type of the entered quantity. Further, in PYTHON 2, the statement

\begin{verbatim}
a,b = input( ‘Enter two values, separated by a comma: ’ )
\end{verbatim}

\textsuperscript{133} See the URL matplotlib.org/users/customizing.html for greater detail on the topic of this paragraph.
will request input of two values, each of which can have any available data type.

In PYTHON 3, only a single variable can be returned and the general structure of a statement utilizing this command is

\[
\text{Variable} = \text{input( 'Prompt: ' )}
\]

In PYTHON 3, only one variable can be input and the value input, even if it has several components separated by commas or spaces, will be stored initially as a single string which must be parsed and converted if necessary.\(^{134}\) In any given context, it is prudent to include in the prompt a stipulation of the data expected as input.

5.16.6 Error Trapping

In order to avoid unanticipated problems, it may sometimes be wise to trap invalid entries and give the user an opportunity to enter a valid entry before moving on to the remainder of the program. For example, in PYTHON 2, if an integer is needed, the coding

\[
a = \text{'string'}
\]

while isinstance( a, int )==False:
   a = input( 'Please enter an integer: ')

will ask for an integer and ask repeatedly until an integer is provided. The loop is primed by setting a equal to a non-integral value.

The coding just presented works in PYTHON 2 because the data type of the value entered for \(a\) is dynamically set. In PYTHON 3, the output from an \text{input} statement is always typed as a string, so the loop above will run forever and never terminate, even if something that looks like an integer is entered.\(^{135}\) A better route in PYTHON 3 involves exploiting the \text{try/except} control structure. For example, the coding\(^{136}\)

\[
a = \text{None}
\]

while a == None:
   try:
      a = int(input("Please enter an integer: "))
   except ValueError:
      print("Error: You must enter an integer!")

creates a loop that asks for an integer, tests if an integer is actually entered, and smoothly asks for another entry if the first entry fails that test (and displays only the user-supplied messages). Once the test is satisfied, the loop terminates with the proper value assigned to the variable \(a\). This coding will also work in PYTHON 2, though entry of a floating value will truncate that value to the highest integer not exceeding that value and succeed.

5.17 References

Beyond the links enumerated in Section 5.8, numerous resources are available to supplement those identified in Section 5.8. Searching for the specific item of interest in your favorite web browser will

---

\(^{134}\)See the PYTHON attribute \text{split} encountered first in Section 5.6.2.

\(^{135}\)Entering 3 will set \(a\) to the string ‘3’.

\(^{136}\)\text{ValueError} is one of the types of error that can be tested. Others include \text{IOError}, \text{ImportError}, \text{EOFError}, and \text{KeyboardInterrupt}. Using \text{except} without any error type will trap all errors.
likely generate useful links. For example, searching in your browser for 'lists in PYTHON', 'array in numpy', 'fontsize in PYTHON', and 'subplots in matplotlib' will generate several hundred thousand hits. Going to www.bn.com or www.amazon.com and searching for book titles containing 'PYTHON' or 'NUMPY' or 'MATPLOTLIB' will yield an overwhelming number of hits, the first couple dozen or so of which may well be worth considering. The websites

- www.python.org—the PYTHON home site, which provides full information about PYTHON and, in particular, has a link to a huge volume of official PYTHON documentation.
- docs.python.org/?/tutorial/index.html, where ? = 2 or 3, points you to the official PYTHON tutorial.
- www.numpy.org—the numpy home site, which provides full information about numpy.
- docs.scipy.org/doc/, which contains links to many documents describing numpy and its features.
- matplotlib.org/—the matplotlib home site, which provides full information about matplotlib and, in particular, has links to tutorials and documents in a band near the top of the page.
- www.tutorialspoint.com/python/python basic syntax.htm, which links to a third-party site with a variety of elementary tutorials focused, unfortunately, on an older version of PYTHON.

Searching your desired information on the web may well be more efficient than trying to track it down in the official manuals provided by the suppliers of PYTHON and its modules.

Several links to URLs providing information on more narrow topics have been included in footnotes 14, 21, 31, 35, 66, 80, 85, 93, 94, 108, 112, 116, 121, and 133, in Table 5.6, and at the end of Sections 5.14.1, 5.14.4, and 5.16.1.

5.18 Exercises

5.18.1 Writing PYTHON Statements

5.1. Write and test PYTHON statements to create (a) a five-element column array, (b) an 8 x 8 unit matrix, and (c) a 10 x 10 matrix all of whose elements are zero except those on the main diagonal (which are all 2) and those on the diagonals just above and just below the main diagonal (which are all -1). Search for a route more efficient than laboriously setting each of the 100 elements in the 10 x 10 matrix individually.

5.2. Look up the attribute sort and the command sorted in the PYTHON manuals. Then, create a list of your choice and test the use of sort and sorted, following the pattern illustrated in the documentation. Finally, write in your own words a brief description of what sort and sorted do, and make clear the distinction between the two.

5.3. The scipy.linalg module, which may or may not be installed in your version of PYTHON, includes the command scipy.linalg.lu that will effect a lower-upper (LU) decomposition of a square matrix, i.e., recast a single matrix A as the product LU, where L is a matrix all of whose elements above the main diagonal are zero and U is a matrix all of whose elements below the main diagonal are zero. More specifically, the equation $AX = B$ becomes

$$LUx = b \implies \begin{pmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

(5.20)
Once we have the LU decomposition in hand, we (1) rename $Ux$ to $y$, (2) solve $Ly = b$ for $y$ (which is easy by backsubstitution, since the first row of $Ly = b$ tells us $y_1 = b_1$, the second row then tells us that $L_2(y_1 + y_2 = b_2, \ldots$), and then we solve $Ux = y$ by a similar approach. Look up the commands `scipy.linalg.lu_factor` and `scipy.linalg.lu_solve` in the PYTHON manuals, and then use the process described therein to solve the linear equation solved by other means in Section 5.3.7.

5.4. Describe and test a sequence of PYTHON statements that uses a `for` loop to evaluate the dot product of two one-dimensional $n$-component arrays $a$ and $b$. In essence, you will have to initialize a variable to zero and then, in the loop, successively add to that variable each of the products $a[i]*b[i]$ in turn.

5.5. (a) Describe and test a sequence of PYTHON statements that uses a `for` loop to evaluate $\sum a_i$ when the values of $a_i$ are supplied as the elements of a list $a$. In essence you will have to initialize a variable to zero and then, in the loop, successively add to that variable each of the elements $a_i$ in turn. (b) Describe and test a sequence of PYTHON statements that uses the function `numpy.sum` to achieve the same end. (c) Test whether the procedure used in (b) for a list also works for a one dimensional array. (c) Explore and then describe the behavior of the function `numpy.sum` when it is applied to a list of lists. Explain the difference between the statements `numpy.sum(a)`, `numpy.sum(a, axis=0)`, and `numpy.sum(a, axis=1)` when applied to an array $a$ containing three rows and four columns.

5.6. Write and test a PYTHON `function` that accepts two one-dimensional three-component lists or arrays as input and returns a one-dimensional three-component list or array containing the cross product of the two input arguments. Verify that your function properly reflect as the fact that $A \times B = -B \times A$.

5.7. The Fibonacci numbers are generated by picking two starting values and then adding values successively, where each added value is generated by adding the previous two values, e.g., the list $[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]$ shows the first several Fibonacci numbers when the first two are both 1. Write a program that asks for the first two numbers and the ultimate length of the desired list and then calculates and displays the corresponding Fibonacci sequence. See `math.temple.edu/~reich/Fib/fibo.html` for a fascinating discussion of the significance of Fibonacci numbers.

5.18.2 Finding Eigenvalues and Eigenvectors

5.8. Using `numpy.linalg.eig` for the main calculation, write and test a `function` that accepts a symmetric matrix as input and returns a single matrix, each column of which contains an eigenvalue as its first element and the associated eigenvector as its remaining elements.

5.9. Find the eigenvalues and eigenvectors for each of the following matrices:

(a) 

\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

(b) a $10 \times 10$ matrix with zeroes everywhere except that all elements on the main diagonal have the value 2.0 and all elements on the sub and superdiagonals have the value −1.0. To create the matrix, design a method more efficient than laboriously setting each of the 100 elements in the $10 \times 10$ matrix individually.

(c) Identify the five eigenvectors in part (b) belonging to the lowest five eigenvalues and, for each, plot a graph whose vertical coordinate is the component of the eigenvector and whose horizontal coordinate is the component number. Actually, in the underlying physical context, it would be more appropriate to plot graphs of the result of augmenting these eigenvectors
by placing an element 0.0 both before the first element and after the last element in the
eigenvector. If, for example, the eigenvectors are in the columns of evcs, then the statements

\[
y = \text{numpy.append}(\text{[0.0]}, \text{evcs[:,6]})
y = \text{numpy.append}(\text{y, [0.0]})
\text{matplotlib.pyplot.plot}(\text{y})
\]

would plot the requested graph for the sixth column of evcs—though you should try to
improve the appearance of the plot by tampering with the scales, adding labels, . . . . In
particular, the statements

\[
x = \text{numpy.linspace}(0.1, 1.0, 12)
\text{matplotlib.pyplot.plot}(\text{x, y})
\]

will produce a graph whose horizontal axis is more suitably labeled. In such a display, you
should see something close to the lowest several modes of a vibrating string fixed at both ends!

(d) (Optional) Repeat parts (b) and (c) but with a similarly constructed matrix that is 50 \times 50.

5.10. When a (weak) constant external electric field of magnitude \( F \)—we reserve \( E \) for energy in this
exercise—is imposed on a hydrogen atom, the energies of the states with principal quantum number
\( n \) shift from the energies given by the Bohr model by amounts determined by the eigenvalues of the
matrix whose elements are \( \langle n|eFz|m'\rangle \), where \( l, m, l', \) and \( m' \) range over all possible values
of those quantum numbers allowed by the particular value of \( n \). If the states by which the rows
and columns are labeled are ordered \( |2,0,0\rangle, |2,1,-1\rangle, |2,1,0\rangle, \) and \( |2,1,1\rangle, \) then the matrix for
the state \( n = 2 \) is

\[
3eaaF = \begin{pmatrix}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

where \( e \) is the magnitude of the charge on the electron and \( a_0 \) is the Bohr radius. Similarly, if the
states by which the rows and columns are labeled are ordered \( |3,2,2\rangle, |3,1,1\rangle, |3,2,1\rangle, |3,0,0\rangle,
|3,1,0\rangle, |3,2,0\rangle, |3,1,-1\rangle, |3,2,-1\rangle, \) and \( |3,2,-2\rangle, \) then the matrix for the state \( n = 3 \) is

\[
3eaaF = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -9/2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -3\sqrt{6} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -9/\sqrt{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

Find the eigenvalues and eigenvectors of these matrices. The eigenvalues give the energy shifts for
the Stark effect for \( n = 2 \) and \( n = 3 \) and the eigenvectors give the linear combinations of the base
states (i.e., the states in the absence of the external field) out of which the states in the presence
of the field emerge as the field is turned on.

5.18.3 Graphing Scalar Functions of a Single Variable

5.11. Create and test a sequence of PYTHON statements that will produce a graph that is similar to
Fig. 5.6 except that the axes are drawn along the lines \( y = 0 \) and \( x = 0 \).

5.12. (a) Create a vector of 201 elements whose values range from \(-10.0\) to \(10.0\) in equal steps, (b) obtain
a graph of the function

\[
y(x) = \frac{x}{a + b(x - c)^2}
\]

over the interval \(-10.0 \leq x \leq 10.0\) with \(a = 1.0\), \(b = 2.0\), and \(c = 1.0\), (c) explore the way the
function depends on the three parameters \(a, b,\) and \(c\), and (d) write a paragraph describing that
behavior in words.
5.13. Consider a circular disk of radius \( a \) lying in the \( xy \) plane with its center at the origin. If the disk carries a uniform charge on its surface, the electrostatic potential at the point \( (0,0,z) \) on the axis of the disk is given by
\[
V(z) = E_0 \left[ \sqrt{a^2 + z^2} - |z| \right]
\]
where \( E_0 \) is a constant. Obtain a graph of \( V(z)/(E_0 a) \) versus \( z/a \).

5.14. The voltage drop across an initially uncharged capacitor in a series RC circuit that is connected at time \( t = 0 \) to a battery is given by the expression
\[
V(t) = V_0 \left( 1 - e^{-t/RC} \right)
\]
Obtain a family of graphs showing \( V(t)/V_0 \) versus \( t \) for various values of \( RC \), and write a paragraph describing these graphs.

5.15. In a Fabry-Perot interferometer, a very large number of waves, each out of phase with the previous one by an amount \( \delta \) and reduced in amplitude by a factor \( r \), \( 0 \leq r < 1 \), interfere. The resulting intensity is proportional to the expression
\[
I(\delta) = \frac{1}{1 - 2r \cos \delta + r^2}
\]
Obtain graphs of \( I(\delta) \) versus \( \delta \) for various values of \( r \), and write a paragraph describing these graphs.

5.16. The thin lens equation
\[
\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}
\]
relates object distance \( s \), image distance \( s' \), and focal length \( f \). Here, \( s > 0 \) for an object to the left of the lens, \( s' > 0 \) for an image to the right of the lens, and \( f > 0 \) for a converging lens. With \( s \) ranging from large positive to large negative values, obtain graphs of \( s' \) versus \( s \) for various values of \( f \) (both positive and negative), and write a paragraph describing these graphs.

5.17. According to the special theory of relativity, the mass \( m \), the momentum \( p \), and the kinetic energy \( K \) of a particle moving with speed \( v \) are given in terms of the rest mass \( m_0 \) and the speed of light \( c \) by the equations
\[
m = \frac{m_0}{\sqrt{1 - \beta^2}} \quad ; \quad p = \frac{m_0 v}{\sqrt{1 - \beta^2}} \quad ; \quad K = \frac{m_0 c^2}{\sqrt{1 - \beta^2}} - m_0 c^2
\]
where \( \beta = v/c \). Obtain graphs of \( m/m_0 \), \( p/m_0 c \), and \( K/m_0 c^2 \) versus \( \beta \), superimposing on each a graph of the corresponding non-relativistic expression, and write a paragraph describing these graphs.

5.18. In a vacuum, the transmission and reflection coefficients \( T \) and \( R \) of a dielectric film of thickness \( d \) and index of refraction \( n \) are given by the equations
\[
T = \frac{4n^2}{4n^2 + (n^2 - 1)^2 \sin^2(\kappa d)} \quad ; \quad R = \frac{(n^2 - 1)^2 \sin^2(\kappa d)}{4n^2 + (n^2 - 1)^2 \sin^2(\kappa d)}
\]
where \( \kappa = 2\pi n/\lambda \) and \( \lambda \) is the wavelength of the wave in vacuum. Obtain graphs of \( T \) and \( R \) versus \( \lambda/d \) for various values of \( n \) and write a paragraph describing these graphs. \textbf{Warning:} Don’t try plotting too close to \( \lambda = 0 \) since the function \( \sin(\kappa d) \) gives trouble at that point.

5.19. Consider two circular disks, each of radius \( R \), located with their centers on the \( z \) axis such that their planes are parallel to the \( xy \) plane. Let the first disk have its center at the point \( (0,0,b/2) \) and the second at the point \( (0,0,-b/2) \) so that the disks are separated by a distance \( b \) (\( b > 0 \)) and the origin is halfway between them. If the top disk carries a uniform, constant charge density \( \sigma \) and the bottom disk carries a uniform, constant charge density \(-\sigma\), the electrostatic potential at the point \( (0,0,z) \) is given by
\[
V(z) = \frac{\sigma}{2\epsilon_0} \left[ \sqrt{R^2 + \left( z - \frac{b}{2} \right)^2} - \left| z - \frac{b}{2} \right| - \sqrt{R^2 + \left( z + \frac{b}{2} \right)^2} + \left| z + \frac{b}{2} \right| \right]
\]
Obtain graphs of $V(z)/(\sigma R/2\epsilon_0)$ versus $z/R$ for various values of $b/R$ and write a paragraph describing these graphs.

5.20. Using data from an experiment you have performed, create a suitable ASCII text file, read the data into PYTHON, and produce a graph showing the data, error bars, and a theoretical curve. Label the graph completely.

5.21. Journal articles often contain graphs showing data taken by several different scientists regarding the same relationship, with each experimentalist’s contribution marked with a different symbol. Describe a PYTHON procedure to produce such a graph and, if you have suitable data available (or if you can invent some), demonstrate that your procedure works.

5.22. When a photon of initial energy $E_0$ undergoes Compton scattering with an atom of mass $m$ and is scattered by an angle $\theta$, the energy of the photon is reduced to

$$E(\theta) = \frac{E_0}{1 + \xi(1 + \cos \theta)}$$

where $\xi = E_0/mc^2$. (c the speed of light.) Obtain both Cartesian and polar graphs of $E(\theta)/E_0$ versus $\theta$, $-\pi \leq \theta \leq \pi$, for several values of $\xi$, and write a paragraph describing these graphs.

5.23. A charged particle moves along the z axis with speed $v$. When the particle passes through the origin, the magnitude of the electric field produced by the particle is given by the expression

$$E(\theta) = \frac{q}{4\pi\epsilon_0 r^2} \frac{1 - \beta^2}{(1 + \beta^2 \sin^2 \theta)^{3/2}}$$

where $\theta$ is the polar angle of the observation point, $r$ is the radial coordinate at that point, and $\beta = v/c$. (c is the speed of light.) Obtain graphs of $E/(q/4\pi\epsilon_0 r^2)$ versus $\theta$ for various values of $\beta$ on the interval $-\pi \leq \theta \leq \pi$, and write a paragraph describing these graphs.

5.24. The intensity of the interference pattern produced by four slits illuminated by light of wavelength $\lambda$ when each slit is separated from the next by a distance $a$ is given by

$$I(\delta) = \cos^2 \delta (1 + \cos \delta)$$

where $\delta = (2\pi a \sin \theta)/\lambda$. Obtain both Cartesian and polar graphs of $I$ versus $\theta$ on the interval $-\pi/2 \leq \theta \leq \pi/2$ for various values of $\lambda/a$, and write a paragraph describing these graphs.

5.18.4 Graphing Scalar Functions of Two Variables

5.25. The Planck radiation law gives the expression

$$u(\lambda, T) = \frac{8\pi c h}{\lambda^5} \frac{1}{e^{c h / (\lambda k T)} - 1}$$

for the distribution of energy in the radiation emitted by a black body. Here, $c$ is the speed of light, $h$ is Planck’s constant, $k$ is Boltzmann’s constant, $\lambda$ is the wavelength of the radiation, and $T$ is the absolute temperature. Using appropriate dimensionless units, plot this function (a) as a function of $\lambda$ when each slit is separated from the next by a distance $a$ is given by

$$I(\delta) = \cos^2 \delta (1 + \cos \delta)$$

where $\delta = (2\pi a \sin \theta)/\lambda$. Obtain both Cartesian and polar graphs of $I$ versus $\theta$ on the interval $-\pi/2 \leq \theta \leq \pi/2$ for various values of $\lambda/a$, and write a paragraph describing these graphs.
5.26. A solenoid of length $L$ and circular cross-section of radius $a$ lies with its axis along the $z$ axis and its center at the origin. When the solenoid carries a current, the magnetic field at the point $(0, 0, z)$ on the axis of the solenoid is given by

$$B(z) = \frac{1}{2} B_0 \left[ \frac{z + L/2}{\sqrt{a^2 + (z + L/2)^2}} - \frac{z - L/2}{\sqrt{a^2 + (z - L/2)^2}} \right]$$

where $B_0$ is the magnetic field at the center when $a \ll L$, i.e., when the solenoid is effectively infinite in length. Plot graphs showing $B(z)/B_0$ (a) as a function of $z/L$ for various values of $a/L$, (b) as a surface over the $(z/L)(a/L)$ plane, and (c) as a contour over the $(z/L)(a/L)$ plane. Write a paragraph describing these graphs.

5.27. Consider two circular current loops, each of radius $a$ and lying with its center on and its plane perpendicular to the $z$ axis. The first loop is centered at the point $(0, 0, b)$ and the second loop is centered at the point $(0, 0, -b)$. The axial component of the magnetic field at the point $(0, 0, z)$ is given by the equation

$$B(z) = \frac{1}{2} B_0 \left( \frac{a^2 + b^2}{a^2 + (z + b)^2} \right)^{3/2} \left[ \frac{1}{(a^2 + (z + b)^2)^{3/2}} + \frac{1}{(a^2 + (z - b)^2)^{3/2}} \right]$$

where $B_0$ is the magnetic field at the origin. Plot graphs showing $B(z)/B_0$ (a) as a function of $z/a$, (b) as a surface over the $(z/a)(b/a)$ plane, and (c) as a contour over the $(z/a)(b/a)$ plane. Write a paragraph describing these graphs.

5.28. In an LRC circuit of resonant frequency $\omega_0$, the current $I$ is given as a function of frequency $\omega$ by

$$I = \frac{I_0}{\sqrt{1 + Q^2 \left( \frac{\Omega}{\Omega_0} - 1 \right)^2}}$$

where $\Omega = \omega/\omega_0$. Plot $I/I_0$ (a) as a function of $\Omega$ for various values of the quality factor $Q$ and (b) as a surface over the $\Omega Q$-plane. Write a paragraph describing these graphs.

5.29. A spherical potato of radius $a$ is taken from the refrigerator at $0 \, ^\circ\text{C}$ and placed in an oven at $u_0 = 200 \, ^\circ\text{C}$. The temperature $u(r, t)$ at a point a distance $r$ from the center of the potato at time $t$ is given by

$$\frac{u(r, t)}{u_0} = 1 - 2 \sum_{n=1}^{\infty} j_0(\beta_n r/a) e^{-\kappa \beta_n^2 t/(ca^2)}$$

where $\kappa$ is the thermal conductivity of the potato, $c$ is its heat capacity per unit volume, $j_0(x)$ and $j_1(x)$ are the zeroth- and first-order spherical Bessel functions, and $\beta_n$ is the $n$-th root of $j_0(x)$, i.e., $j_0(\beta_n) = 0$. Obtain graphs of $u(r, t)/u_0$ as a function of $r/a$ for various values of $t$. Obtain also a graph of the temperature $u(0, t)$ at the center of the potato as a function of $t$ and determine how long it takes the potato to bake if, by being baked, one means that the temperature at the center has risen to $175 \, ^\circ\text{C}$, i.e., to a value such that $u(0, t)/u_0 = 0.875$. Hints: (1) Note that

$$j_0(x) = \frac{\sin x}{x} \quad ; \quad j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x}$$

Thus, the $n$-th root of $j_0(x)$ is $\beta_n = n \pi$. (2) Express times in units of $ca^2/\kappa$ but then, taking the radius of the potato to be $a = 0.05 \, \text{m}$ and taking $\kappa$ and $c$ for the potato to be those of water [$\kappa = 0.63 \, \text{J/(m s K)}$, and $c = 4.2 \times 10^6 \, \text{J/(K m^3)}$], determine the unit in which your answers are expressed, both in seconds and in hours. (3) Experiment a bit, but note that the exponential factor decays more rapidly as $n$ increases, so truncation of the infinite series at some point is probably in order.

5.30. At a particular time, a planet of mass $M$ is located at the origin in the $xy$ plane and a moon of mass $M/3$ is located at a point a distance $R$ from the planet on the $x$ axis. The gravitational potential energy of a spaceship of mass $m$ at the point $(x, y, z)$ is then given by

$$V(x, y, z) = \frac{GmM}{\sqrt{x^2 + y^2 + z^2}} - \frac{GmM/3}{\sqrt{(x - R)^2 + y^2 + z^2}}$$
Using PYTHON, obtain surface plots and contour maps of this potential energy in the $xy$ plane (i.e., the plane $z = 0$) and in the planes $z = 0.1R$ and $z = 0.5R$. Suggestion: Recast the function in dimensionless form by measuring $x$, $y$, and $z$ in units of $R$ and $V(x, y, z)$ in units of $GmM/R$.

### 5.18.5 Graphing Scalar Functions of Three Variables

#### 5.31. Following the pattern illustrated in Section 5.12, explore at least one of the three-dimensional scalar fields

$$
p_{3,1,0}(x, y, z) = \frac{8}{(2\pi)^2} \rho^2 \left(1 - \frac{\rho}{6}\right)^2 e^{-2\rho/3} \cos^2 \theta
$$

$$
p_{3,1,1}(x, y, z) = \frac{4}{(2\pi)^2} \rho^2 \left(1 - \frac{\rho}{6}\right)^2 e^{-2\rho/3} (1 - \cos^2 \theta)
$$

$$
p_{3,2,1}(x, y, z) = \frac{3}{(2\pi)^2} \rho^4 e^{-2\rho/3} \cos^2 \theta (1 - \cos^2 \theta)
$$

$$
p_{3,2,2}(x, y, z) = \frac{3}{(2\pi)^2} \rho^4 e^{-2\rho/3} (1 - \cos^2 \theta)^2
$$

giving the probability density for the hydrogen states $(n, l, m) = (3, 1, 0)$, $(n, l, m) = (3, 1, 1)$, $(n, l, m) = (3, 2, 1)$, and $(n, l, m) = (3, 2, 2)$. These fields are expressed in dimensionless form, where $\rho$ is the radial coordinate in units of the Bohr radius. In terms of the Cartesian coordinates $x, y, z$, $\rho = \sqrt{x^2 + y^2 + z^2}$ and $\cos \theta = z/\rho$. Hint: To avoid divisions by zero, recast the expressions in terms of $(x, y, z)$ explicitly before evaluating any of them numerically.

#### 5.32. The (gauge) pressure $p(x, y, z, t)$ inside a cubical box located in the region $0 \leq x, y, z \leq a$ is given by

$$
p(x, y, z, t) = A \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{a} \sin \frac{n\pi z}{a} \cos \omega_{lmn} t
$$

where $l$, $m$, and $n$ are positive integers. Obtain several presentations of the pressure distribution inside this box at $t = 0$ and at $t = \pi/\omega_{lmn}$ for several different values of $l$, $m$, and $n$.

### 5.18.6 Graphing Vector Fields

#### 5.33. Suppose the functions $F_x(x, y)$ and $F_y(x, y)$ give the $x$ and $y$ components of a vector field at the point $(x, y)$ in the $xy$ plane. A very crude algorithm for determining the coordinates of points on the field line that starts at the point $(x_0, y_0)$ would entail the operations

- $x_{old} \leftarrow x_0$, $y_{old} \leftarrow y_0$ Set starting point.
- $ds \leftarrow$ chosen step size Choose step.
- LOOP Start loop to generate steps.
  - $FX \leftarrow F_x(x_{old}, y_{old})$ Calculate components of force.
  - $FY \leftarrow F_y(x_{old}, y_{old})$
  - $FM \leftarrow \sqrt{FX^2 + FY^2}$ Calculate magnitude of force.
  - $x_{new} \leftarrow x_{old} + dx*FX/FM$ Step $dx$ along force line.
  - $y_{new} \leftarrow y_{old} + dx*FY/FM$ Draw segment of force line.
  - Draw line from $(x_{old}, y_{old})$ to $(x_{new}, y_{new})$ Shift focus to new point.
- $x_{old} \leftarrow x_{new}$
- $y_{old} \leftarrow y_{new}$
- EXIT_LOOP WHEN DONE Repeat.
- END_LOOP

Cast the loop in this algorithm as a PYTHON procedure `trace_field` that would be called with a statement like

```python
trace_field(xold, yold, ds, n)
```
where \( \text{xold} \) and \( \text{yold} \) convey the desired starting point for a field line, \( \text{ds} \) conveys the desired step size, and \( \text{n} \) stipulates the number of steps to be taken before completing the line and returning to the calling program. Though we might ultimately want to provide a means to define the field outside of the tracing procedure, for purposes of this exercise suppose that the field of interest is given by

\[
F_x(x, y) = \frac{x - 1.5}{[(x - 1.5)^2 + y^2]^{3/2}} - \frac{x + 1.5}{[(x + 1.5)^2 + y^2]^{3/2}}
\]

\[
F_y(x, y) = \frac{y}{[(x - 1.5)^2 + y^2]^{3/2}} - \frac{y}{[(x + 1.5)^2 + y^2]^{3/2}}
\]

which—in unspecified units—gives the electric field produced in the \( xy \) plane by two point charges, one of relative strength +1 located at \( (x, y) = (1.5, 0) \) and the other of relative strength −1 located at \( (x, y) = -(1.5, 0) \). As a first pass, suppose we are interested in the field only in the region \( -1 \leq x, y \leq 1 \) but, once you have your program operating successfully, you can relax that constraint. (Be aware, however, in relaxing the constraint that your algorithm will probably give troubles if you try to plot too close to either of the point charges.) When executed, \text{trace_field} \ is to draw the field line that starts at the specified point and continues until \( \text{n} \) steps have been made. Structure your procedure so that its execution does not erase the current plot, i.e., so that you can execute it repeatedly with different starting points to build up a full map of the field of interest. \text{Hint:} You may want to use the command \text{plot} with the keyword \text{nodata} set to \text{true} to establish the axes before beginning to trace any field lines. \text{Optional:} Refine the procedure so that

(a) the loop is terminated not only after execution of a fixed number of steps but also when the field line has gone out of bounds, approaches too closely to a singular point, or returns to a point too close to its starting point (closed field line),

(b) it obtains its field definitions from two functions whose names are supplied as arguments when it is called, and/or

(c) it uses a more refined predictor-corrector algorithm in which the values \( \text{xnew} \) and \( \text{ynew} \) determined above are instead regarded as \( \text{xpred} \) and \( \text{ypred} \), the field is calculated at that predicted point, and then a final step to \( \text{xnew} \) and \( \text{ynew} \) is made from \( \text{xold} \) and \( \text{yold} \) by using the average of the fields at the points \( (\text{xold}, \text{yold}) \) and \( (\text{xpred}, \text{ypred}) \).

5.34. Since equipotential curves are perpendicular to the field lines representing the associated (conservative) force field, an algorithm for tracing equipotential curves in two dimensions differs from the algorithm described in the previous exercise only by arranging for the stepping to occur at right angles to the calculated field rather than in the direction of the field. That objective is accomplished by replacing the two statements evaluating \( \text{xnew} \) and \( \text{ynew} \) in the algorithm in the previous exercise with the statements

\[
\text{xnew} \leftarrow \text{xold} - \text{ds} \ast \text{FX} / \text{FM}
\]

\[
\text{ynew} \leftarrow \text{yold} + \text{ds} \ast \text{FY} / \text{FM}
\]

Following a pattern similar to that described in the previous exercise, cast the loop in this algorithm as a PYTHON procedure \text{traceEquipot} that would be called with a statement like

\text{traceEquipot( xold, yold, ds, n )}

where \( \text{xold} \) and \( \text{yold} \) convey the desired starting point for the equipotential curve, \( \text{ds} \) conveys the desired step size, and \( \text{n} \) stipulates the number of steps to be taken before completing the curve and returning to the calling program. Then, explore the equipotential curves depicting the field on which the previous exercise focussed.

5.35. Sometimes, interest can be focussed on the \text{magnitude} of the vector field rather than on the full field. A command like

\[
\text{MAG} = \text{numpy.sqrt( Hx**2 + Hy**2 )}
\]
for example, will generate an array \( \text{MAG} \) containing the magnitudes of the magnetic field at each available grid point. This array then conveys a scalar field that can be displayed by any of the methods described in Section 5.11. Explore the magnetic field given in Eq. (5.14) in this way.

5.36. Patterning your solution after the discussion in Section 5.13.3, use the PYTHON attribute \texttt{quiver} to explore the velocity field

\[
v(x, y, z) = \omega (-y \hat{i} + x \hat{j}) + \alpha \hat{k}
\]

(which happens not to depend on \( z \)) for various values of \( \omega \) and \( \alpha \). Then write a paragraph or two describing the field. \textit{Reassurance}: Diagrams of vector fields in three dimensions are not easy to fathom. Do not be dismayed if the pictures you generate are initially mysterious. \textit{Hint}: In establishing a scale, you may find it useful to assume a length scale \( a \), recast the field in the form

\[
v = \alpha \left( -\frac{y}{a} \hat{i} + \frac{x}{a} \hat{j} \right) + \frac{\alpha}{a \omega} \hat{k}
\]

and try to draw graphs of the field \( v/a \omega \) as functions of the parameter \( \alpha/a \omega \) in the space whose axes are labeled \( x/a \), \( y/a \), and \( z/a \).

5.18.7 Animation

5.37. The transverse motion of a flexible string of length \( l \) lying nominally along the \( x \) axis and fixed at both ends can be expressed as the superposition

\[
y(x, t) = \sum_{n=1}^{\infty} A_n \sin \left( \frac{n\pi x}{l} \right) \cos \left( \frac{2\pi nt}{T} \right)
\]

of its normal modes of oscillation. Here, \( A_n \) is the amplitude of the \( n \)-th harmonic (and may be negative to convey a 180° phase shift relative to a mode with positive amplitude) and \( T \) is the period of the fundamental mode of oscillation. In particular, the shape of the string at time \( t = 0 \) is given by

\[
y(x, 0) = \sum_{n=1}^{\infty} A_n \sin \left( \frac{n\pi x}{l} \right)
\]

Measuring \( x \) in units of \( l \) and \( t \) in units of \( T \), generate animated displays by writing a procedure that will accept as input a vector giving the amplitudes of the first fifteen harmonics and produce a continuously running display showing the motion of the string when its initial shape is defined by those amplitudes. Test your program with a variety of sets of amplitudes, including but not limited to the first several harmonics by themselves. For example, when the string is pulled aside at its center and released from rest, the amplitude of the first several harmonics will be

\[
1.0, 0.0, -0.111111, 0.0, 0.04, 0.0, -0.0204082, 0.0, 0.0123457, 0.0, -0.00826446, 0.0, 0.00591716, 0.0, -0.00444444
\]

and, when it is pulled aside very near to one end, the amplitude of the \( n \)-th harmonic will be \( 1/n \).

5.38. The displacement of a string supporting a transverse wave is given by \( u = f(x, t) \) where \( f(x, t) \) is a given function of \( x \) and \( t \). Develop a \textit{general} procedure to animate this wave propagation (i.e., for showing a sequence of images created by graphing \( f(x, t) \) as a function of \( x \) for a succession of values of \( t \) and write an appropriate py-file to accomplish this task. Try your procedure with the two functions

\[
f(x, t) = e^{-(x-\nu t)^2} \quad \text{and} \quad f(x, t) = \sin(x) \cos(t)
\]

but feel free to invent others of your own choosing.

5.39. The displacement of a square membrane extending over the region \( 0 \leq x, y \leq a \) when it is oscillating in its \( m, n \) normal mode is given by

\[
u(x, y, t) = A \sin \left( \frac{m\pi x}{a} \right) \sin \left( \frac{n\pi y}{a} \right) \cos (\omega_{mn} t)
\]
where $\omega_{mn} = (c \pi/a) \sqrt{m^2 + n^2}$, $c$ being the speed of propagation of the waves in the membrane. Write a function M-file to animate the motion of this membrane for a user-selected mode (user-selected values of $m$ and $n$). Suggestions: (1) Express $x$ and $y$ in units of $a$ and $u$ in units of $A$ so the graphs you produce will show $u/A$ above the $(x/a)(y/a)$ plane. (2) Review the discussion in the last paragraph of Section 5.14.
5.A Listing of plotradio.py

```python
Import necessary packages.
import matplotlib.pyplot as plt
import numpy as np

Open and read the file; convert string input to numbers
and then convert list to an array.

f = open("radio.dat", 'r')
ln=f.readline()
data = []
for line in f:
 data.append(
 [float(x) for x in line.split()]
)
f.close()
dataarray = np.array(data)

Assign a variable name to each column in the array.

t = dataarray[:,0]; A = dataarray[:,1]
B = dataarray[:,2]; C = dataarray[:,3]

Plot the graph.

plt.plot(t, A, color='black', linewidth=3)
plt.plot(t, B, color='black', linewidth=3)
plt.plot(t, C, color='black', linewidth=3)
plt.grid(color='black')
plt.text(2.5, 850.0, 'A', fontsize=16)
plt.text(2.5, 300.0, 'B', fontsize=16)
plt.text(40.0, 800.0, 'C', fontsize=16)
plt.show()
```

5.B Listing of rcfilter.py

```python
Import necessary packages.
import matplotlib.pyplot as plt
import numpy as np

Open and read the file; convert string input to numbers
and then convert list to an array.

f = open("rcdata.dat", 'r')
ln=f.readline()
data = []
for line in f:
 data.append(
 [float(x) for x in line.split()]
)
f.close()
dataarray = np.array(data)

Assign a variable name to each column in the array.

t = dataarray[:,0]; A = dataarray[:,1]
B = dataarray[:,2]; C = dataarray[:,3]

Plot the graph.

plt.plot(t, A, color='black', linewidth=3)
plt.plot(t, B, color='black', linewidth=3)
plt.plot(t, C, color='black', linewidth=3)
plt.grid(color='black')
plt.text(2.5, 850.0, 'A', fontsize=16)
plt.text(2.5, 300.0, 'B', fontsize=16)
plt.text(40.0, 800.0, 'C', fontsize=16)
plt.show()
```
# Import necessary packages.

import matplotlib.pyplot as plt
import numpy as np

# Read data file and calculate uncertainties at 5%

data = np.loadtxt('rcdata.dat')
unc = data[:,1]*0.05

# Plot the semilog graph, add error bars and labels.

plt.semilogx( data[:,0], data[:,1], 'o', 
             markerfacecolor='none', markeredgecolor='black')
plt.errorbar( data[:,0], data[:,1], unc, 
             ecolor='black', linestyle='none', 
             capsize=2 )
plt.title('Experimental Data for High Pass Filter', fontsize=20)
plt.xlabel('Frequency (Hz)', fontsize=14)
plt.ylabel('Gain (Vout/Vin)', fontsize=14)

# Add theoretical curve.

r = 1.5e4
C = 0.0442e-6
f0 = 1/(2.0*np.pi*r*C)
temp =np.arange( 1.0, 4.1, 0.12 )
f = np.exp(2.3026 * temp)  
gtheory = 1.0/np.sqrt(1.0 + f0**2./f**2)
plt.plot( f, gtheory, 'k--', linewidth=2 )
plt.plot( [500.0, 900.0], [0.325, 0.325], 'k--' )
plt.text( 1000.0, 0.30, 'Theoretical', fontsize=16 )
plt.plot( [700.0], [0.23], 'o', markerfacecolor='none', 
            markeredgecolor='black' )
plt.text( 1000.0, 0.20, 'Experimental',fontsize=16 )

plt.grid( color='black' )
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation

# Create an empty figure with fixed axes, add a grid, and create an
# empty variable line to store the coordinates of the points on the
# line to be drawn in each frame as it is generated.

fig = plt.figure()
ax = plt.axes(xlim=(0,1), ylim=(-1.5,1.5))
ax.grid()
line, = ax.plot([],[],linewidth=2, color='black')

# Define functions to initialize the variable line and create the
# several frames in the display.

def init():
    line.set_data([],[])
    return line,
def animate(i, harm):
    x = np.linspace(0.0,1.0,101)
y = np.cos(i*np.pi/50.0)*np.sin(harm*np.pi*x)
    line.set_data(x,y)
    return line,

# Produce the frames in the animation, storing them internally.

harm = int( input('Specify harmonic: ' ) )
anim = animation.FuncAnimation( fig, animate,init_func=init, 
frames=100, interval=20, repeat=True, fargs=(harm,) )

# Display the animation on the screen.

plt.show()

5.D Listing of drumhead.py

Program drumhead.py

This program generates an animated display of the motion of an L-shaped drumhead.

def surf(k):
    ax.clear()
    ax.set_zlim( (-0.25,0.25) )
    pic = ax.plot_surface( x,y,drm[k], color='white', edgecolor='black' )
return pic,

# Import necessary packages.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation

# Extract all of the data from the file.

f = open( 'ldrum.dat', 'r' ) # Open file for reading.
data = [] # Initialize variable for data
for line in f: # Read each line containing six # values, converting each to # a number.
    data.append( [ float(x) for x in line.split() ] )

f.close() # Close file

# Convert data into 41 33x33 arrays containing the shape # of the drumhead at each time.

i = 0
k = 0
drm=np.zeros( (41,33,33) )
while k <= 40:
    tmp = []
    j = 0
    while j <= 32:
        nxtln = np.concatenate([data[i],data[i+1],data[i+2],
                                data[i+3],data[i+4],data[i+5]], axis=0)
        tmp =np.concatenate( [tmp, nxtln], axis=0 )
        i=i+6
        j=j+1
    drm[k] = np.reshape(tmp, (33,33) )
k = k+1

# Set up the axes for the display.

xx=np.linspace(0.0,1.0,33); yy = np.linspace(0.0,1.0,33)
x, y = np.meshgrid( xx, yy )
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim( (0.0,1.0) )
ax.set_ylim( (0.0,1.0) )
ax.set_zlim( (-0.25,0.25) )

# Create all frames and display them.

anim = animation.FuncAnimation( fig, surf, frames=41, repeat=True )
plt.show()
5.E  Listing of projectile.py

projectile.py

Plots the trajectory of a projectile launched at an angle to the horizontal as it moves near the earth under gravity and without air resistance.

from vpython import *  # Import vpython module

# ***** Set particulars of the scene *****

scene.autoscale = False
scene.title = 'Projectile'
scene.background=color.white
scene.width=500
scene.height=500
scene.center=vector(10.0,0.0,0.0)
text(text='PROJECTILE', align='center',
pos=vector(10.0,-4.0,0.0),
    color=color.black, height=1.0, font='sans' )

# ***** Create projectile and floor *****

ball = sphere( pos=vector(0.0,0.0,0.0), radius=0.3, color=color.red, 
    make_trail=True, trail_color=color.blue)
floor = box( pos=vector(10.0,0.0,0.0), size=vector(20.0,-0.3,0.0), 
    color=color.green )

# ***** Set initial values *****

g = 9.8; vx0 = 8.0; vy0=12.0
ball.velocity = vector(vx0,vy0,0.0)
t=0.0
deltat=0.01

# ***** Repeatedly update position of projectile, stopping y coordinates first becomes negative *****

while ball.pos.y > -0.001:
    rate(25)
    ball.pos = vector( ball.velocity.x*t, 
        -0.5*g*t**2+ball.velocity.y*t, 0.0 )
    t = t + deltat
Chapter 7

Introduction to MAPLE

Note: All program (.mpl) files referred to in this chapter are available in the directory \$HEAD/maple, where (as defined in the Local Guide) \$HEAD must be replaced by the appropriate path for your site. At some sites, this directory or some other directory containing these files may also have been placed in MAPLE’s default search path. If so, the files can be found by MAPLE without explicit specification of a path. Otherwise, you will have to use the full path to copy them into your default directory to access them.

Originating with the Symbolic Computation Group at the University of Waterloo in Ontario, Canada, MAPLE® is a large program for manipulating expressions symbolically. MAPLE can perform symbolic algebra; evaluate derivatives, integrals, and Taylor series; solve algebraic and differential equations; manipulate complex numbers; find eigenvalues and eigenvectors; produce two- and three-dimensional graphs; and accomplish numerous other tasks. In this chapter, we describe some ways by which expressions can be defined for MAPLE and then illustrate some of the statements by which MAPLE can be instructed to manipulate these expressions. Users should also work through the on-line MAPLE “tour” (Section 7.2) and look at the examples with which most on-line help messages conclude (also Section 7.2). Further details can be found in assorted MAPLE documentation (Section 7.19) and in on-line help messages accessible from within MAPLE itself (Section 7.2 yet again). We shall refer to this documentation collectively as the MAPLE manuals.

Two user interfaces to MAPLE are provided by the vendor, a command-line interface (CLI), which runs directly in a Shell window of the operating system, and a graphical user interface (GUI), which displays equations in a more elegant form, offers assistance for those who have trouble remembering the commands, and has a notebook capability to facilitate documentation. With either interface, statements to MAPLE are structured and typed in the same way. Thus, in this chapter, we confine ourselves to describing the structure of statements without addressing the ways in which the GUI facilitates assembling them. We shall, however, present MAPLE output with the approximate appearance it will have in the GUI.

Except where occasionally noted otherwise, for the rest of this book, information provided describes the GUI explicitly and may not accurately reflect the behavior of the CLI.

---

\(^1\)MAPLE is registered trademark of and also a commercially available program produced and marketed by Waterloo Maple, Inc. (See Appendix Z for full contact information.) Its use at any particular site is subject to the provisions of whatever license that site has negotiated with Waterloo Maple, Inc. The terms of that license are explained in the Local Guide.
CHAPTER 7. INTRODUCTION TO MAPLE

7.1 Beginning a MAPLE Session

Detailed instructions for initiating a session with MAPLE will be found in the Local Guide. In general, MAPLE will be started either (1) by typing the command `maple` (for the CLI) or the command `xmaple` (for the GUI) at the prompt from the operating system,\(^2\) (2) by double-clicking ML on an appropriate icon on the desktop, or (3) by selecting ‘Command Line Maple n’ or ‘MAPLE n’ from a menu.\(^3\) We must from the outset be aware that

1. Internally, MAPLE is case sensitive, i.e., MAPLE treats upper and lower case letters as distinct. For the most part, built-in MAPLE commands use lower-case letters.

2. Lines of MAPLE code entered at its prompt can be terminated in any of three ways, depending on whether we want to
   (a) submit the statement for execution and instruct MAPLE to display its response, in which case we terminate the statement with a semicolon,
   (b) submit the statement for execution and instruct MAPLE to suppress explicit display of its response, in which case we terminate the statement with a colon, or
   (c) continue entering the statement on a new line, in which case we terminate the line with \(\text{\textlangle SHIFT/RETURN\rangle}\)\(^4\) and MAPLE will prompt for the next line in the CLI with the character \(\text{\textgreater}\) and in the GUI by simply advancing the cursor to a new (indented) line with no prompt.

   Whatever the terminating character, (RETURN) must always be typed for the interaction with MAPLE to continue.

3. Two or more statements can be placed in a single physical line by separating the statements with a semicolon (if output is to be produced) or a colon (if output is to be suppressed).

4. Typing \(\text{\textlangle CONTROL/C\rangle}\) in the CLI or clicking ML on the ‘Stop’ button\(^5\) in the toolbar in the GUI will abort the current computation, display the MAPLE prompt, and await the entry of additional statements.

5. When using the CLI, the statement `quit;` or `quit:` (\textit{stop} and \textit{done} will also work) at any prompt for input will terminate execution, returning control to the computer’s operating system. In the GUI, exiting from MAPLE altogether is achieved by selecting ‘Exit’ from the 
   File menu or clicking ML on the symbol \(\times\) in the upper right corner of the GUI; closing the current worksheet but keeping the GUI active is achieved by selecting ‘Close Document’ from the 
   File menu. The statements \textit{quit}, \textit{done}, and \textit{close} have been disabled in the most recent versions of MAPLE.\(^6\)

6. In the course of a lengthy MAPLE session, MAPLE’s workspace may become cluttered with things no longer needed. The MAPLE statement

\[
\text{\textgreater restart:}
\]

---

\(^2\)In these commands \textit{to the operating system}, case may be important.

\(^3\)Behind the scenes at the start of a MAPLE session, the start-up script checks to see that the license manager is running and that a license is available. If no license is available (or the license manager happens not to be running), the desired session will not start. Restarting a stopped license manager requires action by the system administrator.

\(^4\)On some keyboards, the (RETURN) key is labeled (ENTER).

\(^5\)The ‘Stop’ button is the icon with a white hand inscribed in a dark octagon. If you hover the cursor over the icon, the label ‘Interrupt the current operation’ will soon appear.

\(^6\)In some earlier versions of MAPLE, the statements \textit{done}, \textit{quit}, and \textit{close} in the GUI will leave Maple running but close the current worksheet.
will return MAPLE to its state immediately after it was started in the first place (though—See Section 7.18—the command does not reinitialize interface parameters). In particular, initialization files—See Section 7.17.4—will be reread. Note, however, that—for complicated technical reasons—MAPLE may have less free memory available after a restart than it would have had we exited from MAPLE and restarted the program. Especially when preparing for a memory-intensive task, exiting and restarting the program from ground zero is preferable to invoking the command `restart`.

7. An initial exclamation point ‘!’ typed in the CLI allows temporary escape from MAPLE to the operating system. Thus, for example the statement `!lp file.ps` in UNIX issued to MAPLE in the CLI will be executed not by MAPLE but rather by the operating system, and any output will be displayed directly in the CLI. In the GUI on any platform, this feature is available (and will display any output in a pop-up window), but the feature is unnecessary, since we can easily use resources of the desktop to execute other programs without exiting from MAPLE. In either case, control is then returned to MAPLE.

If you start the CLI, the MAPLE prompt `>` will soon appear in the Shell window from which MAPLE was launched and you can proceed immediately to submit statements to MAPLE. Unless your local environment has been defined to be other than the standard default, starting the GUI interface for the first time in MAPLE10 or later will bring up an X-window in which you will be asked to select the ‘Document’ interface—the default if you make no explicit selection—or the ‘Worksheet’ interface. So that what you see on the screen comports most closely with what is described in this book, you should

- Select the ‘Worksheet’ interface to create a blank worksheet within the GUI.

- Toggle the style in which statements typed to MAPLE will be displayed on the screen from the default ‘Maple Input’ to ‘Standard Math’ input by

  - Opening the menu Tools→Options and clicking ML on the tab labeled ‘Display’,
  - Toggling the selection labeled ‘Input display:’ from ‘2-D Math Notation’ to ‘Maple Notation’, and
  - Clicking ML on the button ‘Apply Globally’ at the bottom of the Options window.

This change will not affect lines already displayed in your worksheet but all subsequent input lines in the current session will be displayed in the form to which you have become accustomed and, because you applied the change globally, this form for input lines will become the default in subsequent sessions as well.

---

7 Prior to MAPLE10, the command `xmaple` by default started what is now the ‘Worksheet’ interface; in MAPLE10 and thereafter, the command `xmaple` offers the options just described. Note, however, that these commands for starting MAPLE are frequently customized at individual sites. Please check your Local Guide for the commands applicable at your site.

8 In that worksheet, the MAPLE prompt `>` will be preceded by an opening square bracket `>`. This difference has to do with the ability of the worksheet to record text and documentation. We will discuss this capability briefly in Section 7.16.

9 To create a new worksheet in the GUI, select ‘New’ from the File menu or click ML on the appropriate icon—probably the left most icon—in the toolbar.

10 Once you have made the choice by selecting one or the other interface with the mouse, that choice—and lots of other default parameters—will in the UNIX world be recorded in the file `~/YourUserName/.maple/VersionNumber/maplerc`. This “rc” file will control the interface you see in all subsequent sessions. (You can change many of the parameters, including your choice of ‘Worksheet’ or ‘Document’ interface, by selections available in the panels of the Options submenu of the Tools menu in the menu bar of the Worksheet interface.)
7.2 On-Line Help

MAPLE makes several sorts of on-line help available. In the GUI, we can initiate a tutorial by selecting the tour from the Help menu. The strategy for exiting from the tour while preserving the original MAPLE session may differ among the versions of MAPLE. In MAPLE16, the tour opens a second tab in the GUI interface. In that version, the tour can be terminated by selecting ‘Close Document’ from the File menu or by clicking ML on the symbol × at the right end of the tab associated with the tour. In either case, the original worksheet to MAPLE will return. Several other items, including ‘Maple Help’ and ‘Manuals, Resources, and more’ can be accessed from that same Help menu in the GUI.

Beyond the tour, MAPLE contains an extensive on-line help library, which is organized into topics, subtopics, subsubtopics, .... In the GUI, simply typing a question mark ? followed by ⟨RETURN⟩ at the MAPLE prompt (or selecting ‘Maple Help’ from the Help menu) brings up a browser in which we can navigate the hierarchy of the on-line help files. More explicitly, a statement like

?topic e.g.,  > ?index

will provide information about the specified entry, while the statement

> ?index, packages

will list the packages about which information is available and the statement

> ?inttrans

will list information about the package inttrans (integral transforms), whose presence would be revealed in the list produced by the statement ?index, packages.

Items in the on-line help library that describe specific MAPLE commands typically include not only a description of the function and syntax of the command but also examples of the proper use of the command. Note particularly the on-line help messages for the commands diff, int, simplify, expand, combine, factor, solve, sum, dsolve, and convert.

7.3 Basic Entities in MAPLE

At the very beginning, we point out that MAPLE distinguishes among a variety of different entities, including

- expressions, sequences, sets, lists, arrays, tables, and character strings, which are the primary quantities with which MAPLE works;
- commands and functions, which accept zero, one, or more arguments as input and return various outputs, thereby providing the means by which the objects enumerated in the previous item are manipulated;
- environment variables, e.g., Digits, Order, and _Env*, whose values—default or user-specified—modify the behavior of the associated functions;

11Note that no terminating semicolon is required with the ? command.
12Note that there is no space after the comma.
13Because of the nature of a Shell window, these statements have more limited action in the CLI.
7.4 Variable Names in MAPLE

Legal variable names begin with an alphabetic character or an underscore character\(^ {14}\) and cannot coincide with reserved words like \texttt{true}, \texttt{sin}, and \texttt{factor}\(^ {15}\) but, within reason, are otherwise unrestricted. They can contain alphabetic and numeric characters as well as the underscore character and can be of any length.\(^ {16}\) Lower case and upper case letters are treated as distinct. In the GUI, spelling out the name of a Greek letter in an input line will result in the display of the lower-case or upper-case Greek letter in the associated output line, e.g., \texttt{delta} in an input line will produce $\delta$ in the output line while \texttt{Delta} in an input line will produce $\Delta$ in the output line.

Note particularly that, in almost all situations, MAPLE will assume by default that any variable to which no explicit value has been assigned represents a complex quantity.

7.5 Expressions in MAPLE

Expressions are written in MAPLE using a syntax very much like that used in ordinary algebra and are supplied merely by typing the expression at MAPLE’s prompt for input, e.g.,

\begin{verbatim}
> x + a * cos(b*x);
\end{verbatim}

to which, since the expression was terminated with a semicolon rather than a colon, MAPLE will respond\(^ {17}\)

\begin{verbatim}
x + a \cos(b x)
\end{verbatim}

The symbols $+$, $-$, $\times$, $/$, and $^\wedge$ are used for addition, subtraction, multiplication, division, and exponentiation (though, paralleling FORTRAN, MAPLE also recognizes $^{**}$ for exponentiation). Except for those in quoted strings, spaces are ignored and may be freely inserted for legibility. Functions available for use in expressions include

- General functions, e.g., \texttt{abs()}, \texttt{evalf()}, \texttt{trunc()}, \texttt{round()}, \texttt{sqrt()}, \texttt{signum()}, and \texttt{rand()}.
- Trigonometric, hyperbolic and exponential functions and their inverses, e.g., \texttt{sin()}, \texttt{cos()}, \texttt{tan()}, \texttt{arcsin()}, \texttt{arccos()}, \texttt{arctan()}, \texttt{arctan}(,), \texttt{sinh()}, \texttt{cosh()}, \texttt{tanh()}, \texttt{arcsinh()}, \texttt{arccosh()}, \texttt{arctanh()}, \texttt{exp()}, and \texttt{ln()}.

\(^ {14}\)The underscore character, however, should be avoided as an initial character because MAPLE uses variable names beginning with underscores internally, and the risk of conflict is not zero.

\(^ {15}\)Since almost all MAPLE commands and special words use entirely lower case letters, using upper-case letters in user-defined variable names reduces the likelihood of conflict. We will, however, only rarely follow this advice.

\(^ {16}\)The actual maximum length depends on the operating system, but is quite large even in the most restrictive case.

\(^ {17}\)Note that we will occasionally rearrange the display of MAPLE output lines to improve legibility. No substance is lost in that rearrangement.
• Special functions, e.g., Bessel and modified Bessel functions, Airy functions, elliptic integrals, gamma and beta functions, the error function, Legendre polynomials, Hermite polynomials, and Laguerre polynomials.

Full details on these and other functions, including information about the form of their arguments, will be found in the MAPLE manuals. A few will be introduced in the remainder of this chapter.

Internally, MAPLE sees simple expressions as lists. The first element (part—or operand—zero of the expression) indicates the operator involved, and the remaining elements (known as part—or operand—one, part—or operand—two, ...) indicate the operands. Thus, for example, the two expressions

\[ a + b + c + d \quad \text{and} \quad abc \]

are stored internally as the lists

\[ [ +, a, b, c, d ] \quad \text{and} \quad [ *, a, b, c ] \]

respectively. More complicated expressions, such as

\[ a + b - c + d \quad \text{and} \quad a + b(c + d) + e \]

are stored as lists of lists, being

\[ [ +, a, b, [-, c], d ] \quad \text{and} \quad [ *, a, [*, b, [+, c, d ] ], e ] \]

respectively. As a final example, which anticipates a later need, suppose the expression of interest is

\[ (x + 3)^2 (x - a) (x + a) \]

We would generate MAPLE's internal representation in several steps finding

\[ [ *, (x+3)^2, x-a, x+a ] \]
\[ [ *, [-, x+3, 2], [+, x, -a], [+, x, a] ] \]
\[ [ *, [-, [+x,3], 2], [+, x, [-, a]], [+, x, a] ] \]

Here, the first line shows parts 0, 1, 2, and 3 of the original expression while the second line reveals that part 1 of the original expression is itself a list having part 0 (part 0 of part 1 of the original expression; `^`), part 1 (part 1 of part 1; `x+3`), and part 2 (part 2 of part 1; 2). Further, the third line reveals that some of the parts of the parts themselves have parts. Thus, for example, part 2 of part 1 of part 1 of the original expression is 3 while part 1 of part 2 of part 2 of the original expression is `a`. These relationships can be involved and confusing, but some manipulations depend critically on being able to identify the parts, subparts, subsubparts, and ... of a complicated expression.

7.6 Assigning Values to Variables; Defining Functions

Especially when elaborate expressions are involved, we may want to refer to these expressions after they have been entered without having to retype them. If, for example, we anticipate frequent reference to a particular expression, we may wish to use the assignment operator `:=` to assign or bind the expression to a variable. The statement
7.6. ASSIGNING VALUES TO VARIABLES; DEFINING FUNCTIONS

> bigexp := x + a * cos(b*x);
  bigexp := x + a*cos(bx)

for example, associates the variable bigexp with the expression following the operator :=. Subsequently, whenever that variable is included in an expression, it will automatically be replaced by the expression to which it has been bound, e.g., had we bound the expression to the variable bigexp, we might later have written

> bigexp^2;
  (x + a*cos(bx))^2

The wisdom of choosing variable names with mnemonic significance should be obvious.

Once a name has been assigned, we can at any time remind ourselves of the value bound to that variable simply by asserting its name. The statement

> bigexp;
  x + a*cos(bx)

for example, will request MAPLE to display the current value of bigexp. Further, if we can’t remember whether we have already assigned a value to a particular variable, we can invoke the statement

> assigned( bigexp );
  true

to find out.\(^{18}\) Finally, if we have no further need for a particular variable and wish to tell MAPLE to forget that we had once bound a value to it, we could enter the statement

> bigexp := 'bigexp':

\(^{18}\)The statement will, of course, return \textit{false} if no value has been assigned to the specified variable.

> spectrig := x -> 1 + sin(x)^2;
  spectrig := x \rightarrow 1 + \sin(x)^2

> mode := (x,y) -> sin(Pi*x)*sin(2*Pi*y);
  mode := (x, y) \rightarrow \sin(\pi x)\sin(2\pi y)

define the functions spectrig(x) and mode(x,y) for subsequent use just as we would use any of MAPLE’s built-in functions. For example, the statements

> spectrig := 'spectrig':
> mode := 'mode':

When special \textit{functions} of significance to a particular session would be useful, we might exploit the MAPLE operators := and \rightarrow to append one or more user-defined functions to the built-in functions. For example, the statements

> spectrig := x -> 1 + sin(x)^2;
  spectrig := x \rightarrow 1 + \sin(x)^2

> mode := (x,y) -> sin(Pi*x)*sin(2*Pi*y);
  mode := (x, y) \rightarrow \sin(\pi x)\sin(2\pi y)

define the functions spectrig(x) and mode(x,y) for subsequent use just as we would use any of MAPLE’s built-in functions. Sometimes, we might find it convenient to regard a statement defining a function alternatively as defining a \textit{transformation rule}, which in effect converts whatever appears to the left of the symbol \rightarrow into whatever appears on the right. Further, if we have no further need for a particular function and wish to tell MAPLE to forget that we had once associated a function with a particular variable, we could enter the statements

> spectrig := 'spectrig':
> mode := 'mode':
to remove the functions and free some of MAPLE’s workspace.

Please note that a statement of the form \( p(t) := t^2 + \sin(3a\cdot t) \) does not define a function; it merely introduces the symbol \( p(t) \) for the quantity on the right of the operator \( := \). With this definition, reference to \( p(t) \) will appear to do what you expect it to do, but the notation \( p(2\cdot x) \), for example, will not return \( 4x^2 + \sin(6ax) \). Try to imprint this distinction firmly and quickly into your understanding.

Within Maple, some potential variable names are protected. The names \( \text{Pi} \) (for \( \pi \)), \( \text{gamma} \) (for Euler’s constant, 0.577216), and \( \text{sin} \) (for the sine function), for example, are protected. An attempt to assign a value to a protected variable will fail, as illustrated in the statement

\[
> \text{gamma} := 3.0;
\]

Error, attempting to assign to ‘gamma’ which is protected

In rare circumstances, we may wish to use the symbol anyway. If so, we must \texttt{unprotect} it before using it in the new context, as illustrated in the statements

\[
> \text{unprotect( gamma )}; \text{gamma} := 25.0:
\]

Once we are finished with the non-standard use, we can restore the original status of the variable with the statements

\[
> \text{gamma} := \text{‘gamma’}; \text{protect( gamma )}:
\]

Tampering with specially defined variables and other reserved words, however, is risky, and should be undertaken only occasionally and only for good reason.

### 7.7 Creating and Examining Basic Entities

We have already mentioned in Section 7.3 that MAPLE works with several different types of object and we have in Sections 7.5 and 7.6 described how to create expressions and assign values to variables. To simplify the quick tour of selected capabilities to be presented in Section 7.8, we include here a description of how some of the more important objects in MAPLE can be created and examined. Then, we will be ready to introduce features that allow the processing of these various objects.

#### 7.7.1 Sequences

In MAPLE, a sequence is an ordered, comma-separated “list” of items that is either not enclosed in any delimiters or enclosed in parentheses.\(^\text{19}\) Sequences—data type \texttt{exprseq}—are created with statements like

\[
> \text{sq1} := a, b, a, d, e;
\]

\[
\text{sq1} := a, b, a, d, e
\]

\[
> \text{sq2} := ( "David", 5.00, a+b );
\]

\[
\text{sq2} := "David", 5.00, a+b
\]

Note that elements in a sequence may be duplicated and that the various items in the sequence need not have the same data type, though normally they will. The entire sequence can be referred to by its name, while a particular element in the sequence can be referred to by placing its index in square brackets after the name of the sequence, e.g.

\(^{19}\)In this section, we will place the word \texttt{list} in quotation marks when the common meaning is intended. Without quotation marks, the word will mean a specific one of MAPLE’s internal objects.
7.7. Creating and Examining Basic Entities

> sq2;
"David", 5.00, a + b
> sq2[2];
5.00

(Note that indices start at 1.)

7.7.2 Sets

In MAPLE, a set is a comma-separated “list” of elements that is enclosed in braces, {...}, as delimiters. Sets—data type set—are created with statements like:

> st1 := {a, b, a, d, e};  
st1 := \{a, b, d, e\}
> st2 := {"David", 5.00, a+b};
  st2 := \{"David", a + b, 5.00 \}

With sets, only the presence or absence of a particular element is of concern. Hence, duplicate items in an assignment will be removed and order is not necessarily preserved. As with sequences, an entire set can be referred to by its name, while a particular element in the set can be referred to by placing its index in square brackets after the name of the set. Since the order of elements in a set is not important, however, we cannot always be sure which element will be in which position as a set is manipulated.

7.7.3 Lists

In contrast, a list is an ordered, comma-separated “list” of elements that is enclosed in square brackets, [...], as delimiters. Lists—data type list—are created with statements like

> lst1 := [a, b, a, d, e];
  lst1 := [a, b, a, d, e]
> lst2 := ["David", 5.00, a+b];
  lst2 := ["David", 5.00, a + b]

As with sequences and sets, an entire list can be referred to by its name, while a particular element in the list can be referred to by placing its index in square brackets after the name of the list. In contrast to sets, duplicate items in a list will be retained and order will be preserved.

7.7.4 Vectors, Arrays, and Matrices

MAPLE provides several ways to create one, two, and higher dimensional aggregates of elements, all of which have the same data type. One can, for example, create a vector by first dimensioning the array (so MAPLE knows how much storage to set aside) and then assigning values to the elements. We might, for example submit the statements

---

20MAPLE is not entirely consistent across platforms and between the CLI and the GUI in the ordering of the terms or factors in its response to particular statements. In displaying MAPLE’s responses in this book, we will favor the display produced in the GUI, though the GUIs on different platforms do not always produce the same ordering. It even appears as if the same expression entered in different contexts on the same platform with the same interface doesn’t always yield the same ordering in the displayed output. Even though the details of the display vary, the different displays are, of course, always mathematically equivalent.
> Vec1 := Vector( 1..5 );
Vec1 :=
[0
0
0
0
0
>
for i from 1 to 5 do Vec1[i] := lst1[i]; end do:
> Vec1[2];
b
> Vec1;

Dimension vector with indices running from 1 to 5, inclusive. Note that this statement assigns the value zero to each element and creates a column vector, data type Vector column.

Assign more specific values to elements; suppressing output. Display second element.

Display entire vector.

(Here, lst1 is the list created in the previous section.) To create a row vector instead of a column vector with this command, specify the optional argument as in Vector(orientation=row, 1..5), data type Vector row. Note that, even to display a vector, the entire vector of either type can be referred to by its name while a particular element of the vector can be referred to by placing the corresponding number in square brackets after the name.21

The command Vector can create only vectors. The command Array is more versatile. It can create a one-dimensional row array with statements like

> Arr1 := Array( 1..5 );
Arr1 := [0 0 0 0 0]

> for i from 1 to 5 do vec2[i] := lst1[i]; end do:
> Arr1[2];
b
> Arr1;

Dimension “vector” with indices running from 1 to 5, inclusive. Note that this statement assigns the value zero to each element. Note also that the “vector” created has data type Array.

Assign values to elements. Display second element.

Display entire vector.

The command Array can also, however, create arrays of higher dimensions.22 To create a two-dimensional array, for example, we might exploit slightly more elaborate statements like

> Arr2 := Array(1..2, 1..2):

> Arr2[1,1]:=1: Arr2[1,2]:=2:
> Arr2[2,1]:=3: Arr2[2,2]:=4:
> Arr2;

Dimension matrix, suppressing output. Note that this statement will create a 2 x 2 array of zeroes with data type Array.

Set elements.

Display array.

In this context, note that—in accordance with the usual conventions—the first index in a matrix

21Some older versions of MAPLE would display the entire vector only if the display was requested with a statement like print(vec1). Newer versions of MAPLE are not as restrictive.

22Note that the earlier MAPLE command array has been “deprecated”, i.e., made obsolete—though for backward compatibility, MAPLE still responds to that command.
is the row index and the second index is the column index. Note also that, while we have started indices at 1, they can in fact be started at any (positive or negative) integer or even at zero.

Finally, matrices can be created by invoking the MAPLE command Matrix. For example, to create a two-dimensional matrix, we might invoke the statements

\[
\text{Mat1} := \text{Matrix}(1..2, 1..2):
\]

Dimension matrix, suppressing output. Note that this statement will create a \(2 \times 2\) array of zeroes with data type \text{Matrix}.

\[
\text{Mat1}[1,1] := 1; \quad \text{Mat1}[1,2] := 2;
\]

Set elements.

\[
\text{Mat1][2,1] := 3; \quad \text{Mat1}[2,2] := 4;
\]

Display matrix.

\[
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\]

Because these structures are among the most frequently needed MAPLE objects, simpler methods for creating them are available. For example, the commands Vector, Array and Matrix admit an additional argument that specifies the actual elements in the array to be created. For a vector, that argument is simply a list of the elements, e.g.,

\[
\text{Vec2} := \text{Vector}(1..5, \text{lst1});
\]

For an array or a matrix, that argument is a list of the rows in the array or matrix, where each row is conveyed by a list of its elements.

\[
\text{Arr3} := \text{Array}(1..2, 1..2, \{[1,2],[3,4]\});
\]

\[
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\]

\[
\text{Mat2} := \text{Matrix}(1..2, 1..2, \{[1,2],[3,4]\});
\]

\[
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\]

Indeed, these commands are even capable of figuring out for themselves what the dimensions should be, so the statements

\[
\text{Vec3} := \text{Vector}(\text{lst1});
\]

\[
\text{Arr4} := \text{Array}(\{[1,2],[3,4]\});
\]

\[
\text{Mat3} := \text{Matrix}(\{[1,2],[3,4]\});
\]

will also create the corresponding objects in MAPLE’s workspace.

An even simpler way to create these structures is to exploit angle brackets. Elements in a row are delimited with vertical bars; those in a column are delimited with commas, e.g.,

\[
\text{Vec4} := [a | b | c];
\]

\[
\text{Vec4} := [a \ b \ c]
\]
> Vec5 := < a, b, c >;

Vec5 := \[
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
\]

Mat4 := < a, b | c, d | e, f >;

Mat4 := \[
\begin{bmatrix}
a & c & e \\
b & d & f
\end{bmatrix}
\]

where these objects are of data types Vector\textsubscript{row}, Vector\textsubscript{column}, and Matrix, respectively.

The above discussion barely scratches the surface of the capabilities available with a wide assortment of options possible in the commands Vector, Array, and Matrix, and you are urged to examine the on-line help pages for these commands. Be aware, however, that vectors, arrays, and matrices involve different internal data structures, not all of which are meaningful in all contexts and that it may occasionally be necessary to convert from one to the other in the midst of a calculation. (See Section 7.7.5.)

The supplementary package LinearAlgebra, which we will introduce in Section 7.9, contains additional commands for creating and manipulating vectors and matrices.\footnote{While the older package linalg remains available, it has been declared obsolete and is deprecated, which means it may disappear from some later version of MAPLE. Commands in that package still work but they should be avoided.}

### 7.7.5 Conversions

Sometimes, the same entities appearing in different contexts will be needed in different forms. Thus, MAPLE provides the command \texttt{convert}, which has numerous features for transforming entities in one form to other compatible forms. For example, the conversion of a list to a set and a vector might be accomplished with the statements

```maple
> convert(lst1, set);
\{a, b, d, e\}
> convert(lst1, Array);
[a, b, a, d, e]
```

respectively, while the conversion of a matrix to a list of lists could be accomplished with the statement

```maple
> convert(Mat1, listlist);
[[1, 2], [3, 4]]
```

and the conversion of an array to a matrix could be accomplished with the statement

```maple
> convert(Arr1, Matrix);
[[1, 2], [3, 4]]
```

We will see additional capabilities of this command as this chapter unfolds. The full list of keywords that will be accepted as the second argument to \texttt{convert} is included in the on-line help message displayed with the statement \texttt{?convert}.\footnote{While the older package linalg remains available, it has been declared obsolete and is deprecated, which means it may disappear from some later version of MAPLE. Commands in that package still work but they should be avoided.}
7.8 Using MAPLE...

At base, a session with MAPLE involves entering one or more expressions and then instructing MAPLE to process these expressions in some way. The following transcripts of MAPLE sessions illustrate some of the simpler manipulations. The transcripts are presented in two columns, the one on the left recording the statements submitted to MAPLE and MAPLE’s responses, the one on the right containing explanatory comments.

Note that the manner of editing statements submitted to MAPLE depends on whether the statement is entered in a CLI or in the GUI. With UNIX (which for the past several years includes the Macintosh operating system), MAPLE’s CLI is a standard X-window interface, so

- the arrow keys can be used in the usual way to retrieve previous statements and move the cursor within a statement,
- the backspace and delete keys can be used to remove characters,
- other keys can be used to insert characters at the position of the cursor,
- anything already existing on the screen can be highlighted and then copied to the current input point by clicking MR, and
- regardless of the position of the cursor in a line, the entire statement will be submitted when \( \text{RETURN} \) is typed.

Further, all of these editing features except the capacity to copy and paste are also available in the Windows CLI.

In the GUI, in-line editing can be accomplished in the same way using the left and right arrow keys to move the cursor, the backspace or delete key to remove characters, and other keys to insert new characters. The up and down arrow keys, however, move the cursor not only through the statements on input lines but also through components of the displayed output. The cursor can be located in previous statements by typing the up and down arrow keys a sufficient number of times (or by repositioning the cursor with a click of MR), the statement can then be edited, and the edited form reexecuted, but the new statement will take the place of the old; it will not be copied to the new input focus in the window. Alternatively, again in the GUI, a previous statement (or portion thereof) can be highlighted, copied into the clipboard by selecting ‘Copy’ from the Edit menu, and then—after clicking MR at the desired point of insertion—selecting ‘Paste’ from the Edit menu. Note that, whatever interface is in use, the cursor need not be positioned at the end of a line when the line is to be submitted for execution by pressing \( \text{RETURN} \). The full line will be submitted regardless of the position of the cursor within the line.

To keep the several segments in this section somewhat separated from one another, we shall periodically exit and then reenter MAPLE, thereby clearing MAPLE’s workspace. The same end could be accomplished with the statement \texttt{restart}., as described in item 6 in Section 7.1 (though see the caution in that section). The action is, of course, not necessary, and the entire “conversation” could have been held perfectly well without these occasional breaks or—for that matter—with breaks in different places, so long as the breaks do not occur between the point at which a variable is defined and the point at which it is used. The “conversation” in this section should be started in a fresh invocation of MAPLE.

Finally, note that, throughout this section, various components of MAPLE (functions, commands, operators, packages, ...) are introduced simply by presenting statements in which they are used, frequently with brief comment. Details on all mentioned components and on many others can be found in the MAPLE manuals. \footnote{On many keyboards, the \( \text{RETURN} \) key is labeled \( \text{ENTER} \).} \footnote{Input statements will look much the same regardless of the platform on which we are operating. Output is here presented \textit{approximately} as it would appear in the GUI. In the CLI, the content of the output will be the same but, because that interface is limited to character output, its appearance will be less “pretty”.}
CHAPTER 7. INTRODUCTION TO MAPLE

7.8.1 ... for Arithmetic

We illustrate first some of the ways in which MAPLE can be instructed to perform simple arithmetic operations. Consider, for example, the statements

\[ 2 + 3; \]
\[ 5 \]

Enter a simple numeric expression. MAPLE returns a value, doing the arithmetic.

\[ 4/6; \]
\[ 2 \]
\[ \frac{2}{3} \]

Enter another expression. MAPLE does not automatically generate a floating point evaluation but does reduce the fraction.

\[ \text{sqrt}(9); \]
\[ 3 \]

Compute \( \sqrt{9} \).

\[ \text{sqrt}(12); \]
\[ 2\sqrt{3} \]

Compute \( \sqrt{12} \). MAPLE simplifies the expression but keeps it exact.

\[ \text{factorial}(9); \]
\[ 362880 \]

Find \( 9! = 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \), with \text{factorial}.

\[ 9!; \]
\[ 362880 \]

Find 9 factorial with postfix operator \( ! \).

\[ \text{evalf}(4/6); \]
\[ 0.6666666667 \]

Ask for floating value with default number of digits.

\[ \text{evalf}(4/6, 20); \]
\[ 0.66666666666666666667 \]

Ask for floating value with 20 digits.

The number of digits displayed in a floating evaluation is determined by the environment variable \text{Digits} whose default value is 10. To find values to different numbers of digits, we might use the statements

\[ \text{Digits}; \]
\[ 10 \]

Display default precision of floating evaluations.

\[ \text{Digits} := 32: \]

Change precision to 32 digits. Here, the colon at the end of the statement suppresses display but not behind-the-scenes evaluation of MAPLE’s response.

\[ \text{evalf}(\pi); \]
\[ 3.1415926535897932384626433832795 \]

Ask for 32-digit floating value of \( \pi \), represented in MAPLE with the constant \text{Pi}.

\[ \text{Digits} := 10: \]

Reset default value of \text{Digits}. Here, we terminated the statement with a colon to suppress output.

Restart MAPLE. (See item 6 in Section 7.1.)

We have, of course, illustrated only some (+, /, \text{sqrt}, \text{factorial}, !, \text{evalf}) of the operators and functions that might be used to persuade MAPLE to manipulate with numbers and only one (\text{Digits}) of the environment variables whose values affect the behavior of these functions. You should make it a point to read about these and other functions, environment variables, constants, and operators in the MAPLE manuals.

7.8.2 ... for Algebra

MAPLE is, of course, capable of much more than simple arithmetic. We next illustrate how algebraic manipulations can be requested, beginning with the statements

\[ 26 \]

Note the upper-case D.
7.8. USING MAPLE...

> (x+3)^2*(x^2-a^2);

$(x + 3)^2(x^2 - a^2)$

Enter an expression. Note that—depending on platform and interface and perhaps prior context—the order of the factors in the output may differ from that in the input. Compare the response produced on your system by this statement with the response produced by the statement $(x^2-a^2)*(x+3)^2$.

> expand(7);

$x^4 - x^2a^2 + 6xa^2 + 9x^2 - 9a^2$

Expand the expression. Again, the order of terms may be platform, interface, and context dependent. Here, the symbol \% refers to the most immediate past output. (\%\% and \%\%\% refer to the penultimate and ante-penultimate outputs, respectively.)

> fct := factor(7);

$fct := -(x + 3)^2(a - x)(a + x)$

Factor the expression in the previous output.

We note, of course, that this factoring hasn’t quite returned us to our starting point. To achieve that end, we need to multiply the second and third factors without expanding the first. To do so, we will have to carve the expression apart, manipulate with its parts, and then reconstruct the expression. As discussed in Section 7.5, MAPLE sees this expression as a list of lists of lists. Indeed, we can persuade MAPLE to reveal the first level in that structure by exploiting the MAPLE function op (for operand) in the statement

$> \text{op(0,fct), op(1,fct), op(2,fct), op(3,fct), op(4, fct)}$;

or we could exploit not only the function op but also MAPLE’s ability to construct a loop in the statement

$> \text{for i from 0 to 4 do op(i,fct); end do;}$

$\quad ^{i_{\ldots}^i}$

$-1$

$(x + 3)^2$

$a - x$

$a + x$

to show all operands of the expression at once. Even more simply, we could use the command op with but one argument, finding that

$> \text{op( fct );}$

$-1, (x + 3)^2, a - x, a + x$

i.e., finding the operands of the expression as a sequence, though part 0 (which gives the operator affecting the other operands) is not revealed. If we really want to know part 0, we must ask for it explicitly, either with the statement

$> \text{op( 0, fct );}$

$\quad ^{i_{\ldots}^i}$

27The order of operands may be platform, interface, and perhaps context dependent. Even the number of operands may vary. For example, on some platforms, the result above might not have an initial minus sign and have $(x-a)(x+a)$ as the last two factors. Compare the parts identified here by the integers 0, 1, 2, 3, and 4, with the parts identified by those integers in your environment, where part 4 may be absent.
or, probably better, by invoking another MAPLE command in the statement

\[ > \text{whattype}( \text{fct} ); \]

\[ '∗' \]

Related to the function \text{op}, MAPLE supplies also the function \text{nops}, which returns the number of operands in the expression given as its argument, i.e.,

\[ > \text{nops}( \text{fct} ); \]

4

Note that, here also, part 0 is not counted.

Using the capabilities of the command \text{op}, we might achieve the entire objective of recasting the expression \text{fct} with the single nested statement

\[ > \text{fct1} := \text{op}(2,\text{fct}) \times \text{expand}(\text{op}(1,\text{fct})\times\text{op}(3,\text{fct})\times\text{op}(4,\text{fct}) ); \]

\[ \text{fct1} := (x + 3)^2(x^2 - a^2) \]

in which we extract parts 1, 2, and 3 from \text{fct}, expand the product of parts 2 and 3, and then reconstruct the expression by multiplying that result by part 1. This time, we have succeeded in reconstructing the original expression (except possibly for the order of the factors).

As here illustrated, beating MAPLE’s version of a complicated expression into a more conventional form may require a fair bit of creative massaging.

We continue with some additional manipulations, first setting the constant \(a\) to the specific value 2 with the statement

\[ > \text{eval}( \text{fct1}, a=2 ); \]

Evaluate expression with \(a = 2\).

\[ (x + 3)^2(x^2 - 4) \]

Then, for example, we could find a partial fraction expansion of the reciprocal of this polynomial with the statement

\[ > \text{eq1} := \text{convert}( 1/%, \text{parfrac}, x ); \]

Find partial fraction expansion with respect to \(x\).

\[ \text{eq1} := \frac{1}{100(x - 2)} + \frac{1}{5(x + 3)^2} - \frac{1}{4(x + 2)} + \frac{6}{25(x + 3)} \]

Alternatively, we could replace \(x\) with \(3z\) by using the \text{subs} command in the statement

\[ > \text{subs}( x = 3z, \text{eq1} ); \]

Substitute \(3z\) for \(x\) in the previous expression.

\[ \text{eq1} := \frac{1}{100(3z - 2)} + \frac{1}{5(3z + 3)^2} - \frac{1}{4(3z + 2)} + \frac{6}{25(3z + 3)} \]

To illustrate a more complicated recasting, suppose that we wanted to square the denominator of the second term in \text{eq1} without affecting any other term. The statement \text{expand(eq1)} does nothing. (Try it.) We need a more sophisticated operation that rearranges only the second term (part 2 of the original expression). To achieve the desired end, we extract that term, carve it up, manipulate with the proper piece, and substitute that piece into the proper point in the original

\[ ^{28}\text{We repeat the substance of the previous footnote: The order and number of the operands in fct may be platform, interface, and perhaps context dependent. Thus, the numbers identifying various operands in your environment may differ from those used here, and your end result may have an initial minus sign and a sign difference in one of the factors. Beware!} \]

\[ ^{29}\text{Because the order of terms may vary from platform to platform, the desired term in your display may not be the second term.} \]
expression. The task takes several steps, beginning with the identification of the proper part with the statements

\begin{verbatim}
> eq2 := denom( op( 2, eq1 ) );
eq2 := 5(x + 3)^2
> eq3 := expand(op(2,eq2));
eq3 := x^2 + 6x + 9
> expand( op( 2, denom(op(2,eq1)) ) );
x^2 + 6x + 9
\end{verbatim}

Extract denominator of second part of eq1.

Expand second part of eq2.

Alternatively, perform the previous two operations in one step.

Now, note that

\begin{verbatim}
> eq := op( 2, op( 2, eq1 ) );
\end{verbatim}

Extract part 2 of part 2 of eq1.

\begin{verbatim}
\end{verbatim}

Thus, we can attain the second term of the desired end by substituting the reciprocal of eq3 for part 2 of part 2 in eq1 with the statement

\begin{verbatim}
> eq4 := subsop(2=1/eq3, op(2, eq1) );
eq4 := \frac{1}{5(x^2 + 6x + 9)}
\end{verbatim}

and then substitute that result for part 2 in eq1 with the statement

\begin{verbatim}
> eq5 := subsop( 2=eq4, eq1 );
eq1 := \frac{1}{100(x - 2)} + \frac{1}{5(x^2 + 6x + 9)} - \frac{1}{4(x + 2)} + \frac{6}{25(x + 3)}
\end{verbatim}

Finally, we recognize the frequent need to bring together terms in an expression when those terms happen to have a common factor even if some terms in the expression don’t have that factor and the command factor will therefore not accomplish the desired task. The command collect is built for that task. Thus, for example, we might want to effect the recasting

\begin{verbatim}
A \cos \omega t + B e^{-\gamma t} \cos \omega t + F = (A + B e^{-\gamma t}) \cos \omega t + F
\end{verbatim}

You can readily discover that the command factor will not do the job. Instead, the objective could be accomplished with the statements

\begin{verbatim}
> eqn := A*cos(omega*t) + B*exp(-gamma*t)*cos(omega*t) + F;
eqn := A \cos(\omega t) + B e^{-\gamma t} \cos(\omega t) + F
> collect( eqn, cos(omega*t) );
cos(\omega t)(A + B e^{-\gamma t}) + F
\end{verbatim}

Restart MAPLE. (See item 6 in Section 7.1.)

We have, of course, only mentioned a few (expand, factor, op, nops, eval, convert, subs, subsop, collect) of the numerous functions MAPLE makes available for manipulating expressions algebraically. We have also introduced the control structure for do/end do and the special argument parfrac to the command convert. The differences among several commands, including expand, simplify, combine, and factor are explored in one of the exercises. You should make it a point to read about these functions and option variables in the MAPLE manuals.
7.8.3 ... for Complex Variables

MAPLE is also capable of manipulating complex variables. Indeed, in most—though not all—contexts, MAPLE assumes that any variable to which no specific value has been assigned represents a complex value. We illustrate some of MAPLE’s main capabilities in this category with the statements

\[ fct := \sin(x+y*I); \]
\[ fct := \sin(x \cdot \cosh y + I \cdot \cos x \cdot \sinh y) \]

\[ \text{evalc}(fct); \]
\[ \sin x \cdot \cosh y + I \cdot \cos x \cdot \sinh y \]

Define complex expression. The MAPLE constant \( I \) stands for \( \sqrt{-1} \).

Recast \( fct \) in form \( a + ib \). The function \text{evalc} assumes that variables to which no value has been assigned are real.

\[ \text{evalc}(\text{Re}(fct)); \]
\[ \sin x \cdot \cosh y \]

Extract real part of \( fct \).

\[ \text{evalc}(\text{Im}(fct)); \]
\[ \cos x \cdot \sinh y \]

Extract imaginary part of \( fct \).

\[ \text{evalc}(\text{conjugate}(fct)); \]
\[ \sin x \cdot \cosh y - I \cdot \cos x \cdot \sinh y \]

Find complex conjugate.

\[ fct1 := (x+I*y)/(x-I*y); \]
\[ fct1 := x + I \cdot y \]

Define another complex expression.

\[ \text{evalc}(fct1); \]
\[ x^2 \cdot y^2 - y^2 \cdot x^2 + y^2 \cdot x^2 + y^2 \]

Recast \( fct1 \) in form \( a + ib \).

\[ \text{evalc}(\text{abs}(fct1)); \]
\[ \sqrt{(x^2 + y^2 - y^2 \cdot x^2 + y^2)^2 + 4 \cdot y^2 \cdot x^2 / (x^2 + y^2)^2} \]

Find complex absolute value of \( fct1 \).

\[ \text{simplify}(\%); \]
\[ 1 \]

Simplify it.

\[ \text{evalc}(\text{argument}(fct1)); \]
\[ \arctan\left(\frac{2 \cdot y \cdot x}{x^2 + y^2} \cdot \frac{x^2}{x^2 + y^2} - \frac{y^2}{x^2 + y^2}\right) \]

Find complex argument of \( fct1 \).

\[ \text{simplify}(\%); \]
\[ \arctan(2y \cdot x, x^2 - y^2) \]

Simplify it.

\[ fct3 := x + I \cdot y; \]
\[ fct3 := x + iy \]

Define a complex number.

\[ fct4 := \text{polar}(fct3); \]
\[ fct4 := \text{polar}(|x + I \cdot y|, \text{argument}(x + I \cdot y)) \]

Convert to polar form, yielding an expression that is not particularly revealing.\(^{30}\) \text{evalc} alone is useless.

\[ \text{evalc}(fct4); \]
\[ x + Iy \]

Map \text{evalc} over the operands to achieve the desired reexpression.

\[ \text{r*exp(I*theta)}; \]
\[ r \cdot e^{i \theta} \]

Define another complex number.

\[ \text{evalc}(\%); \]
\[ r \cdot \cos \theta + I \cdot r \cdot \sin \theta \]

Convert to form \( a + ib \).

Restart MAPLE. (See item 6 in Section 7.1.)

\(^{30}\)In some versions of MAPLE (or in some configurations), the command \text{polar} may not be available until the statement \text{readlib(polar)} has been executed.
We have, of course, only mentioned some (evalc, Re, Im, conjugate, abs, argument, polar) of the functions MAPLE makes available for manipulating complex numbers. Significantly, we have also introduced the command map for processing each part of an expression with the same function, and we have seen additional contexts in which the command simplify can be valuable. You should make it a point to read about these functions and any associated special arguments in the MAPLE manuals.

7.8.4 ... for Trigonometry

MAPLE also makes available a number of commands and functions for manipulating with trigonometric, hyperbolic, and exponential functions. Note, for example, the capabilities illustrated in the statements

\[ > \text{trig1} := \sin(x) \cdot \cos(x); \]

\[ > \text{convert( } \text{trig1, exp } ); \]

\[ -\frac{1}{2} I \left( e^{ix} - e^{-ix} \right) \left( \frac{1}{2} e^{ix} + \frac{1}{2} e^{-ix} \right) \]

\[ > \text{simplify( evalc( convert(%, trig) ) );} \]

\[ \sin x \cos x \]

\[ > \text{combine( trig1 );} \]

\[ \frac{1}{2} \sin(2x) \]

\[ > \text{expand( } \% \text{ );} \]

\[ \sin x \cos x \]

\[ > \text{trig2} := \sin(2x+y); \]

\[ > \text{expand( trig2 );} \]

\[ 2 \cos y \sin x \cos x + 2 \sin y \cos^2 x - \sin y \]

\[ > \text{expand( trig2, 2x );} \]

\[ \sin(2x) \cos y + \cos(2x) \sin y \]

\[ > \text{expand( } \% \text{ );} \]

\[ 2 \cos y \sin x \cos x + 2 \sin y \cos^2 x - \sin y \]

\[ > (\cos(x)+\sin(x))^2; \]

\[ (\sin x + \cos x)^2 \]

\[ > \text{expand( } \% \text{ );} \]

\[ \cos^2 x + 2 \cos x \sin x + \sin^2 x \]

\[ > \text{simplify( } \% \text{ );} \]

\[ 2 \sin x \cos x + 1 \]

\[ > \text{combine( } \% \text{ );} \]

\[ \sin(2x) + 1 \]

To illustrate the use of a loop once again, let us create a list of the values of the sine of integer multiples of $\pi/2$. We use the statements

\[ > a := \text{Array( 1..10 )}; \]

\[ > \text{for } i \text{ from 1 to 10 do a[i] := i-1; end do;} \]

\[ > a; \]

\[ [0 1 2 3 4 5 6 7 8 9] \]

\[ > \text{map( } x \to \sin(\pi x/2), a ); \]

\[ [0 1 0 -1 0 1 0 -1 0 1] \]

Restart MAPLE. (See item 6 in Section 7.1.)
We have, of course, only mentioned a few (\texttt{convert}, \texttt{expand}, \texttt{combine}, \texttt{evalc}, and \texttt{simplify}) of the functions \textsc{maple} makes available for doing trigonometry. Additionally, we have seen two more second arguments for \texttt{convert} (\texttt{exp} and \texttt{trig}), and we have seen additional contexts in which the commands \texttt{Array} and \texttt{map} are useful. You should make it a point to read about these commands and any special arguments in the \textsc{maple} manuals.

7.8.5 ... for Algebraic Equations

We turn next to illustrating a few \textsc{maple} commands for manipulating expressions algebraically. To define a polynomial and find its roots, for example, we would use statements like

\begin{verbatim}
> poly := \texttt{expand}( (x^2-a^2) * (x+3)^2 ) ;
> soln := \texttt{solve( \{poly = 0\}, \{x\} )} ;
\end{verbatim}

Define a polynomial.

\begin{verbatim}
soln := \{x = -a\}, \{x = a\}, \{x = -3\}, \{x = -3\}
\end{verbatim}

Solve the equation $poly = 0$ for $x$. There are four roots, though two of them are identical. We could alternatively submit the statement $\texttt{solve( \{poly\}, \{x\} )}$; in which case \textsc{maple} would have understood the equation to be $poly = 0$ and returned the same output.

Note that the arguments to the command \texttt{solve} are \texttt{sets}, and that the roots have been returned as a \texttt{sequence} of sets—a behavior that would seem more reasonable had we been solving a system of equations for more than one unknown. In the simple case of a single equation and a single unknown, the braces can be omitted, as in

\begin{verbatim}
> soln1 := \texttt{solve( poly=0, x )} ;
soln1 := -a, a, -3, -3
\end{verbatim}

With this form, \textsc{maple} returns the roots as a simple sequence.

Of course, once we have obtained the roots, we should verify their correctness by backsubstitution into the original equation. To do so, we would execute statements like

\begin{verbatim}
> eval( poly, x = -a ) ;
0
> for rt from 1 to 4 do
\quad \texttt{eval( poly, soln[rt] ) ; end do ;}
\end{verbatim}

Verify first root.

\begin{verbatim}
0
\end{verbatim}

Verify all roots, using the \texttt{for do/end do} structure to code a loop. Alternatively, we could have used the statement

\begin{verbatim}
for rt in soln do
\quad \texttt{eval( poly, rt ) ; end do ;}
\end{verbatim}

Perhaps the most famous of all solutions is that of a quadratic equation. The command \texttt{solve} clearly knows the quadratic formula, as illustrated by the statements

\begin{verbatim}
> a*x^2 + b*x + c : 
> \texttt{solve( \{\%\}, \{x\} ) ;}
\end{verbatim}

Supply a quadratic expression.

\begin{verbatim}
\begin{cases} x = \frac{1 - b + \sqrt{b^2 - 4ac}}{2a} \\
\quad \text{or} \\
\begin{cases} x = \frac{1 - b - \sqrt{b^2 - 4ac}}{2a} \\
\end{cases} \end{cases}
\end{verbatim}

Solve $ax^2 + bx + c = 0$ for $x$. Note again that the roots have been returned as a sequence of sets.

\begin{verbatim}
> eval( \%, \{a=3, b=4, c=2\} ) ;
\end{verbatim}

Evaluate solution with indicated values of $a$, $b$, and $c$.
We can, of course, always ask for floating point evaluations with the command `evalf`, finding here that

\[
\begin{align*}
\{ &x = -0.6666666667 + 0.4714052091 \}, \\
&\{ x = -0.6666666667 - 0.4714052091 \}
\end{align*}
\]

We have accepted the default value (10) of `Digits`, which controls the number of digits in the floating point values returned by `evalf`.

Finally, let us illustrate MAPLE’s capability to solve simultaneous linear equations. To define and solve a representative system, we invoke the statements

\[
\begin{align*}
&> \text{eqn1 := x - y = 4;} \\
&\quad \text{eqn1 := x - y = 4} \\
&> \text{eqn2 := x + y = 0;} \\
&\quad \text{eqn2 := x + y = 0} \\
&> \text{solve( \{eqn1,eqn2\}, \{x,y\} );} \\
&\quad \{ y = -2, x = 2 \}
\end{align*}
\]

Note yet again that each solution—here there is only one—is presented as a set.

\[
\begin{align*}
&> \text{eqn1 := a*x+b*y = e: eqn2 := c*x+d*y = f:} \\
&\quad \text{Try it with a more symbolic system.} \\
&> \text{solve( \{eqn1,eqn2\}, \{x,y\} );} \\
&\quad \left\{ \begin{array}{l}
\frac{bf - ed}{ad - cb}, y = \frac{af - ce}{ad - cb}
\end{array} \right. \\
&> \text{eqn1 := 'eqn1': eqn2 := 'eqn2':} \\
&\quad \text{Remove knowledge of eqn1, eqn2 from MAPLE’s memory.}
\end{align*}
\]

Restart MAPLE. (See item 6 in Section 7.1.)

We have, of course, only mentioned one (`solve`) of the functions MAPLE makes available for solving algebraic equations exactly. Your attention is drawn also to the function `fsolve` for finding solutions numerically and to the function `LinearSolve`, which is built to solve matrix equations of the form \( Ax = b \) and is contained in the supplementary package `LinearAlgebra`—a MAPLE feature more fully described in Section 7.8.6. You should make it a point to read about these functions in the MAPLE manuals, giving particular attention to the few environment variables whose values influence the behavior of the functions. Rootfinding is discussed in greater depth in Chapter 14.

### 7.8.6 ... for Manipulating Arrays

Vectors, arrays, and matrices represent numerous physical quantities. We have already seen in Section 7.7 how to create these objects. Once they have been created, MAPLE can manipulate these objects in the standard ways. Most of those capabilities, however, are not provided in MAPLE’s primary set of commands. Instead, they are provided in a separate package called the `LinearAlgebra` package. There are several ways to invoke these supplementary capabilities. We can anticipate use of one or more commands in the full package by adding the full package to the MAPLE environment with the statement\(^{31}\)

\[
\text{with( LinearAlgebra );}
\]

\(^{31}\)Terminated with a semicolon, this statement will display a list of all the commands contained in the package. To suppress that list, terminate the statement with a colon.
or we can anticipate use of a single command—say \texttt{Transpose}—in the package by adding that
command alone to the MAPLE environment with the statement

\begin{verbatim}
with( LinearAlgebra, Transpose );
\end{verbatim}

which identifies both the package (first argument) and the specific command (second argument) we
want;\(^{32}\) either way, the command is then available to us with the name \texttt{Transpose}, e.g.,

\begin{verbatim}
tran := Transpose( M );
\end{verbatim}

Alternatively (and without explicitly loading the entire package or some subset of its commands),
we can invoke a particular command within the package by using its full name, e.g.,

\begin{verbatim}
tran := LinearAlgebra[Transpose]( M );
\end{verbatim}

Packages will be more fully discussed in Section 7.9.

With this preamble, we are ready to illustrate some of MAPLE’s capabilities for manipulating
these objects. We begin by loading the package \texttt{LinearAlgebra}, defining a matrix, and evaluating
its transpose with the statements

\begin{verbatim}
> with( LinearAlgebra );
Load package LinearAlgebra.
> Mat1 := Matrix( 1..2, 1..2, [[1,2],[3,4]] );
Create Mat1.
> Mat1;
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
> Mat2 := Transpose( mat1 );
Evaluate transpose of Mat1.
> Mat2;
\begin{bmatrix}
1 & 3 \\
2 & 4 \\
\end{bmatrix}
\end{verbatim}

Then, we evaluate the inverse, the trace, and the determinant of the matrix with the statements

\begin{verbatim}
> MatrixInverse( Mat1 );
Evaluate inverse of Mat1. Note that the MatrixInverse command requires input of
data type Matrix; input of type Array will not work.
\begin{bmatrix}
-2 & 1 \\
3 & -1 \\
2 & -2 \\
\end{bmatrix}
> val1 := Trace( Mat1 );
Evaluate trace (sum of diagonal elements) of Mat1. Note that the Trace command will also work with objects of data type Array.
val1 := 5
> val2 := Determinant( Mat1 );
Evaluate determinant of Mat1. Note that the Determinant command will also work with objects of data type Array.
val2 := -2
\end{verbatim}

Other common manipulations include evaluating the standard matrix product and an element-
by-element product. The standard matrix product can be evaluated with the command \texttt{Multiply}
in the package \texttt{LinearAlgebra} using, for example, a statement like

\begin{verbatim}
> Multiply( Mat1, Mat2 );
Evaluate the result of ordinary matrix multiplication.
\begin{bmatrix}
5 & 11 \\
11 & 25 \\
\end{bmatrix}
\end{verbatim}

Element-by-element multiplication is a bit trickier. One might think that the operator \texttt{*} for com-
mutative multiplication could be used in a statement like

\begin{verbatim}
Additional commands in the package can be included as third, fourth, \ldots arguments.
\end{verbatim}
7.8. USING MAPLE . . .

> Mat1*Mat2;

but this statement generates an error message. The problem is that commutative multiplication of matrices—i.e., objects of data type Matrix—is not defined. Instead, the “matrices” to be multiplied must be stored with the data type Array. Thus, to achieve an element-by-element multiplication of two matrices, we use the succession of statements

> Arr1 := convert( Mat1, Array );

Create first array.

> Arr2 := convert( Mat2, Array );

Create second array.

> ArrProd := Arr1*Arr2;

Evaluate the result of element by element multiplication.

Since Arr2 is also the transpose of Arr1, one might think that Arr2 could be created with the statement Transpose(Arr1). Unfortunately, the output of the Transpose command has data type Matrix, not Array, even when the input to that command has data type Array. Paying careful attention to data types in this area is both difficult and important.

Finally, MAPLE—more specifically, MAPLE’s package LinearAlgebra—includes functions for finding eigenvalues and eigenvectors, which we illustrate with the statements

> a := 1/sqrt(2):
> spinx := Matrix([ [0,a,0], [a, 0,a], [0, a, 0] ]);

Enter a matrix bound to the variable spinx.

(Multiline statements are achieved by typing the carriage return without a ';' or a ':;')

> (e,v) := Eigenvectors( spinx );

Find eigenvectors and eigenvalues. Note that the eigenvectors may be returned in your context with a different normalization than those shown here.

Since there are three eigenvalues, the output of Eigenvectors consists of a vector e—data type Vector_column—of the eigenvalues and a matrix—data type Matrix—in which the n-th column contains the eigenvector corresponding to the n-th eigenvalue. Note that the eigenvectors as returned by Eigenvectors are not normalized; the function Normalize (which requires input having data type Vector) in the package LinearAlgebra returns a normalized vector when given an unnormalized one. For example we can extract the first eigenvector from v and normalize it with the statements

> Normalize( Column(v,1), Euclidean );

Restart MAPLE. (See item 6 in Section 7.1.)
We have, of course, only mentioned a few (Transpose, MatrixInverse, Trace, Determinant, Eigenvectors, Normalize, Column) of the functions available in the package LinearAlgebra for manipulating matrices. Important additional functions in this package include Add, CrossProduct, DeleteColumn, DeleteRow, DotProduct, Eigenvalues, IdentityMatrix, LinearSolve, MatrixAdd, MatrixMatrixMultiply, MatrixScalarMultiply, Row, SubMatrix, VectorAdd, VectorMatrixMultiply, VectorScalarMultiply, ZeroMatrix, and ZeroVector. You should make it a point to read about these functions and any associated arguments in the MAPLE manuals.

7.8.7 ... for Basic Calculus

Differentiation, indefinite and definite integration, and determination of series representations of symbolic expressions are also among MAPLE’s capabilities. To evaluate derivatives and integrals, for example, we would use statements like

\[ fct := x^2 \exp(-x^2); \]

Enter an expression.

\[ \text{diff}( fct, x ); \]

Differentiate it with respect to \( x \).

\[ \int ( fct, x ); \]

Evaluate indefinite integral on \( x \). Note that, in more recent versions of MAPLE, the \text{int} command incorporates the following \text{simplify} automatically.

\[ \text{simplify}( \% ); \]

Simplify result to return to the original expression.

\[ \text{simplify}( \text{diff}( fct, x^2 ) ); \]

Differentiate expression twice with respect to \( x \) and simplify the result. Note the special use of the character \$ as a sequence operator.

\[ \text{assume}( a, \text{positive} ); \]

Prevent MAPLE from treating \( a \) as complex.\textsuperscript{33}

Enter another expression.

\[ \int ( fct, x=0\ldots\infty ); \]

Evaluate definite integral on \( x \) from \( x = 0 \) to \( x = +\infty \). The tilde flagging the \( a \) reminds us that an assumption applies to that variable.

\[ \text{simplify}( \% ); \]

Finally, (for this section), we point out that MAPLE can generate series expansions of prescribed functions. To illustrate, we ask MAPLE to process the statements

\textsuperscript{33}The command \text{assume} is extremely versatile. We shall return to it in Section 7.18. Note right now, however, that any variable that is the object of an assumption will be flagged by MAPLE with a suffixed tilde, as shown in this result. Adding assumptions to a variable already so identified must be done with the command \text{additionally}, since using \text{assume} again will replace previous assumptions with the new ones. The command \text{about}(\text{VariableName}) will provide a report revealing current assumptions. These commands and a means to suppress the flagging of variables that are affected by an assumption are more fully discussed in Section 7.18.
> 1/(1+exp(-x));
\[
\frac{1}{1+e^{-x}}
\]
Enter yet another expression.

> ser := taylor( %, x=0, 7 );

\[
\text{ser} := \frac{1}{2} + \frac{1}{4}x - \frac{1}{48}x^3 + \frac{1}{480}x^5 + O(x^7)
\]

Expand the expression in a Taylor series in \( x \) about \( x = 0 \), retaining terms up to (but not including) those of 7-th order in \( x \). Note here that the coefficients of the terms in \( x^2, x^4, \) and \( x^6 \) are all zero. (The default—controlled by the environment variable \texttt{Order}—is 6-th order.)

Occasionally, we may need to find a power series expansion in more than one variable. Paralleling the command \texttt{taylor}, MAPLE also provides the command \texttt{mtaylor} for finding multivariate Taylor series. For example, the statement

\[
> \text{mtaylor}( 1/\sqrt{1+x+y}, \{x=2,y=0\}, 3 );
\]

\[
\frac{1}{3}\sqrt{3} - \frac{1}{18}\sqrt{3}y - \frac{1}{18}\sqrt{3}(x-2) + \frac{1}{72}\sqrt{3}y^2 + \frac{1}{36}\sqrt{3}(x-2)y + \frac{1}{72}\sqrt{3}(x-2)^2
\]
generates a two-dimensional Taylor series about the point \( x = 2, y = 0 \), expanding to include terms through those second-order in the variables.

One warning about series is in order. While a series displays on the screen as an algebraic expression, internally its form differs from that of many other expressions. The statements

\[
> \text{whattype}( \text{ser} );
\]

\[
\text{series}
\]

\[
> \text{op}( \text{ser} );
\]

\[
\frac{1}{2}, 0, \frac{1}{4}, 1, -\frac{1}{48}, 3, \frac{1}{480}, 5, O(1), 7
\]

reveal that the expression type of a series is \texttt{series} and that the series itself is stored as a sequence of \texttt{pairs} of values. The first member of each pair is the coefficient of a particular term in the series and the second member of each pair is the power of the variable in that term. That variable itself is stored as part 0 of the series, as revealed by the statement

\[
> \text{op}( 0, \text{ser} );
\]

\[
x
\]

For some operations, it may be necessary to convert the series into a polynomial with the statement

\[
> \text{pol} := \text{convert}( \text{ser}, \text{polynom} );
\]

\[
\text{pol} := \frac{1}{2} + \frac{1}{4}x - \frac{1}{48}x^3 + \frac{1}{480}x^5
\]

\[
> \text{whattype}( \text{pol} );
\]

\[
+\]

\[
> \text{op}( \text{pol} );
\]

\[
\frac{1}{2}, \frac{1}{4}x, -\frac{1}{48}x^3, \frac{1}{480}x^5
\]

\[34\text{In some versions of MAPLE (or in some configurations), the command } \texttt{mtaylor} \text{ may not be available until the statement } \texttt{readlib( mtaylor )} \text{ has been executed.}\]
Note that the omitted terms in the series are not indicated in \texttt{pol} and that \texttt{pol} has expression type \texttt{+}. Further, compare the difference between the \textit{series} storage as revealed by the statement \texttt{op(ser)} and the \textit{polynomial} storage as revealed by the statement \texttt{op(pol)}.

Beyond differentiation, integration, and evaluation of series, MAPLE is able to evaluate limits with statements like

\begin{verbatim}
> limit( sin(b*x)/x, x = 0 );
\end{verbatim}

\begin{verbatim}
> limit( (3*x^2+b^2)/(x^2-c^2), x = infinity );
\end{verbatim}

Restart MAPLE. (See item 6 in Section 7.1.)

The commands for evaluating derivatives, integrals, and limits (and a few other commands) actually have two different forms. In the above illustrations we have used only the forms \texttt{diff}, \texttt{int}, and \texttt{limit}. Sometimes, we may want instead to use the forms \texttt{Diff}, \texttt{Int}, and \texttt{Limit}. As we have seen in the above, the commands beginning with a \textit{lower}-case letter will result in immediate evaluation of any derivatives or integrals that \textit{can} be evaluated. In contrast, the commands beginning with an \textit{upper}-case letter—called in Maple jargon the \textit{inert} forms of the commands—will suppress evaluation of derivatives until a later time when that evaluation is explicitly requested. To illustrate the difference, suppose we define the function

\begin{verbatim}
> f := y -> a * sin( omega * y );
f := y \rightarrow a \sin(\omega y)
\end{verbatim}

Then, the two statements

\begin{verbatim}
> diff( f(y), y );
\end{verbatim}

\begin{verbatim}
> d1 := Diff( f(y), y );
\end{verbatim}

reveal the difference.\footnote{Some versions of MAPLE use \texttt{d} rather than \texttt{\partial} to convey a derivative.} In the first, the derivative is evaluated; in the second, it is left unevaluated. At some later time, we could evaluate the derivative in this last expression with the statement

\begin{verbatim}
> value( d1 );
\end{verbatim}

The behavior of \texttt{int} and \texttt{Int} and of \texttt{limit} and \texttt{Limit} parallels that described for \texttt{diff} and \texttt{Diff}.

We have, of course, only mentioned a few (\texttt{diff}, \texttt{Diff}, \texttt{int}, \texttt{Int}, \texttt{taylor}, \texttt{limit}, \texttt{Limit}) of the numerous functions MAPLE makes available for doing calculus. Important additional functions include \texttt{series} and \texttt{asympt}. Further, additional functions and embellishments of some of those functions we have mentioned are components in the packages \texttt{student}, \texttt{DEtools}, and \texttt{PDEtools}. You should make it a point to read about these functions and packages in the MAPLE manuals.
7.8. USING MAPLE ...

7.8.8 ... for Laplace Transforms

In Section 1.5.2, we defined the Laplace transform \( \tilde{f}(s) \) of a function \( f(t) \) by the integral

\[
\tilde{f}(s) = \int_0^\infty e^{-st} f(t) \, dt
\]

(7.1)

and showed a number of the properties exhibited by this integral transform. Among other properties, the Laplace transform has the capacity to convert a linear, ordinary differential equation into a linear algebraic equation for the Laplace transform of the solution. Thus, as we shall see in greater detail in Chapter 11, one effective strategy for solving a linear ordinary differential equation is to take its Laplace transform, solve the resulting algebraic equation for that transform, and then invert that transform to return from the \( s \)-space of the transform to the \( t \)-space (time-space) of the original problem. The initial conditions are automatically incorporated in this approach. Note, unfortunately, that inverting the Laplace transform of the solution to find the solution itself is rarely easy.

Within MAPLE, an assortment of integral transforms is provided in the supplementary package \texttt{inttrans}. In particular the function \texttt{laplace} in that package will calculate a Laplace transform and the function \texttt{invlaplace} will invert a transform to return to the original space. We illustrate the use of those functions with the statements

\[ \texttt{with( inttrans ):\texttt{ }} \]

\[ \texttt{laplace( sin(omega*t), t, s );} \]

\[ \frac{\omega}{s^2 + \omega^2} \]

\[ \texttt{sin(omega*t)} \]

\[ \texttt{invlaplace( \% \text{, s \text{, t} \text{)} ;}} \]

\[ \sin(\omega t) \]

\[ \texttt{laplace( exp(-a*t), t, s );} \]

\[ \frac{1}{s + a} \]

\[ \texttt{invlaplace(1/( (s+a)*(s+b) \text{, s \text{, t} \text{)} ;}} \]

\[ -\frac{e^{-at}}{a - b} + \frac{e^{-bt}}{a - b} \]

Restart MAPLE. (See item 6 in Section 7.1.)

7.8.9 ... for Ordinary Differential Equations

Among MAPLE's strongest suits is its ability to solve ordinary differential equations (ODEs). We will postpone introducing the more sophisticated of those capabilities until Chapter 11, limiting ourselves now to a quick illustration of the simplest of them. We first tell MAPLE the differential equation. For the sake of a specific example, we here choose the motion of an object of mass \( m \) attached to a spring having constant \( k \) and to a dashpot (shock absorber) having damping constant \( b \). The appropriate equation of motion is communicated to MAPLE with the statement

\[ \texttt{deq1 := m*Diff(x(t),t$2) + b*Diff(x(t),t) + k*x(t) = 0;} \]

\[ \texttt{deq1 := m \frac{\partial^2 x(t)}{\partial t^2} + b \frac{\partial x(t)}{\partial t} + k x(t) = 0} \]
Here \( \text{Diff}(x(t), t^2) \) specifies the second derivative of \( x \) with respect to \( t \) while \( \text{Diff}(x(t), t) \) specifies the first derivative.\(^{36}\) Next, to solve the equation for \( x \) as a function of \( t \), we submit the statement

\[
> \text{soln} := \text{dsolve( deq1, x(t) )};
\]

\[
soln := x(t) = C_1 e^{\left(-\frac{1}{2} \frac{(b + \sqrt{b^2 - 4km})t}{m}\right)} + C_2 e^{\left(-\frac{1}{2} \frac{(b - \sqrt{b^2 - 4km})t}{m}\right)}
\]

Here, \text{dsolve} has used the symbols \( C_1 \) and \( C_2 \) for the initially undetermined integration constants in the solution to a second-order differential equation.

In response to the simple statement we have used, however, MAPLE has blindly written a solution that is mathematically correct but has not recognized that the most convenient form of this solution will depend on the algebraic sign of the quantity under the square root in the two exponents. There are three cases:

1. \( b^2 > 4km \) (overdamped), in which case the square roots are real and both terms have real—though in both cases decaying—exponentials.
2. \( b^2 = 4km \) (critically damped), in which case the two terms are the same and MAPLE has returned only one solution when the general solution should be a linear superposition of two linearly independent solutions. The returned solution is mathematically correct, but we must carefully evaluate the limit as \( b^2 \) approaches \( 4km \) to extract a more transparent form.
3. \( b^2 < 4km \) (underdamped), in which case the square roots are imaginary and the complex exponentials that then appear would more appropriately be written in terms of sines and cosines of real arguments, each multiplied by the decaying exponential \( e^{-bt/2m} \).

To achieve a more appropriate form in the case of underdamped motion, we need to tell MAPLE ahead of time that \( b^2 < 4km \), an end accomplished with the statement

\[
> \text{assume}( b^2 < 4*k*m );
\]

Then, the statement we used above to solve \text{deq1}, namely

\[
> \text{soln} := \text{factor( dsolve( deq1, x(t) ) )};
\]

will return the result

\[
soln := x(t) = e^{\left(-\frac{1}{2} \frac{bt}{m}\right)} \left( C_1 \cos \left( \frac{1}{2} \frac{\sqrt{-b^2 + 4km}}{m} t \right) + C_2 \sin \left( \frac{1}{2} \frac{\sqrt{-b^2 + 4km}}{m} t \right) \right)
\]

expressed in terms of the sines and cosines of real arguments. (Similar simpler expressions for the critically and overdamped cases are deduced in the exercises.)

We, of course, are not finished until we have imposed suitable initial conditions on the solution. To do so, we determine \( C_1 \) and \( C_2 \) to reflect the simple assumption that the motion is started by drawing the oscillator aside and releasing it from rest, i.e., that

\[
x(0) = x_0 ; \quad \frac{dx}{dt}(0) = 0 \quad (7.2)
\]

Then, we find the constraints imposed on the integration constants with the statements

\(^{36}\) We use the inert form \text{Diff} rather than the evaluated form \text{diff} simply as a safeguard in case we had previously assigned a \( t \)-dependent meaning to the symbol \( x(t) \). Most of the time, we need not be that careful, and the function \text{diff} would work equally well.
7.8. USING MAPLE ...

> eq1 := eval( rhs(soln), t=0 ) = x0;

\[ eq1 := C_1 = x_0 \]

> eq2 := eval( diff(rhs(soln),t), t=0 ) = 0;

\[ eq2 := -\frac{1}{2} \frac{b^* C_1}{m} + \frac{1}{2} \frac{C_2 \sqrt{-b^* t + 4k^* m}}{m} = 0 \]

and solve the resulting equations for the two integration constants with the statement

> solve( {eq1,eq2}, {C_1,C_2} );

\[ \begin{align*}
C_1 &= x_0, \\
C_2 &= \frac{b^* x_0}{\sqrt{-b^* t + 4k^* m}}
\end{align*} \]

Finally, we insert these values of the integration constants into the original solution with the statement

> soln := eval( soln, % );

\[
x(t) = e^{-\left( \frac{1}{2} \frac{b^* t}{m} \right)} \left( x_0 \cos \left( \frac{1}{2} \frac{\sqrt{-b^* t + 4k^* m} t}{m} \right) + \frac{b^* x_0 \sin \left( \frac{1}{2} \frac{\sqrt{-b^* t + 4k^* m} t}{m} \right)}{\sqrt{-b^* t + 4k^* m}} \right)
\]

We leave it to the reader to use MAPLE to verify that this solution in fact satisfies the original equation and the imposed initial conditions.

The same result could have been obtained more quickly by specifying the initial conditions in the arguments submitted to dsolve in the first place. The more comprehensive statement

> soln1 := dsolve( {deq1, x(0)=x0, D(x)(0)=0}, x(t) );

would have resulted in substantially the same output. Here, the single-character operator D conveys the derivative of the solution to dsolve, i.e., D(x)(0) means the derivative of x(t) with respect to t evaluated at t = 0. Note specifically that the equation and initial conditions have here been presented to dsolve as a set.

Whichever of the three cases applies, we can give the solution a somewhat simpler form by introducing a couple of new quantities. In particular, for the underdamped solution soln above, let us introduce the quantity \( \gamma = b/2m \) with the statement

> soln1 := subs( b=2*m*gamma, soln );

then introduce the quantity \( \omega \) satisfying \( km - m^2 \gamma^2 = m^2 \omega^2 \) with the statement

> soln2 := subs( k=m*(omega^2+gamma^2), soln1 );

and finally simplify the result with the statements

> soln3 := simplify(soln2, assume=positive );
We discover in this shorthand notation that

\[ \text{soln3} := x(t) = \frac{e^{-\gamma t}x_0 \left( \cos(\omega t) \omega + \gamma \sin(\omega t) \right)}{\omega} \]

In working its magic, `dsolve` actually invokes a succession of methods in turn until it finds one that works. We can learn more about the approach MAPLE takes to solving a particular ODE by instructing MAPLE to tell us more detail about what it is doing along the way, especially with respect to the command `dsolve`. The statement

```maple
> infolevel[dsolve] := 3:
```
requests that additional detail. To obtain that detail, however, we must reexecute the command that produced the solution with the statement

```maple
> dsolve(deq1, x(t));
```
This time, MAPLE presents the report before presenting the solution we obtained earlier. We learn that MAPLE has determined that the equation is a linear equation with constant coefficients and then applied the method that it knows to work in those circumstances.

Much of our manipulation in the above illustration would have been simplified if we had expressed the original equation in dimensionless form before seeking its solution. To that end, we might have submitted the statements

```maple
> restart:
> deq1 := m*Diff(x(t),t$2) + b*Diff(x(t),t) + k*x(t) = 0;
> deq2 := subs(k = m*omega[0]^2, deq1);
> deq3 := PDEtools[dchange](t = tau/omega[0], deq2, [tau]);
```
Remembering that \( \omega_0^2 = k/m \), where \( \omega_0 \) is the natural frequency of the oscillator, forsake \( k \) in favor of \( \omega_0 \) and \( m \).

Next, we change the independent variable to \( \tau = \omega_0 t \) by invoking the command `dchange` from the package `PDEtools` with the statement

```maple
> deq4 := PDEtools[dchange](t = tau/omega[0], deq2, [tau]);
```

Note that the tildes flagging variables on which assumptions have been imposed have disappeared because the variables subject to explicit assumptions are no longer present in the expression.

Different versions of MAPLE may present different reports.
In this statement, the first argument specifies the old variable as a function of the new variable, the second argument identifies the differential equation to be transformed, and the third argument—a list (which explains the square brackets)—identifies the new variables. We continue in this simplification by introducing the single symbol $\beta$ for the combination $b / (m \omega_0)$ with the statement

\[ deq4 := \text{subs}( b = \beta \cdot m \cdot \omega_0[0], deq3 ); \]

\[ deq4 := m \omega_0^2 \left( \frac{\partial^2}{\partial \tau^2} x(\tau, \omega_0) \right) + \beta m \omega_0^2 \left( \frac{\partial}{\partial \tau} x(\tau, \omega_0) \right) + m \omega_0^2 x(\tau, \omega_0) = 0 \]

Finally, we divide out and cancel the common factor $m \omega_0^2$ and replace $x(\tau, \omega_0)$ with a simpler function $y(\tau)$ by executing the statements

\[ deq5 := \text{factor}( deq4 ) / (m \cdot \omega_0[0]^2); \]

\[ deq5 := \left( \frac{\partial^2}{\partial \tau^2} x(\tau, \omega_0) \right) + \left( \frac{\partial}{\partial \tau} x(\tau, \omega_0) \right) \beta + x(\tau, \omega_0) = 0 \]

\[ deq6 := \text{subs}( x(\tau, \omega_0[0]) = y(\tau), deq5 ); \]

\[ deq6 := \frac{\partial^2 y(\tau)}{\partial \tau^2} + \beta \frac{\partial y(\tau)}{\partial \tau} + y(\tau) = 0 \]

At this point, we have swallowed all of the dimensional constants either into a rescaling of the time ($\tau = \omega_0 t$) or into a single dimensionless parameter ($\beta = b / (m \omega_0)$). We could, of course, rescale what was originally $x(t)$ and is now $y(\tau)$ to some chosen dimensionless quantity, but the equation is linear in this quantity and we can simply interpret the equation as it stands in those terms. We would then solve the equation as before with the statement$^{39}$

\[ \text{assume}( \beta < 2, \beta > 0 ); \]
\[ \text{soln} := \text{expand}( \text{dsolve}( \{ deq6, y(0) = y[0], D(y)(0) = 0 \}, y(\tau) ) ); \]

\[ \text{soln} := y(\tau) = y_0 \beta^{-\frac{1}{2}} \sin \left( \frac{1}{2} \sqrt{4 - \beta^{-2}} \tau \right) + y_0 e^{-\frac{1}{2} \beta^{-2} \tau} \cos \left( \frac{1}{2} \sqrt{4 - \beta^{-2}} \tau \right) \]

Restart MAPLE. (See item 6 in Section 7.1.

We leave it to the reader to show—perhaps using MAPLE—that this solution is a dimensionless form of the dimensional result obtained earlier in this section.

We have, of course, mentioned only the command \texttt{dsolve} as a function for solving ordinary differential equations, and we have introduced the command \texttt{dchange} in the package \texttt{PDEtools} for changing variables in differential equations and the command \texttt{infolevel} for controlling the amount of information MAPLE provides about its workings behind the scenes. We have also seen additional contexts in which the commands \texttt{assume}, \texttt{eval}, \texttt{rhs}, \texttt{solve}, \texttt{subs}, \texttt{simplify}, \texttt{factor}, and \texttt{expand} are useful. Your attention is drawn to the packages \texttt{DEtools} (and especially to the function \texttt{odeadvisor} in that package) and to the (rest of the) package \texttt{PDEtools}, which contain additional functions for obtaining solutions to differential equations and for displaying their characteristics. You should make it a point to read about these functions in the MAPLE manuals.

$^{39}$Here, the assumption $\beta < 2$ is equivalent to the assumption $b / (m \omega_0) = b / (m \sqrt{k/m}) < 2$ or $b^2 / mk < 4$ or $b^2 < 4mk$. Thus, the \textit{dimensionless} inequality $\beta < 2$ here is exactly equivalent to the \textit{dimensional} inequality $b^2 < 4km$ that appeared earlier in this section.
7.8.10 for Vector Calculus

By including the package VectorCalculus (see Section 7.9), MAPLE makes available several commands to facilitate vector calculus. Once this package has been added with the statement

\[
> \text{with( VectorCalculus )};
\]
	numerous commands, including in particular the commands

- **Gradient**, **Divergence**, **Curl**, and **Laplacian** for the gradient, divergence, curl, and Laplacian, respectively. As illustrated in the rest of this section, the **Gradient** and **Laplacian** adopt one way to convey the coordinate system and associated variable names while the **Divergence** and **Curl** utilize a different approach.
- **SetCoordinates** and **GetCoordinates** for specifying and revealing the coordinate system.
- **VectorField** for specifying the components of a vector field.

We begin this illustration by defining scalar quantities in each of the three common coordinate systems with the statements

\[
> \text{scar := } x^2 + y^2 + z^2;
\]

\[
\text{scar} := x^2 + y^2 + z^2
\]

Define a scalar in Cartesian coordinates.

\[
> \text{scyl := } r^2 + z^2;
\]

\[
\text{scyl} := r^2 + z^2
\]

... cylindrical coordinates.

\[
> \text{ssph := } r^2;
\]

\[
\text{ssph} := r^2
\]

... spherical coordinates.

Then, we evaluate the gradients with the statements

\[
> \text{Gradient( scar, 'cartesian'[x,y,z]);}
\]

\[
2x \hat{e}_x + 2y \hat{e}_y + 2z \hat{e}_z
\]

Evaluate \( \nabla \) in Cartesian coordinates.

\[
> \text{Gradient( scyl, 'cylindrical'[r,phi,z]);}
\]

\[
2r \hat{e}_r + 2z \hat{e}_z
\]

... cylindrical coordinates.

\[
> \text{Gradient( ssph, 'spherical'[r,theta,phi]);}
\]

\[
2r \hat{e}_r
\]

... spherical coordinates.

Here, \( \hat{e}_r \) represents a unit vector in the coordinate direction conveyed by the subscript. Continuing, we evaluate the Laplacian with the statements

\[
> \text{Laplacian( scar, 'cartesian'[x,y,z]);}
\]

\[
6
\]

Evaluate \( \nabla^2 \) in Cartesian coordinates.

\[
> \text{Laplacian( scyl, 'cylindrical'[r,phi,z]);}
\]

\[
6
\]

... cylindrical coordinates.

\[
> \text{Laplacian( ssph, 'spherical'[r,theta,phi]);}
\]

\[
6
\]

... spherical coordinates.

In each case, the second argument specifies both the coordinate system and the variable to be used for the coordinates. Among the multitude of available two-dimensional coordinate systems are cartesian, polar, elliptical, and hyperbolic; among the multitude of available three-dimensional systems are cartesian, cylindrical, spherical, conical, and bispherical. Note also that the coordinate system assumed by default is cartesian. The statement

\[
\text{GetCoordinates();}
\]

will report the current default system while the statement

\[
\text{SetCoordinates( '⟨Coordinate Name⟩'[, '⟨Variables⟩)];}
\]
will set the default to the specified name and variables.

Functions evaluating the divergence and the curl are a bit more tricky. First the single input to each of these commands must be a vector field, which we define in the three common coordinate systems with the statements

\[ \texttt{vcar := VectorField( \langle x, y, z \rangle, 'cartesian'[x,y,z] );} \]
\[ \texttt{vcar := x \hat{e}_x + y \hat{e}_y + z \hat{e}_z} \]
\[ \texttt{vcyl := VectorField( \langle r, 0, z \rangle, 'cylindrical'[r,phi,z] );} \]
\[ \texttt{vcyl := r \hat{e}_r + z \hat{e}_z} \]
\[ \texttt{vsph := VectorField( \langle r, 0, 0 \rangle, 'spherical'[r,theta,phi] );} \]
\[ \texttt{vsph := r \hat{e}_r} \]

In this case, the coordinate system and variables applicable to each field must be explicitly stated as attributes of the field. The divergence of each of these fields is now evaluated with the statements

\[ \texttt{Divergence( vcar );} \]
\[ \texttt{3} \]
\[ \texttt{Divergence( vcyl );} \]
\[ \texttt{3} \]
\[ \texttt{Divergence( vsph );} \]
\[ \texttt{3} \]

and, finally, the curl of each is evaluated with the statements

\[ \texttt{Curl( vcar );} \]
\[ \texttt{0 \hat{e}_x} \]
\[ \texttt{Curl( vcyl );} \]
\[ \texttt{0 \hat{e}_r} \]
\[ \texttt{Curl( vsph );} \]
\[ \texttt{0 \hat{e}_r} \]

Evidently, when all components of the curl are zero, MAPLE reports only the first component.

MAPLE can also evaluate these vector derivatives when the dependence in the first argument on the coordinates is not explicit. For example,\(^{40}\)

\[ \texttt{Laplacian( f(r,phi,z), 'cylindrical'[r,phi,z] );} \]
\[ \texttt{f_{rr}(r,\phi,z) + \frac{1}{r} f_r(r,\phi,z) + \frac{1}{r^2} f_{\phi\phi}(r,\phi,z) + f_{zz}(r,\phi,z)} \]

Remember that the independence of the mixed derivatives on the order in which the derivatives are evaluated is critical to use of this notation.

We have, of course, mentioned only the commands \texttt{Gradient}, \texttt{Divergence}, \texttt{Laplacian}, and \texttt{Curl} for working with coordinate dependent vectors and scalars, the command \texttt{VectorField} for creating a vector field with the proper attributes, and the commands \texttt{SetCoordinates} and \texttt{GetCoordinates} for defining and revealing the default coordinate system and variable names. The package \texttt{VectorCalculus} includes a wide variety of commands for a variety of other tasks involving manipulations with vectors and coordinate systems. You should make it a point to issue the statement that loads this package, read the resulting list of commands contained in the package, and look at the documentation on any of these commands that attract your attention.

\(^{40}\)For compactness, we have rearranged MAPLE’s output and used subscript notation for partial derivatives rather than the more cumbersome notation reported by MAPLE.
7.9 Packages

The packages {LinearAlgebra} introduced in Section 7.8.6, {inttrans} introduced in Section 7.8.8, and {DEtools} and {PDEtools} introduced in Section 7.8.9 are but four of numerous packages that can be read into MAPLE’s workspace to expand or modify the features available in the default version when MAPLE is first launched. Use of the command {PckgCommand} from the package {PckgName} requires either (1) explicit specification of the full “path” with the statement

\[
> \text{PckgName}[\text{PckgCommand}](\ldots);
\]

when the command is invoked, (2) prior incorporation of the specific command with the statement

\[
> \text{with( PckgName, PckgCommand );}
\]

or (3) prior incorporation of all the commands in the package with the statement

\[
> \text{with( PckgName );}
\]

With the second and third of these methods, the command itself can subsequently be invoked with the simple statement

\[
> \text{PckgCommand}(\ldots);
\]

A list of available packages will be displayed in response to the statement \(\text{?index, packages}\),\(^{41}\) information about a particular package will be displayed in response to the statement \(\text{?PckgName}\), and information about a particular command in a particular package will be displayed in response to the statement \(\text{?PckgName,PckgCommand}\). Your attention is drawn especially to the packages \{DEtools, group, inttrans, LinearAlgebra, numapprox, PDEtools, plots, plottools, Student, sumtools, tensor, Units, and VectorCalculus\}.

7.10 Loops, Logical Expressions, and Conditionals

Among the most ubiquitous programming structures is the loop, which provides a means by which a statement or block of statements can be executed some number of times, typically with small changes controlled by a loop index. Several such structures are available in MAPLE. The simplest is the \texttt{for...do...end do} loop, which we have already met in Sections 7.8.2, 7.8.4, and 7.8.5. Briefly, the statements

\[
> x := \{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \};
\]

\[
> x := [0,0,0,0,0,0,0,0,0,0]
\]

\[
> \text{for } i \text{ from 1 by 2 to 10 do } x[i] := i^2: \text{ end do:}
\]

\[
> x;
\]

\[
[1, 0, 9, 0, 25, 0, 49, 0, 81, 0]
\]

create a 10-element list of zeros and then assign the squares of the odd integers to the odd elements of that list. In this structure, the component \texttt{by} can be omitted, in which case the index—here \texttt{i}—will be incremented by 1 at each pass through the loop.

A more general, flexible loop structure is also available, though in some instances termination of the loop requires that the block of instructions in the loop must assume responsibility for changing the condition to a value that will stop the loop. The general syntax of these loops is

\[
\text{for } i \text{ from } \texttt{initial}\text{ by } \texttt{increment} \text{ to } \texttt{final} \text{ do } \texttt{block of instructions} \text{ end do}
\]

\(^{41}\text{Note that there is no space after the comma in this statement.}\)
for \langle variable \rangle from \langle start \rangle by \langle increment \rangle to \langle end \rangle \\
while \langle condition \rangle do \langle block of statements \rangle end do

More specifically, these loops are illustrated in the statements

\begin{verbatim}
> x := [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
> for i from 1 by 2 while i < 11 do x[i] := i^2: end do:
> x;
[1, 0, 9, 0, 25, 0, 49, 0, 81, 0]
> i := 1:
> while i < 11 do x[i] := i^3: i := i+2: end do:
> x;
[1, 0, 27, 0, 125, 0, 343, 0, 729, 0]
\end{verbatim}

As here suggested,

- The for, from, by, to, and while components can be omitted or included in any order (except that the for component, if present, must be first).\footnote{Omission of the from or by components will trigger the default values from 1 or by 1.}
- If the to component is omitted, then the block of statements must include statements that ultimately toggle \langle condition \rangle such that the loop terminates.

Note that, in all cases, the block of statements in this structure is enclosed between do and end do and the statements are separated by a colon or a semicolon, depending on whether output is to be produced or suppressed.

Finally, a word about composite conditions: The illustrations above made use of (single) conditions like \( i > 9 \), which will evaluate to true or false depending on the value of \( i \). Indeed, the MAPLE function evalb, for example,

\begin{verbatim}
> i := 5:
> [ evalb( i > 10 ), evalb( i < 10 ) ];
[false, true]
\end{verbatim}

allows the testing of a logical condition. The six logical operators =, <, >, <=, >=, and <> can be used for test for equal, less than, greater than, less than or equal, greater than, and unequal.

In some situations, one may need to (1) combine two or more conditions into a composite condition or (2) negate a condition. MAPLE makes available the logical operators and, or, xor (exclusive or), and not to facilitate combining conditions and negating conditions. More specifically, with \( \langle C1 \rangle \) and \( \langle C2 \rangle \) individual conditions

- \( \langle C1 \rangle \text{ and } \langle C2 \rangle \) will be true if \( \langle C1 \rangle \) and \( \langle C2 \rangle \) are both true and false otherwise,
- \( \langle C1 \rangle \text{ or } \langle C2 \rangle \) will be true if either \( \langle C1 \rangle \) or \( \langle C2 \rangle \) is true or both \( \langle C1 \rangle \text{ and } \langle C2 \rangle \) are true and false otherwise, and
- \( \langle C1 \rangle \text{ xor } \langle C2 \rangle \) will be true if either \( \langle C1 \rangle \) or \( \langle C2 \rangle \) is true and false if neither condition is or both are true, and
- \( \text{not } \langle C1 \rangle \) will be true if \( \langle C1 \rangle \) is false and false if \( \langle C1 \rangle \) is true.
> x := [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ];
> i := 1;
> while (i > 0 and i < 11) do x[i] := i^3: i := i+1: end do:
> x;

[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

illustrates a composite condition controlling the while statement. Note that parentheses around the composite condition can in this case be omitted, but they—and perhaps parentheses around some internal pieces—may be necessary in some cases.

Logical conditions appear not only to control loops but also to structure branches in a sequence of statements. As with most programming languages, MAPLE also possesses if/then/else constructs, though the else clause can be omitted if there is in that case nothing to be done. Thus, for example, the statement

for i from 1 to 10 do if x[i] < 0 then x[i] := -x[i]: end if: end do:

will replace each negative element in a list x with the corresponding positive value, the statement

for i from 1 to 10 do if x[i] > 10 then x[i] := 10: end if: end do:

will replace all values greater than 10.0 with the value 10.0, and the statement

if a >= 0 then b := a else b := -a; end if;

will set b equal to the absolute value of a (though the function abs will do so more easily). Multiple statements in either the then clause or the else clause will be separated by commas and enclosed within parentheses, as in

if ⟨condition⟩ then (⟨statement⟩, ⟨statement⟩, ... )
else (⟨statement⟩, ⟨statement⟩, ... ); end if

For selection among more than two options, the statement would have the form

if ⟨condition⟩ then ⟨block of statements⟩
      elsif ⟨condition⟩ then ⟨block of statements⟩
      : 
      else ⟨block of statements⟩;
      end if

All conditions may be single or composite.

As is the case in most languages, loops and conditional structures can be nested, though constructing the syntax correctly can sometimes be challenging.

7.11 Command Files

In addition to responding to statements supplied interactively at its prompt, MAPLE can read statements from a command file. To begin, we create a text file containing the desired statements just as they would be typed interactively. If the file is stored in the default directory, execution of the command(s) contained within it would then be specified by typing the statement

43See Section 7.17.2.
read "FileName";

in response to MAPLE's prompt for input. There is no default file type. Except when the file is in the default directory, the full path must be given to supplement the file name and type. Output generated by commands in the file will be displayed on the screen, but—by default—the commands themselves will not be displayed. The MAPLE environment available after the command file has been executed by this means is identical to the environment that would have existed had the statements been entered interactively.

Sometimes, creation of a command file facilitates repeated use of quantities not defined in standard MAPLE. Use of such a file can also facilitate the debugging of a sequence of statements, since—when an error is reported—we need only edit the file appropriately and resubmit it to MAPLE; repeated typing of the correct parts of the sequence is not then necessary. We could, for example, create the file testmultiply.mpl containing the statements

```maple
Command file testmultiply.mpl
#
Enter matrix
Mat1 := Matrix(1..2,1..2, [[1,2], [3,4]]);
Evaluate transpose
Mat2 := LinearAlgebra[Transpose](Mat1);
Evaluate matrix product
LinearAlgebra[Multiply](Mat1, Mat2);
Multiply element by element
Arr1 := Array([[1,2],[3,4]]);
Arr2 := Array([[1,3],[2,4]]);
ArrProd := Arr1*Arr2;
```

(The symbol # introduces a comment that continues from the position of the symbol to the end of the line.) Then, assuming that this file has been stored in the default directory, we would execute the statements it contains by submitting to MAPLE the statement

```maple
> read "testmultiply.mpl";
```

All output produced by the statements will be displayed on the screen but, with MAPLE's default configuration, none of the statements or comments in the file will be displayed.

At times, we might wish to see the statements and comments as the command file executes. To achieve that behavior, we simply set the echo characteristic of the interface between the program and the display device away from its default value of 1 to the value 2 with the statement

```maple
> interface(echo=2);
```

Once this statement has been executed, the output from the above read statement will include a display of the statements and comments in the file. (The statement `interface( echo=1 )` will restore the default behavior.)

Suppose, as a second example, that we frequently had two three-component lists defining two three-dimensional vectors and that we wanted to be able easily to evaluate their cross and dot products. We might create a command file containing the lines

---

44The author is accustomed to using the filetype .mpl. Only the type .m must be avoided, since that filetype will convey to the command read that the file contains information in MAPLE's internal (binary) format—i.e., that the file is a file created by MAPLE with the command save.

45See again Section 7.17.2.
# crossdot.mpl

# Command file to define functions to evaluate the cross # and dot products of two three-component lists.

cross := (a::list,b::list) ->
a[3]*b[1] - a[1]*b[3],

dot := (a::list,b::list) -> a[1]*b[1] + a[2]*b[2] + a[3]*b[3]:

Here, beyond the comments, the first four lines—actually a single statement—define the function cross, which takes two three-component lists as arguments and returns a three component list whose components are those of the cross product of the two vectors. The last line defines the function dot, which takes the same arguments but returns a scalar value equal to the dot product of those two lists treated as three-dimensional vectors. In both cases, we have exploited the MAPLE operator :: that allows us to declare the data type of particular variables, thereby resulting in smooth error messages rather than mystery or worse in the event an entry of the wrong data type is supplied. This file is named crossdot.mpl and can be accessed in the directory $HEAD/maple.46 Thus, the statement

> read "$HEAD/maple/crossdot.mpl";

will load this file (silently when the the variable echo has its default value) defining the two functions dot and cross for subsequent use. For example, once these functions have been defined, the statements

> cross( [1,2,3], [4,5,6] );
[−3,6,−3]
> dot( [1,2,3], [4,5,6] );
32

will evaluate the cross and dot products of the indicated three-component lists.

Be aware, as well, that the package LinearAlgebra contains more robust and more carefully structured functions CrossProduct and DotProduct to achieve the ends provided by the functions defined in crossdot.mpl. A means to obtain listings of the MAPLE codings in those two functions involves the command print and is described in Section 7.18.

7.12 High-Resolution Graphing

We illustrate the production of high resolution graphics by plotting the solution for the damped harmonic oscillator obtained in Section 7.8.9. First, we reclaim the solution with the statement

> soln3 := x(t) = x0 * exp(-gamma*t) * (gamma*sin(omega*t)/omega + cos(omega*t));
soln3 := x(t) = e^{−γt}x_0\left(\frac{γ\sin(ωt) + \cos(ωt)ω}{ω}\right)

46 Remember that the symbol $HEAD must be translated into the appropriate path as described in the Local Guide. All files referred to in this chapter are available in the directory $HEAD/maple.
Further, to simplify subsequent expressions and anticipate interest in velocity as well as position, we extract the position as an expression and evaluate also the velocity with the statements

\[ \text{soln3} := \text{rhs(soln3)}; \]
\[ \text{soln3dot} := \text{diff(soln3, t)}; \]

Then, recognizing that \( \gamma \) and \( \omega \) are not independent \( (\omega^2 = k/m - \gamma^2) \) and hence that assigning values to \( \gamma \) and \( \omega \) in effect fixes \( k/m \), we use the statements\(^{47,48}\)

\[ \text{unprotect(gamma);} \]
\[ \text{gamma, omega, x0 := 0.1, 1.0, 1.0;} \]

\( \gamma, \omega, x_0 := 0.1, 1.0, 1.0 \)

to assign specific values to \( \gamma, \omega \), and \( x_0 \) Finally, we create a graph showing position and velocity with the statement

\[ \text{plot([soln3, soln3dot], t=0.0..20.0, y=-1.0..1.0);} \]

which plots the identified expressions over the intervals \( 0.0 \leq t \leq 20.0 \) in \( t \) and \( -1.0 \leq y \leq 1.0 \) in \( y \) (the vertical coordinate). The graph is produced as a coarse character plot if we are working in the MAPLE CLI and as a smooth plot with—by default—at least 200 points\(^{49}\) distributed over the range of the independent variable in the MAPLE GUI.

Alternatively, we could modify the resulting graph by exploiting a few of the many keywords supported by the command \texttt{plot}. The statement

\[ \text{plot([soln3, soln3dot], t=0.0..20.0, y=-1.0..1.0, numpoints=100,}\]
\[ \text{color=black, labels=["t","x,v"], title="Damped Oscillator",}\]
\[ \text{thickness=3, linestyle=[1,3], labelfont=[\text{TImes,roman,16}],}\]
\[ \text{titlefont=[\text{TImes,roman,20]}, axesfont=[\text{TImes,roman,14},}\]
\[ \text{labeldirections=[\text{HORIZONTAL,VERTICAL}]}; \]

for example, will produce the same graph but with

- a minimum of 100 points spaced over the range of the independent variable (See footnote 49.),
- all graphs displayed in black (We anticipate output to a monochrome printer.),
- the indicated labels on the axes,
- the indicated title on the graph as a whole,
- all expressions (but not the axes) displayed with a line thickness heavier than the default,
- the first expression drawn with linestyle 1 (solid) and the second with linestyle 3 (dashed),
- the axis labels (\texttt{labelfont}), the title (\texttt{titlefont}), and the tic labels (\texttt{axesfont}) drawn in times, Roman type of the indicated sizes (in points), and
- the directions of the labels on the axes set to horizontal (the default) on the horizontal axis and vertical (not the default) on the vertical axis.

These (and numerous other) keywords to the command \texttt{plot} are fully described in the on-line help message accessed with the statement \texttt{?plot,options}. The graph resulting from this last statement is shown in Fig. 7.1. Note that the values labeled by default on each axis depend on the version of MAPLE.

\(^{47}\) The variable name \texttt{gamma} is protected, being by default used for the Euler constant. To use it for another purpose, we must begin by unprotecting it.

\(^{48}\) We must, of course, remember to restore the standard meaning of the symbol \texttt{gamma} when we are finished. Note, however, that our override of that standard meaning will not survive exiting from the MAPLE session altogether. Thus, we need not fear that failure to restore that meaning at the end of this session will “contaminate” the next session.

\(^{49}\) The default in some earlier versions of MAPLE was 50 points distributed over the range of the independent variable. MAPLE16 uses an adaptive approach with—by default—at least 200 points in that interval.
Figure 7.1: Graph of position and velocity for a damped oscillator with \( \gamma = 0.1, \omega = 1.0, x(0) = x_0 = 1.0, \) and \( v(0) = 0.0. \) Since the solid and dashed lines produced on the screen are not distinct in this print out, we must look to the initial values to identify which curve shows \( x(t), \) which shows \( v(t). \)

We could explore other features of this motion by, for example, changing the value of \( \gamma \) and reploting the graph with the statements

\[
\begin{align*}
gamma &:= 0.2; \\
&\text{plot}([\text{soln3, soln3dot}], t=0.0..20.0, y=-1.0..1.0, \text{numpoints}=100, \\
&\quad \text{color}=\text{black}, \text{labels}=["t","x,v"], \text{title}="\text{Damped Oscillator}"), \\
&\quad \text{thickness}=3, \text{linestyle}=[1,3], \text{labelfont}=[\text{TIMES,ROMAN,16}], \\
&\quad \text{titlefont}=[\text{TIMES,ROMAN,20}], \text{axesfont}=[\text{TIMES,ROMAN,14}], \\
&\quad \text{labeldirections}=[\text{HORIZONTAL,VERTICAL}]);
\end{align*}
\]

or, for these new values of the parameters, we could produce a graph of the trajectory in the phase plane (\( \text{soln3dot} \) versus \( \text{soln3} \)) with the statements

\[
\begin{align*}
&\text{plot}([\text{soln3, soln3dot}, t=0.0..20.0], x=-1.0..1.0, y=-1.0..1.0, \\
&\quad \text{color}=\text{black, thickness}=3, \text{labels}=["x","v"], \text{scaling}=\text{CONSTRAINED});
\end{align*}
\]

Here, the new keyword \text{scaling}, whose allowed values are \text{CONSTRAINED} and \text{UNCONSTRAINED} (the default), permits us to tell MAPLE to use equal scales on both axes so that, for example, circles will plot as circles. The resulting graph is shown in Fig. 7.2, though again the values labeled by default on each axis depend on the version of MAPLE.

MAPLE can, of course, also produce surface plots and contour plots in several different ways, though the functions for doing so are part of the package \text{plots}. The simplest and quickest such plots are produced with statements like

\[
\begin{align*}
&\text{mode} := \sin(2\pi x) \sin(3\pi y); \\
&\quad \text{mode} := \sin(2\pi x) \sin(3\pi y)
\end{align*}
\]
Figure 7.2: Graph of velocity versus position for a damped oscillator with $\gamma = 0.2$, $\omega = 1.0$, $x(0) = 1.0$, and $v(0) = 0.0$.

```
> lvls := [-0.9,-0.8,-0.7,-0.6,-0.5,-0.4,-0.3,-0.2,-0.1,0.0,
> 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]:
> plot3d(mode, x=0.0..1.0, y=0.0..1.0, thickness=3);
> plots[contourplot](mode, x=0.0..1.0, y=0.0..1.0,
> color=black, thickness=3, contours=lvls, scaling=CONSTRANDED);
```

Restart MAPLE. (See item 6 in Section 7.1.)

The first line here defines the expression to be displayed. Subsequent lines set values used in specifying options to the commands and, ultimately, produce both a surface plot and a contour map. By default, the expression `mode` is evaluated on a $25 \times 25$ grid of points equally spaced over the ranges of $x$ and $y$, though the keyword `grid` provides a means to override that default. The resulting graphs are shown in Figs. 7.3 and 7.4.

Another feature of the `plots` package embodies an ability to display text at specified points in the graphical display. For example, to produce Fig. 7.1 with, however, the added the labels ‘$x(t)$’ at the point [2.5, 0.8] and ‘$v(t)$’ at the point [6.5, 0.7], we might use the statements

```
> with(plots):
> soln3 := x0 * exp(-beta*t) * (beta*sin(omega*t)/omega + cos(omega*t));
> soln3dot := diff(soln3, t);
> beta, omega, x0 := 0.1, 1.0, 1.0:
> gr := plot([soln3, soln3dot], t=0.0..20.0, y=-1.0..1.0, numpoints=100,
> color=black, labels=["t","x,v"], title="Damped Oscillator",
> thickness=3, linestyle=[1,3], labelfont=[TIMES,ROMAN,16],
> titlefont=[TIMES,ROMAN,20], axesfont=[TIMES,ROMAN,14],
> labeldirections=[HORIZONTAL,VERTICAL]);
> lab1 := textplot([2.5,0.8,"x(t)", font=[TIMES,ROMAN,14]]):
> lab2 := textplot([6.5,0.7,"v(t)", font=[TIMES,ROMAN,14]]):
> display(gr, lab1, lab2);
```
Figure 7.3: Surface plot of the function $z(x, y) = \sin(2\pi x) \sin(3\pi y)$.

Restart MAPLE. (See item 6 in Section 7.1.)

Here, we suppress output in the creation of the graph labeled gr and the two labels lab1 and lab2 before invoking the command `display` that actually produces the graph.

As may already have been evident, MAPLE is able to produce graphical output either “inline” (i.e., right in the worksheet in the GUI) or in a separate window created when the graph itself is created. The default behavior depends on the platform and on the version of MAPLE. Either method, however, is available on both platforms; we simply use one or the other of the statements

\begin{verbatim}
plotsetup( inline );
plotsetup( window );
\end{verbatim}


to select the desired format. Whichever plot setup is in use, the MAPLE prompt returns after the graph has been displayed.

We have, of course, only mentioned a few \{`plot`, `plot3d`, and `contourplot` (in the package `plots`)\} of the functions and only some \{`numpoints`, `color`, `labels`, `title`, `thickness`, `linestyle`, `labelfont`, `titlefont`, `axesfont`, `labeldirections`, `scaling`, and `contours`\} of the keywords that modify the behavior of these functions. Numerous other functions are contained within the package `plots`. You should make it a point to read about these functions and the associated keywords in the MAPLE manuals.

\section*{7.13 Making Hard Copy . . .}

The method used to make hard copy of MAPLE worksheets and output depends on whether the CLI or the GUI is in use; whether the material to be output is textual or graphical; whether the graphical material is inline or in a separate window; whether the output is to go directly to a printer or to a PostScript, ASCII, HTML, or ... file; and whether we are working on a UNIX, Windows, or MacIntosh platform. In the following subsections we address each of several possibilities in turn. In
Figure 7.4: Contour map of the function $z(x, y) = \sin(2\pi x) \sin(3\pi y)$.

In all cases when a file name is specified, the file will be located in the current default directory (see Section 7.17.2) unless a full path is included in the file name.

### 7.13.1 ... of Text and Character Graphics in the CLI

In the CLI, text and inline graphics are constructed entirely of characters. In many operating systems, printing of information displayed in the CLI is most simply accomplished by using the cutting and pasting capabilities of the operating system to transfer that character information into a text editor. The text can then be edited if desired and the file can be saved and sent to an available printer with the standard commands to the operating system (or perhaps by selecting appropriate options from a menu available in the editor).

Alternatively, the MAPLE statement `writeto( "FileName" )`, once executed, will suppress display of all following output on the screen, directing that output instead to the specified file. The command prompt and the input statements will appear on the screen but will also be directed to the file unless echoing has been set to zero with the statement `interface( echo=0 )`. The statement `appendto( "FileName" )` behaves in a similar way but appends to an existing file instead of overwriting an existing file. Closing the file and restoring the normal behavior of the terminal is achieved by executing the statement `writeto( terminal )`. Note the absence of quotation marks in this last statement.$^{50}$

### 7.13.2 ... of High-Resolution Graphs from the CLI

Even though the (inline) graphics produced by plotting commands in the CLI will be character graphs, commands issued in the CLI can write high-resolution graphics into files for subsequent printing. We simply need to inform MAPLE of the form of the driver it is to use in creating the file, the name it is to give the file, and any controlling options. For example, the statement

$^{50}$Note that `writeto` and `appendto` will also work in the GUI, but high-resolution graphics will not be adequately transcribed.
plotsetup( ps, plotoutput="trial.ps", plotoptions='portrait,noborder' );

will tell MAPLE to use the PostScript driver, write the output to the file trial.ps in the default directory, use portrait orientation, and suppress the border. (Note the direction of the single ticks enclosing the value of plotoptions: both are forward tics.) The output of subsequent plot commands will then be constructed in the specified format and directed to the identified file; no output from those commands will appear on the screen. To return to the default (character) presentation of graphical displays, we would use the statement

plotsetup( char ) or plotsetup( default )

Alternatively, we can create high-resolution on-screen graphics in the CLI by selecting the maplet driver with the command

plotsetup( maplet );

In response to a subsequent plot command, MAPLE will then open a new plot window on the screen and display a high-resolution graph in that window. The menu in the top bar of that plot window offers several ways to edit the display. In particular, the File menu in the top bar gives access to routines for writing (exporting) the graph to a file in any of several formats. This file can, of course, then be printed or incorporated in larger documents. Note that an existing plot window must be closed before the CLI will respond to commands beyond the plot command.

7.13.3 ... of Text and Inline Graphics in the GUI

For generating hard copy from the GUI, two items in the File menu are available. Selecting ‘Print...’ from the File menu will bring up the Print window in which we can select (or specify) the desired printer. Either in tabs or via a Properties menu, this window allows specification of a variety of options (paper size, page range to be printed, orientation—portrait or landscape—on the page, scaling, ...). The selected pages or the entire contents of the current worksheet (text and graphics) will be directed to the specified printer.

To achieve greater flexibility in output format, select ‘Export As...’ from the File menu to bring up a pop-up window in which we can in a dropdown menu select one of several file types (HTML, PDF, LaTeX, Plain Text (i.e., ASCII), RTF, ...) and, either in that same window or in a browser that appears when the file type has been selected, specify the file name and directory for the file to be created. If ‘Plain Text’ is selected, the graphics will not be included.

7.13.4 ... of Window Graphics in the GUI

Graphical output that has been directed to a window separate from the window in which the current worksheet exists can be directed to a file in a more convenient way. In MAPLE16, we simply

51. Depending on the operating system, the printer may be selected from a dropdown menu or specified by typing the specific printer command in a text entry box.
52. This window also allows specification that the output be directed to a file, in which case we supply the destination directory and file name in a text entry box, which may not appear until the button requesting the print to be created has been clicked. This route to a file, however, offers no control over the file type produced (.prn in Windows, .ps in Unix, .pdf in the Macintosh OS).
53. By setting the plot driver with the statement plotssetup(window).
54. In other versions of MAPLE, the procedure may be slightly different but will begin by clicking MR in the plot window.
• Move the cursor into the graph window.
• Click MR.
• Move the cursor to ‘Export→’.
• Move the cursor to and click ML on the appropriate file type (most likely ‘Encapsulated PostScript’) in the menu that pops up.
• Specify the desired file name and directory in the resulting browser.
• Click on ‘Save’.

The file will be created.

7.14 Output in \LaTeX Format

A particularly useful feature of MAPLE is its ability to write \LaTeX versions of expressions to the screen or into a file. Full details are laid out in the MAPLE manuals. In brief, the statement

\texttt{latex( expr1 );}

for example, converts the specified expression into \LaTeX format and displays it on the screen (from where standard cut and paste operations—when they are available—can move the description to wherever we might want it). Alternatively, the statement

\texttt{latex( expr1, "FileName" );}

will create a new (ASCII) file and write the \LaTeX description of the indicated expression into that file, overwriting any existing file by the same name. To \emph{append} the \LaTeX description of the expression to an existing file, the more elaborate statement

\texttt{latex( expr1, "FileName", 'append' );}

is necessary. Once created, this file can, of course, be edited or incorporated into other \LaTeX documents.

Automatic translation of arbitrary expressions into \LaTeX is a daunting task. While fairly sophisticated, the MAPLE translator is not perfect. Edits will often be necessary to “correct” the translator’s glitches. In particular, the translator writes only the \LaTeX description of the equation to the screen or into the file. It does not place the equation in a \LaTeX equation environment or otherwise embellish the description with additional \LaTeX constructs that may be necessary for creation of the ultimate document. These will have to be supplied through manual editing of the file created by MAPLE. Conveniently, variables named \texttt{gamma} and \texttt{GAMMA}, for example, will be properly translated into \texttt{$\gamma$} and \texttt{$\Gamma$}.

Even more generally, if we have created a MAPLE notebook in the GUI, we can output that notebook in its entirety (including the textual sections) into a \LaTeX file by selecting ‘Export as’ from the \texttt{FILE} menu and then ‘\LaTeX’ in the resulting pop-up menu. The resulting file is complete and ready to be processed through \LaTeX. Be aware, however, that \LaTeX files written by MAPLE make use of several MAPLE-specific \LaTeX commands which are defined in the MAPLE-supplied \LaTeX package named \texttt{maple2e.sty} or \texttt{maplestd2e.sty} (depending on the version of MAPLE), which will be invoked with the simple statement

\texttt{\usepackage{maple2e}} \quad \texttt{or} \quad \texttt{\usepackage{maplestd2e}}
in the preamble of the \LaTeX{} source file. The file defining this package (and several other files—mapleenv.sty, maplestyle.sty, mapleutil.sty, mapleenv.def, mapleplots.sty, and mapletab.sty—to which the primary file maple2e.sty or maplestd2e.sty may refer) must be accessible on your computer system before a MAPLE-produced \LaTeX{} source file can be processed and printed.\footnote{If the files have not in your computing environment been placed where \LaTeX{} can find them automatically, you will need to copy them from the directory \texttt{$\$MAPLEHEAD/etc} into the directory from which you are running \LaTeX{} before you will be able to process a MAPLE-generated \LaTeX{} source file.} Further information about this issue is contained in the MAPLE manuals.

### 7.15 Animation

The command \texttt{animate} in the \texttt{plots} package provides a facility to create an animation in two or three dimensions on a single parameter. More specifically, the statement

\begin{verbatim}
plots[animate](plot, [sin(Pi*x)*cos(2*Pi*t), x=0.0..1.0], t=0.0..1.0)
\end{verbatim}

will create and store the frames for an animated display of the fundamental mode of a vibrating string fixed at both ends while the statement

\begin{verbatim}
plots[animate](plot3d, [sin(2*Pi*x)*sin(3*Pi*y)*cos(2*Pi*t),
                      x=0.0..1.0, y=0.0..1.0], t=0.0..1.0)
\end{verbatim}

will create and store the frames for an animated display of the 23 mode of oscillation of a square membrane. Additional options for \texttt{plot} and \texttt{plot3d} can be included to further structure the display.

The above statements simply create the frames for the animation. Actually playing the animation requires right clicking on the graph and selecting ‘Play’ from the \texttt{Animation}→ menu in the resulting pop-up menu. That menu also offers, among others, the option to play the animation forwards, backwards, or continuously. Stopping an animation that is running continuously involves selecting ‘Stop’ in the pop-up menu resulting from again right clicking on the graph.

We have, of course, illustrated only the simplest of ways to create an animation in MAPLE. Complete details can be found in the MAPLE manuals.

### 7.16 Using the Notebook

Within the GUI, the window in which MAPLE commands are entered has full capabilities as a notebook, which means in particular that it can contain textual sections, e.g., documentation and motivation, as well as executable MAPLE commands. In this window, the MAPLE prompt is \texttt{[>}. Notebooks are constructed out of execution groups, which may contain MAPLE statements (and the associated output)—the only groups we have so far seen—or may contain text. For purposes of organizing larger documents, these execution groups can themselves be assembled into sections and subsections, much in the way a conventional book would be assembled.

Suppose we already have on-screen a MAPLE notebook containing a few MAPLE statements and their output. Suppose, further, that we want to precede each statement with an explanatory paragraph. We could achieve that end for one of the statements by

1. Placing the cursor at the beginning of the selected statement;
2. Selecting ‘Paragraph’ from the \texttt{Insert} menu and, in the resulting pop-up menu, selecting ‘Before Cursor’.\footnote{Space will be opened above the selected statement and set to expect text.}
7.16. USING THE NOTEBOOK

3. Placing the cursor in the newly created space and typing the desired text, using the various pull-down menus just under the toolbar to specify font, type size, and type style; the Format menu to specify alignment; ...

This process can, of course, be repeated to provide a textual description for each of the remaining statements. Similarly, new execution groups can be created by selecting ‘Execution Group’ from the Insert menu.\footnote{In earlier versions of MAPLE, one inserted an execution group and then toggled it to ‘text’ by clicking on the button labeled with a large ‘T’ in the toolbar. That icon has been given a different function in the newer versions of MAPLE.}

In essence, the previous paragraph provides all we need to know to add documentation as an intrinsic part of a notebook. As our notebooks grow in size, however, we may wish to organize their contents into appropriate structural units and provide titles. To those ends, we need to be aware of some additional features of the notebook interface. For example, to aggregate several execution groups into a single larger group (or section), we can highlight the execution groups to be aggregated and select ‘Indent’ from the Format menu. The result is the creation of a higher level group that is topped with a square icon containing a minus sign or, in more recent versions of MAPLE, with a filled, downward pointing triangle. Placing the cursor to the right of that icon, we can type a title—MAPLE will automatically use a larger and bolder type face—for the aggregation and then, after typing (RETURN), we can type—MAPLE will automatically return to the default type face—a paragraph of descriptive text to be associated with the entire aggregation. The icon heading the aggregation is active, in the sense that clicking repeatedly on the icon will toggle MAPLE between displaying the text and statements (and output) in the section and hiding that information. Note that, when information is hidden, the icon contains a plus sign rather than a minus sign—or points to the right rather than down. Further, note that these structures can be nested to create a document with several levels of expandability.

To add a title to the entire document, we insert an execution group at the very beginning of the document, toggle that group to ‘text’ (See footnote 58.), and type in the text of the title. Then, after highlighting that title, we adjust the font, size and positioning as appropriate.

MAPLE output in this notebook can, of course, always be quickly regenerated by executing the statements. Frequently, we may wish to suppress the presence of that output in the actual notebook. We can

- remove selected items of output by selecting the items to be removed and then selecting ‘From Selection’ from the Remove Output menu in the Edit menu.
- remove all output from the notebook by selecting ‘From Worksheet’ from the Remove Output menu in the Edit menu.
- hide all output by selecting ‘Hide Output’ from the Hide Content menu in the View menu or, in more recent versions of MAPLE, unchecking ‘Output’ from the window that pops up on selecting ‘Show/Hide Contents...’ item in the View menu.

Finally, we note that, after all the work of creating a notebook, the notebook itself can be saved by selecting ‘Save’ from the File menu and, in the resulting pop-up window, specifying the file name (default file type .mw or .mws) and the directory and clicking ML on the ‘Save’ or ‘OK’ button. In a later session, the worksheet can be loaded into MAPLE by selecting ‘Open’ from the File menu and identifying the file to be opened in the pop-up browser.

This short section can, of course, not do full justice to the wide spectrum of features of MAPLE’s notebook interface. You must work with it, explore the menus in the GUI, and read the manual.\footnote{Note that an execution group can be converted to a text group by placing the cursor at the beginning of that group and selecting ‘Plain Text’ from the Convert To menu in the Format menu. The default text color may remain red, but that can be changed with the palette available from the ‘text color’ icon near the right end of the lower toolbar in MAPLE16.}
7.17 Miscellaneous Occasionally Useful Tidbits

7.17.1 Specifying Directories

Different operating systems use different forms to specify the path that identifies a particular directory, for example, to set the default directory or to identify the location of a file to be read or written. The character separating directories in a path depends on the operating system. In UNIX, that character is a forward slash; in Windows, it is a backslash, though a single forward slash will be properly interpreted even in Windows. Indeed, if you wish to use backslashes, each must be doubled because a single backslash will be flagged as an error.

7.17.2 MAPLE’s Default Directory

The default directory or current working directory defined when MAPLE starts depends on a variety of factors. In some cases, it will be the directory from which MAPLE is launched. In the GUI, the current default directory is also displayed in one of the items along the bottom of the GUI. In all interfaces, the statement

\[
\text{currentdir();}
\]

will report the directory at the time the statement is executed. Changing the directory can be accomplished in several ways, specifically

- In the GUI, clicking ML on the default directory along the bottom of the GUI will bring up a browser in which one can select a different directory.

- The statement

\[
\text{currentdir( "FullPathToNewDirectory" )}
\]

will change the current directory to the specified directory.

- The statement

\[
\text{currentdir( "DirectoryName" ) or currentdir( "/DirectoryName" )}
\]

will change the directory to the subdirectory \textit{DirectoryName} of the current default directory.

- The statement

\[
\text{currentdir( "." )}
\]

will change the directory to the parent of the current default directory.

- The statement

\[
\text{currentdir( "./DirectoryName" )}
\]

will change the directory to the subdirectory \textit{DirectoryName} of the parent of the current default directory.

Note the following:

\[\text{59 See the Local Guide for information relating to your site.}\]
• The symbols . and .. refer to the current directory and its parent, respectively.

• When `currentdir` is invoked with an argument, its output is the original default directory, not the new default directory. A subsequent invocation of `currentdir();` will confirm that the directory was indeed changed.

You may wish to create a user-specified initialization file (see Section 7.17.4) to assure that the (initial) default directory will be set sensibly each time you launch MAPLE.

### 7.17.3 MAPLE’s Search Path

Whenever an explicit path is not included in the file name of a file that MAPLE is to read, the program searches for the specified file in the sequence of directories stored in the system variable `libname`. The value of this variable is set by default when MAPLE is launched and can be displayed with the statement

```
libname;
```

Often, the default value of this variable will consist of something like

```
/apps/maple/mapleVs/lib, "."
```

i.e., the directory in which the MAPLE program and all of its components reside followed by the current default directory ‘.’. By default, MAPLE will search for a referenced file in the MAPLE library and then in the default directory as described in Section 7.17.2. Since `libname` is no more than a list of (string) components, it can be changed in the same way any other list is changed. For example, the statement

```
libname := (libname, "DirectoryPath1", "DirectoryPath2", ...)
```

will append the specified directory paths to the existing list, the statement

```
libname := ("DirectoryPath1", "DirectoryPath2", ..., libname)
```

will place the specified directories at the beginning of existing list, and a statement like

```
libname := ("DirectoryPath1", "DirectoryPath2", ...)
```

will redefine the variable to include only the specified list.

### 7.17.4 Customizing MAPLE

When MAPLE is started up, its configuration is defined by a number of default specifications built into the program, by statements in a system-wide initialization file maintained by the system manager,\(^60\) and by statements in a user-created initialization file. These files are simply command files—see Section 7.11—that can contain any statement that might otherwise be typed interactively. Be aware, however, that none of the statements or their responses will be displayed as the initialization file(s) is (are) read. Even so, variables to which values are assigned will be available. As MAPLE is started, the system-wide file is executed first and then the user-created file. Thus, the

\(^60\)While this file cannot be changed by individual users, it can be listed on the screen or printed—so users can determine what is actually contained in it.
user-created file can be used to override statements in the system-wide file, should that be desired. Together, these two files—if they exist at all—define the default configuration set up by MAPLE when finally the prompt appears.

The name and location of both the system-wide and the user-created initialization files depend on the platform on which MAPLE is running. Specifically, in Unix and Linux and on Macintosh computers, the system-wide file is \$MAPLEHEAD/lib/init and the user-created file is \$USERHOME/.mapleinit; in Windows, these two files are \$MAPLEHEAD\lib\maple.ini and \c:users\UserName\maple.ini, respectively. Translations of \$MAPLEHEAD and \$USERHOME for your site are in the Local Guide.

7.17.5 Restoring MAPLE’s Initial State

See item 6 in Section 7.1.

7.17.6 Space Curves

Sometimes it is desirable to view the trajectory of a particle in three-dimensional space. MAPLE has the ability to plot space curves from knowledge of the trajectory defined parametrically by the functions \(x(t), y(t),\) and \(z(t)\) giving the coordinates of points on a three-dimensional path. With that information, the command spacecurve, which is included in the package plots, will calculate the coordinates of the points along the trajectory, project these points onto the two-dimensional screen, and connect consecutive points with lines. To illustrate this feature, consider the equations

\[
\begin{align*}
x(t) &= \cos t \\
y(t) &= \sin t \\
z(t) &= \alpha t \\
\end{align*}
\] (7.3)

where \(\alpha\) is a constant, describing the trajectory of a charged particle moving in a constant magnetic field directed along the \(z\) axis. The starting point is, of course, to evaluate \(x, y,\) and \(z\). Then, we invoke the command plot3d to plot the graph. The statements

\[
> \text{with( plots );} \\
> \text{alpha := 0.5;} \\
> \text{spacecurve( [cos(t), sin(t), alpha*t], t=0..30, numpoints=250,} \\
> \text{thickness=4, color="black", axes="frame",} \\
> \text{font=[Times, 16], view=0..20 );}
\]

will produce the graph in Fig. 7.5. Here, in particular, the keyword numpoints defines the number of points at which the trajectory is evaluated in the interval on the parameter \(t\).

7.18 Miscellaneous Commands

Several of the MAPLE commands introduced in this chapter have broad capabilities at which we have only hinted. Other occasionally useful commands have not been mentioned at all. In this section, we provide a bit fuller discussion of a few of the commands we have already met and alert you to a few others of which you should be aware. Full details, of course, are available in the MAPLE manuals.

- **assume, additionally, about**

The commands assume, additionally, and about attach properties to symbolic variables and report properties already attached. For example, the statements\(^61\)

\[\text{assume( n > 0, n, integer ), }\]

but that route would not illustrate the use of additionally.

\(^{61}\)The first two statements might alternatively be combined in the form assume( n > 0, n, integer ), but that route would not illustrate the use of additionally.
7.18. MISCELLANEOUS COMMANDS

Figure 7.5: Space curve of a charged particle moving in a constant magnetic field along the $z$ axis.

> assume( n > 0 );
> additionally( n, integer );
> about( n );

Originally n, renamed $n^\ast$:

is assumed to be: AndProp(integer,RealRange(1,infinity))

tell MAPLE that $n$ is a positive, real integer and display a message reminding us of those characteristics. Note that the restricted $n$ is flagged with an appended tilde (but see the command interface below). Note also that the command assume applied to a particular variable replaces all previous assumptions applying to that variable (which explains the need for the command additionally). A detailed list of properties accepted by assume is included in the on-line help message produced with the statement ?assume. Among those properties are positive, negative, real, RealRange(a,b), vector, and SquareMatrix. Further, constraints can be specified by inequalities, as in assume( a > b ) and assume( b-a > 0 )$^{62}$.

Once an assumption need no longer be attached to a variable, it can be removed altogether by assigning the variable to itself, i.e.,

> n := 'n';
> about( n );

n: nothing known about this object

Note that this statement removes all assumptions. If only some are to be removed, we would have to remove all of them and then reinstate the ones we wished to preserve.

Remember, too, that variables to which an assumption has been attached are flagged with a suffixed tilde. That flagging can, however, be turned off by setting the interface variable showassumed as described in a later paragraph in this section.

$^{62}$Strictly, assumptions can be imposed only on variables that have no assigned value. Assigning a constant value to a variable carrying assumptions will remove those assumptions. Imposing assumptions on a variable to which an expression has been assigned risks either imposing assumptions on variables in that expression or removing the assumptions on the variable in question.
• **expand**

At base, the command \texttt{expand} distributes products over sums but, as we have seen in this chapter, the command will also invoke trigonometric addition formulae to expand expressions like \(\sin(x + y)\). Further, \texttt{expand} knows how to expand a wide variety of the common (and some of the not so common) mathematical functions, e.g., all of the trigonometric and hyperbolic functions, the Bessel functions, and the factorial and exponential functions. Finally, with the general syntax

\[
\texttt{expand( Expression, Constraint1, Constraint2, \ldots );}
\]

we can even expand \texttt{Expression} while telling \texttt{expand} to refrain from expanding any subexpressions that match \texttt{Constraint1, Constraint2, \ldots}.

• **convert**

In general, a statement involving the command \texttt{convert} will have the form

\[
\texttt{convert( Expression, Form, \ldots );}
\]

where \texttt{Expression} is an expression to be converted and \texttt{Form} selects the type of conversion to be achieved. Additional arguments may or may not be present—depending on the form specified. In Section 7.7.5, we mentioned the forms \texttt{set, vector, and listlist}; in Section 7.8, we encountered the forms \texttt{parfrac, trig, and exp}. The help message \texttt{?convert} in MAPLE16 lists over 150 possible forms, and you are urged to examine that message. Your attention is called particularly to the forms \texttt{float} for converting expressions to floating point form; \texttt{hex, binary, octal, and base} for converting numbers to equivalent expressions in other bases; \texttt{degrees} and \texttt{radians} for converting angles between these “units”; \texttt{polar, expsincos, ln, expln, sincos, and tan} for recasting expressions involving trigonometric, exponential, and logarithmic functions; and \texttt{string} for converting expressions into strings. Information about any particular form is contained in the message displayed in response to the statement \texttt{?convert, Form}.

• **simplify**

A statement using the command \texttt{simplify} can be cast in any of the forms

\[
\texttt{simplify( Expression );}
\]

\[
\texttt{simplify( Expression, Name1, Name2, \ldots );}
\]

\[
\texttt{simplify( Expression, assume=Property );}
\]

(among others). With the first form, \texttt{simplify} applies a long list of simplification rules (see the on-line message displayed with the statement \texttt{simplify}) one at a time. With the second form, \texttt{simplify} applies only the rules specified by \texttt{Name1, Name2, \ldots}, (e.g., \texttt{ln, polar, power, radical, sqrt, trig}) one after the other. Finally, with the third form, \texttt{simplify} assumes that all undefined symbols in \texttt{Expression} have the specified property (\texttt{real, positive, integer, even, odd, \ldots}).

• **map**

The command \texttt{map} instructs MAPLE to apply a specified function independently to \emph{each} operand of a specified MAPLE object. For example, the statements
> mat1 := array( 1..2, 1..2, [ [sin(x), cos(x)], [sinh(x), cosh(x)] ] );

\[
mat1 := \begin{bmatrix}
sin x & cos x \\
 sinh x & cosh x \\
\end{bmatrix}
\]

> map( diff, mat1, x );

\[
\begin{bmatrix}
cos x & -sin x \\
cosh x & sinh x \\
\end{bmatrix}
\]

define a matrix and then effect an element-by-element differentiation of that matrix. In this structure, the first argument to map is the function to be applied to each element in the expression identified by (or supplied in) the second argument. Any arguments beyond the second are understood to be arguments to the function identified in the first argument.

• **unapply**

Among other features, the command unapply facilitates the conversion of an expression into a function. For example, the statements

> eqn1 := a*x*e^(-b*x^2);

eqn1 := a x e^{-b x^2}

> eq := unapply( eqn1, x );

eq := x → a x e^{-b x^2}

define an expression and then generate from it a function.

• **interface**

The command interface provides access to the parameters that control the nature of the interaction between the display device and the underlying program. Among the more useful actions are

\[
\begin{align*}
\text{interface( echo );} & \quad \text{Display current value of echo.} \\
\text{interface( echo=2 );} & \quad \text{Set so command lines are displayed when command file is read.} \\
\text{interface( prompt=">>" );} & \quad \text{Change MAPLE prompt to >>.} \\
\text{interface( showassumed=0 );} & \quad \text{Turn off explicit flagging of variables subject to assumptions.} \\
\text{interface( imaginaryunit=j );} & \quad \text{Change imaginary unit } I \text{ to } j.
\end{align*}
\]

A full description will be displayed in response to the command ?interface typed at the MAPLE prompt. Note, in particular, that some interface variables set away from their default values in a particular session will not be reset to those default values when the command restart; is executed while others will be reset. Information about this issue can be found in the help page accessed by the command ?restart.

• **print**

The command print(f) is provided to facilitate the display of the coding invoked by functions and procedures that are defined by MAPLE command files. For example, to obtain a listing of the coding that implements the procedure DotProduct defined in the MAPLE package LinearAlgebra, we first set the interface parameter verboseproc away from its default value 1 with the statement

\[
\text{interface( verboseproc=1 );}
\]
> interface( verboseproc = 2 ): 

so that the full—rather than an abbreviated—listing of procedures will be displayed. Then, we request the listing itself with the statement

> print( LinearAlgebra[DotProduct] ); 

Do take the time to execute these two statements and examine the resulting display.

• piecewise

Occasionally, the need to define a function that is piecewise continuous arises. MAPLE’s function piecewise is designed to meet that need. For example, a rectangular barrier defined by

\[
f(x) = \begin{cases} 
0 & x < -a \\
1 & -a \leq x \leq a \\
0 & a < x 
\end{cases}
\]

could be defined and plotted in MAPLE with the statements

> f := x -> piecewise( x < -a, 0, -a <= x and x <= a, 1, a < x, 0 ); 
> a := 1; 
> plot( f(t), t=-3.0..3.0 ); 

Here, each pair of arguments provides a condition followed by a value to be assumed by the function when the condition is satisfied. Actually, this definition can be substantially shortened to

> f := x -> piecewise( -a < x and x < a, 1 ); 

because the function is designed to assign the value 0 to any region of the independent variable omitted altogether from the conditions in the arguments.

• Other Commands

We mention a few additional commands briefly. Full information for each can be obtained from the MAPLE manuals.

• series, which produces a series more general than a Taylor series, a series that may include negative powers of the expansion variable. The function \( \sqrt{1 - x^2}/x^2 \) does not have a Taylor series about \( x = 0 \) but does have the more general series produced by series.

• alias, which allows the definition of a shorthand alias for longer commands or symbols, e.g., the statement alias(rad=sqrt) would allow us, if we wished, to replace the reserved word sqrt with the symbol rad. The alias is removed with the statement alias(rad=rad).

• sum();, which sums given values over a specified range of indices. The inert form Sum, which does not evaluate the sum immediately, also exists.
7.19 References

In this chapter, we have introduced only the most important features of MAPLE. A full description of all commands and features is contained in the MAPLE manuals, including

- several documents and resources as described in Section 7.2.
- a number of documents and books, links to which can be found by entering “MAPLE documentation” in the search window of your browser. In particular, you should find links to
  - the Maplesoft Documentation Center at
    \url{http://www.maplesoft.com/documentation_center/}
    which brings up a page containing links to installation instructions, the Maplesoft Online Help System, and a list of many available books using MAPLE in a variety of disciplines and for a variety of specific purposes, and
  - many other official and unofficial documents.
- a number of books and on-line materials describing a wide spectrum of uses of MAPLE in a variety of disciplines and for a variety of specific purposes. In addition to the list provided by Maplesoft, you can find books by searching on-line commercial book stores (Amazon, Barnes and Noble, ...) for, among probably many others, one or more of the phrases ‘MAPLE Computer Algebra System’, ‘MAPLE and Physics’, ‘Maplesoft’, etc.
- more specific documents on particular MAPLE commands, links to which can be found by entering ‘\texttt{CommandName} in MAPLE’, e.g., ‘int in MAPLE’ in the search window of your browser.

The user is urged to browse in these materials, being alert not only to the available functions but also to the assorted option variables and keywords that modify their behavior.

While on-line documentation has largely superseded printed documentation in the last decade, several now largely outdated but still potentially valuable printed materials can be found. Specifically, your local library may include one or more copies of

- the \textit{MAPLE Getting Started Guide},
- the \textit{MAPLE Learning Guide},
- the \textit{MAPLE User Manual},
- the \textit{MAPLE Programming Guide},
- the \textit{MAPLE Introductory Programming Guide}, and
- the \textit{MAPLE Advanced Programming Guide}.

Some of these previous manuals may be accessed at and/or downloaded from the Waterloo Maple website at \url{www.maplesoft.com}. Two originally hard-bound books, specifically


date to MAPLEV (which has long since been replaced by more recent versions). Still, these older references contain applicable though dated information—and, in particular, contain information that may not have been reprinted in the more recent printed documentation.
7.20 Exercises

7.1. Read the MAPLE manuals to find out how the commands `expand`, `factor`, and `simplify` differ from one another and then invent several examples that will reveal those differences. To help you get started, you might find it useful to compare the effect of each of these commands on the expressions

\[
\begin{align*}
(a) & \quad \frac{x}{a+b} + \frac{y}{a+b} \\
(b) & \quad (a + b)(c + d) + (a + b)e \\
(c) & \quad (x + y)(z + w) \\
(d) & \quad a(b + c(d + e)) \\
(e) & \quad \frac{x}{a+b} + \frac{y}{c+d} \\
(f) & \quad \frac{(a - x)^2}{(a^2 - 2ax + x^2)^{3/2}}
\end{align*}
\]

but you will probably have to invent other examples as well to reveal as many of the differences as you can. Write two or three paragraphs in which you describe your efforts, including some indication of approaches that were not successful. Don’t be overly concerned about the order of terms within various sets of parentheses; that order is particularly difficult to control. Focus instead on creating the general form of each desired result.

7.2. Use MAPLE to convert each of the expressions in the left-hand column in the table below into the expression in the associated right-hand column:

\[
\begin{align*}
(a) & \quad \frac{(a - x)^2}{(a^2 - 2ax + x^2)^{3/2}} \quad \Rightarrow \quad \frac{1}{|x - a|} \\
(b) & \quad \sinh( \ln(x + \sqrt{x^2 + a^2}) - \ln(a) ) \quad \Rightarrow \quad \frac{x}{a} \\
(c) & \quad \frac{1}{x + \sqrt{y}} \quad \Rightarrow \quad \frac{x - \sqrt{y}}{x^2 - y}
\end{align*}
\]

These samples are chosen to illustrate particularly the use of `simplify` and `expand` but other commands will surely also be needed. Write two or three paragraphs in which you describe your efforts, including some indication of approaches that were not successful. Don’t be overly concerned about the order of terms within various sets of parentheses; that order is particularly difficult to control. Focus instead on creating the general form of each desired result.

7.3. Use MAPLE to convert each of the expressions in the left-hand column in the table below into the expression in the associated right-hand column:

\[
\begin{align*}
(a) & \quad \frac{d}{dx} \left( x^2 e^{-x^2} \right) \quad \Rightarrow \quad -2x(x^2 - 1)e^{-x^2} \\
(b) & \quad \sin(\sqrt{a^2(a + 3x) + x^2(3a + x) + y}) \quad \Rightarrow \quad \sin((a + x)^{3/2} + y) \\
(c) & \quad cg + cf + b^2d + 2abcd + a^2d + b^2c + 2abc + a^2e \quad \Rightarrow \quad (a + b)^2(c + d) + cf + g \\
(d) & \quad a e^{(-b+i\omega)t} + a e^{(-b-i\omega)t} \quad \Rightarrow \quad a e^{-bt} \left( e^{-i\omega t} + e^{i\omega t} \right) \\
(e) & \quad a e^{(-b+i\omega)t} + a e^{(-b-i\omega)t} \quad \Rightarrow \quad \frac{2}{a} e^{-bt} \cos(\omega t) \\
(f) & \quad x^2 + y^2 + z^2 - 2a(x + y) + 2a^2 \quad \Rightarrow \quad (x - a)^2 + (y - a)^2 + z^2
\end{align*}
\]

In several cases, you may need to invoke `op`, `nops`, `subs`, and/or `subsop`, but other commands will surely also be needed. Invoke microscopic dissection of the expressions only as a last resort. Write two or three paragraphs in which you describe your efforts, including some indication of approaches that were not successful. Don’t be overly concerned about the order of terms within various sets of parentheses in the final form; that order is particularly difficult to control. Focus instead on...
7.20. EXERCISES

7.4. In Section 7.8.9, we set up the differential equation for a damped harmonic oscillator but then
pursued the solution only for the underdamped case. Repeat the solution for the underdamped
case and then find also the solutions for the critically damped and overdamped cases. Describe the
differences in the physical behavior for the three cases.

7.5. The Legendre polynomials \( P_n(x) \), which are valid and useful over the interval \(-1 \leq x \leq 1\), can be
defined in many ways. They emerge as the coefficients in the Taylor expansion of the generating
function \( g(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x) t^n \)
Alternatively, they can be determined from the recursion relationship
\( (2n + 1) x P_n(x) = (n + 1) P_{n+1}(x) + n P_{n-1}(x) \)
provided we include the first two \( P_0(x) = 1 \) and \( P_1(x) = x \) to get started. Yet again, they can be
found from application of multiple differentiation as implied by Rodrigues’ formula
\( P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left( (x^2 - 1)^n \right) \)
However they are determined, the first half dozen of these polynomials will turn out to be
\[
\begin{align*}
P_0(x) &= 1 \\
P_1(x) &= x \\
P_2(x) &= \frac{1}{2} (3x^2 - 1) \\
P_3(x) &= \frac{1}{2} (5x^3 - 3x) \\
P_4(x) &= \frac{1}{8} (35x^4 - 30x^2 + 3) \\
P_5(x) &= \frac{1}{8} (63x^5 - 70x^3 + 15x)
\end{align*}
\]
a. Use the generating function and MAPLE’s capabilities for evaluating Taylor series to find the
first half-dozen Legendre polynomials, extracting each as an expression bound to a variable.
b. Start by binding the value 1 to \( P[0] \) and the value \( x \) to \( P[1] \). Then, using the recursion
relationship, find the next several Legendre polynomials. \textit{Hint:} The MAPLE statements
might be
\[
\begin{align*}
> P[0] := 1; \; P[1] := x;
\end{align*}
\]
and then
\[
\begin{align*}
> PP := (2*n-1)*x*P[n-1]/n \; - \; (n-1)*P[n-2]/n
\end{align*}
\]
(Verify the expression on the right by using MAPLE to deduce this relationship from the
standard form—the second equation in this exercise.) With these statements, you have set up
\( P_0(x) \) and \( P_1(x) \) to start the recursion and then you have defined an \textit{expression PP} involving
\( n \) that can be evaluated at any \( n \). Once \( P_0 \) and \( P_1 \) have been defined, you can find \( P_2 \) and
then \( P_3 \) and then \( \ldots \) with statements like
\[
\begin{align*}
> P[2] := \text{eval( PP, n=2 )}; \\
> P[3] := \text{eval( PP, n=3 )}; \\
\ldots
\end{align*}
\]
c. Find the first half-dozen Legendre polynomials by using the command \texttt{diff} to evaluate Ro-
drigues’ formula. \textit{Hint:} You might find that using a loop would simplify your approach.
d. Be clever and, using either matrices or loops constructed in MAPLE, find the values of \textit{all} of
the integrals
\[
\int_{-1}^{1} P_n(x) P_m(x) \, dx
\]
where \( n \) and \( m \) take on independently the values 0, 1, 2, 3, 4, 5. (There are 36 integrals to
be evaluated. Try to be efficient in your coding, and remember the command \texttt{map}, which will
be useful in constructing a single statement that evaluates the integral of each element in a
multi-element structure.)
Figure 7.6: Circuit for Wheatstone Bridge as described in Exercise 7.6.

**7.6.** Figure 7.6 shows the circuit diagram for a Wheatstone bridge. Using Kirchoff’s laws, set up the equations from which you could determine the currents in each branch of the circuit. Then, using MAPLE, (a) solve the equations symbolically, (b) find conditions under which the current in the cross branch (through resistor $R_5$) will be zero, and (c) find the effective resistance seen by the battery. (The effective resistance is defined by the ratio $V/I$, where $I$ is the current in the branch containing the battery.)

**7.7.** In the scattering of a quantum wave from a rectangular barrier in particular circumstances, we find that the wave function must be expressed in three pieces in the form

$$
\psi(x) = \begin{cases} 
A e^{ikx} + Be^{-ikx} & x < 0 \\
D \cosh(\kappa x) + F \sinh(\kappa x) & 0 < x < w \\
C e^{ikx} & x > w
\end{cases} 
$$

where $k$ and $\kappa$ are constants related to the energy of the particle and the height of the barrier, $A$ is a constant reflecting the intensity of the incident beam, and $B$, $D$, $F$, and $C$ are constants to be determined by imposing the requirement that the wave function and its first derivative be continuous both at $x = 0$ and at $x = w$, i.e., that

$$
\psi(0^-) = \psi(0^+) \quad ; \quad \psi(w^-) = \psi(w^+) \quad ; \quad \left. \frac{d\psi}{dx} \right|_{x=0^-} = \left. \frac{d\psi}{dx} \right|_{x=0^+} \quad ; \quad \left. \frac{d\psi}{dx} \right|_{x=w^-} = \left. \frac{d\psi}{dx} \right|_{x=w^+}
$$

where superscript plus and minus signs identify points slightly below and slightly above the indicated value of $x$, respectively. (While $k$ and $\kappa$ can be taken to be real for this barrier, the constants $A$, $B$, $C$, $D$, and $F$ may—and probably will—be complex.) Use MAPLE’s abilities to manipulate expressions to
7.20. EXERCISES

(a) Obtain the equations determining $B$, $C$, $D$, and $F$ by imposing the stated boundary conditions on these solutions.
(b) Solve those equations for those constants (expressing each as a multiple of the constant $A$).
(c) Show that the reflection and transmission coefficients $R$ and $T$ defined by $R = |B/A|^2$ and $T = |C/A|^2$ are given by

$$ R = \left| \frac{B}{A} \right|^2 = \frac{(\kappa^2 + k^2)^2 \sinh^2 \kappa w}{4\kappa^2 k^2 + (\kappa^2 + k^2)^2 \sinh^2 \kappa w} ; \quad T = \left| \frac{C}{A} \right|^2 = \frac{4\kappa^2 \kappa^2}{4\kappa^2 k^2 + (\kappa^2 + k^2)^2 \sinh^2 \kappa w} $$

Here, the vertical bars symbolize the absolute value of the complex number enclosed by them.
(d) Verify that $R + T = 1$.

7.8. The distribution of wavelengths $\lambda$ in the blackbody spectrum at (absolute) temperature $T$ is given by

$$ u(\lambda, T) = \frac{8\pi c h}{\lambda^5} \frac{1}{e^{ck/\lambda kT} - 1} $$

where $c$ is the speed of light, $h$ is Planck’s constant, and $k$ is Boltzmann’s constant. In terms of the variable $y = ch/\lambda kT$, this function has the alternative expression

$$ \frac{(ch)^4 u(\lambda, T)}{8\pi (kT)^5} = f(y) = \frac{y^5}{e^y - 1} $$

(a) Verify this transformed form and then, using MAPLE, (b) obtain a graph of $f(y)$ versus $y$, making sure to extend the graph over an interval that includes its peak and estimate the value of $y$ at which that peak occurs; (c) show that the peak occurs for values of $y$ satisfying

$$(y - 5) e^y + 5 = 0$$

(d) obtain a graph of this function versus $y$; (e) make another estimate of the value of $y$ at which the original function has its maximum; and (f) show that the wavelength $\lambda_m$ at which this maximum occurs satisfies

$$ \lambda_m T = 0.28978 \times 10^{-2} \text{ m K} $$

Hints: (1) Remember that maxima in a function occur where the derivative of that function with respect to the appropriate variable is zero. (2) Because $e^y$ varies rapidly with $y$, you may have to play a bit to find a suitable range of values of $y$ over which to plot these graphs.

7.9. Use MAPLE to verify (a) that the solution

$$ x(t) = x_0 e^{-b t/(2m)} \left( \frac{b \sin \left( \sqrt{4km - b^2} \frac{t}{(2m)} \right)}{\sqrt{4km - b^2}} + \frac{\cos \left( \sqrt{4km - b^2} \frac{t}{(2m)} \right)}{2} \right) $$

presented in Section 7.8.9 satisfies the desired differential equation and the initial conditions presented at the beginning of that section and (b) that this solution and the solution

$$ y(\tau) = y_0 \frac{\beta}{\sqrt{4 - \beta^2}} e^{-b \tau/2} \sin \frac{\tau \sqrt{4 - \beta^2}}{2} + y_0 e^{-(b \tau/2)} \cos \frac{\tau \sqrt{4 - \beta^2}}{2} $$

obtained at the very end of the section agree with each other.

7.10. The Laguerre polynomials $L_n(x)$ can be defined in many ways. We might, for example, set $L_0(x) = 1$ and then generate each new polynomial in turn by requiring that $L_n(x)$ for $n > 0$ be a polynomial of order $n$ that is orthogonal to all previous polynomials, i.e., that

$$ \int_0^\infty e^{-x} L_m(x) L_n(x) \, dx = 0 \quad , \quad \text{all } m < n $$

and that the arbitrary overall sign remaining be resolved by requiring in addition that $L_n(0) = 1$. Alternatively, they can be determined from the recursion relationship

$$(n + 1)L_{n+1}(x) = (2n + 1 - x)L_n(x) - nL_{n-1}(x)$$
provided we include the first two \( L_0(x) = 1 \) and \( L_1(x) = 1 - x \) to get the recursion started. Yet again, they can be found from the application of multiple differentiation as implied by Rodrigues’ formula

\[
L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})
\]

However they are determined, the first half dozen of these polynomials will turn out to be

\[
\begin{align*}
L_0(x) &= 1 \\
L_1(x) &= 1 - x \\
L_2(x) &= 1 - 2x + \frac{1}{2}x^2 \\
L_3(x) &= 1 - 3x + \frac{3}{2}x^2 - \frac{1}{2}x^3 \\
L_4(x) &= 1 - 4x + 3x^2 - \frac{3}{2}x^3 + \frac{1}{24}x^4 \\
L_5(x) &= 1 - 5x + 5x^2 - \frac{5}{2}x^3 + \frac{5}{24}x^4 - \frac{1}{120}x^5
\end{align*}
\]

a. Determine the first half dozen Laguerre polynomials by constructing them one at a time to satisfy the requirements of orthogonality and normalization.

b. Start by binding the value 1 to \( L[0] \) and the value \( 1 - x \) to \( L[1] \). Then, using the recursion relationship, find the next several Laguerre polynomials. \textit{Hint:} The MAPLE statements might be

\[
> L[0] := 1; \\
> L[1] := 1-x;
\]

and then

\[
LL := (2*n-1-x)*L[n-1]/n - (n-1)*L[n-2]/n;
\]

(Verify the expression on the right.) With these statements, you have set up \( L_0(x) \) and \( L_1(x) \) to start the recursion and then you have defined an expression \( LL \) involving \( n \) that can be evaluated at any \( n \). Once \( L_0 \) and \( L_1 \) have been defined, you can find \( L_2 \) and then \( L_3 \) and then ... with statements like

\[
> L[2] := \text{eval}( LL, n=2 ); \\
> L[3] := \text{eval}( LL, n=3 ); \\
\ldots
\]

c. Find the first half-dozen Laguerre polynomials by using the command \texttt{diff} to evaluate Rodrigues’ formula.

d. Be clever and, using either matrices or loops constructed in MAPLE, find the values of all of the integrals

\[
\int_0^\infty e^{-x} L_n(x) L_m(x) \, dx
\]

where \( n \) and \( m \) take on independently the values 0, 1, 2, 3, 4, 5. (There are 36 integrals to be evaluated. Try to be efficient in your coding, and remember the command \texttt{map}, which will be useful in constructing a single statement that evaluates the integral of each element in a multi-element structure.)

e. MAPLE actually knows quite a bit about many of the important special functions of mathematical physics. In particular, the package \texttt{orthopoly} can be loaded with the command \texttt{with(orthopoly)} and is described fully in the MAPLE manuals. Take a look at that documentation and then use the function \texttt{L} in that package to determine the first several Laguerre polynomials.

7.11. Find the eigenvalues and eigenvectors of the matrix

\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

7.12. (a) Find the eigenvalues and eigenvectors of the matrix

\[
\begin{pmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{pmatrix}
\]
(b) Use the function `op` to explore the structure of the entity returned by the function `eigenvectors` used in part (a), i.e., to extract the various pieces of the entity. Then, explain in words the meaning of each piece.

7.13. When a (weak) constant external electric field of magnitude $F$—we reserve $E$ for energy in this exercise—is imposed on a hydrogen atom, the energy of the states with principal quantum number $n$ shift from the energy given by the Bohr model by amounts determined by the eigenvalues of the matrix whose elements are $\langle nlm | eF | n'l'm' \rangle$, where $l$, $m$, $l'$, and $m'$ range over all possible values of those quantum numbers allowed by the particular value of $n$. If the states by which the rows and columns are labeled are ordered $|2, 0, 0\rangle$, $|2, 1, -1\rangle$, $|2, 1, 0\rangle$, and $|2, 1, 1\rangle$, then the matrix for the state $n = 2$ is

$$3e\alpha_0 F \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

where $e$ is the magnitude of the charge on the electron and $\alpha_0$ is the Bohr radius. Similarly, if the states by which the rows and columns are labeled are ordered $|3, 2, 2\rangle$, $|3, 1, 1\rangle$, $|3, 2, 1\rangle$, $|3, 0, 0\rangle$, $|3, 1, 0\rangle$, $|3, 2, 0\rangle$, $|3, 1, -1\rangle$, $|3, 2, -1\rangle$, and $|3, 2, -2\rangle$, then the matrix for the state $n = 3$ is

$$3e\alpha_0 F \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -9/2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -9/2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3\sqrt{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3\sqrt{3} & 0 & -9/\sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -9/\sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -9/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -9/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -9/2 & 0 \end{pmatrix}$$

Find the eigenvalues and eigenvectors of these matrices. The eigenvalues give the energy shifts for the Stark effect for $n = 2$ and $n = 3$ and the eigenvectors give the linear combinations of the base states (i.e., the states in the absence of the external field) out of which the states in the presence of the field emerge as the field is turned on. Hint: The simplest way to create a sparse matrix is to create a matrix that is all zeroes with statements like

```plaintext
mat := array(1..4, 1..4):
for i from 1 to 4 do for j from 1 to 4 do mat[i,j] := 0; end do; end do:
```

and then set the nonzero entries with statements like

```plaintext
mat[1,3] := desired value
```

7.14. As shown in Fig. 7.7, an object of mass $m$ is connected to the center of each of the four sides of a
square of sides 2ℓ with a spring of constant k and moves on a horizontal frictionless surface in the plane defined by the square. Take the equilibrium position of the object at the center of the square to be the origin of an xy coordinate system, and let the springs have unstretched length ℓ₀. For this situation, the kinetic and potential energies KE and PE of the object are given by

\[ KE = \frac{1}{2} m \ddot{x}^2 + \frac{1}{2} m \ddot{y}^2; \quad PE = \frac{1}{2} k \left[ \sqrt{(\ell - x)^2 + y^2} - \ell_0 \right] + \ldots \]

where PE will have three additional terms, one for each of the remaining springs. (The term shown applies to the spring connected to the right side of the square.) By definition, the Lagrangian function for this problem is given by \( L = KE - PE \) and the equations of motion can be extracted from the Lagrangian by evaluating the expression

\[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0 \]

where \( q \) stands first for \( x \) and then for \( y \). Write out the full potential energy and then use MAPLE to deduce the equations of motion \( m \ddot{x} = \ldots \) and \( m \ddot{y} = \ldots \) for this system. The results are quite complicated. To simplify the problem, find in detail the equations only for the cases (a) \( \ell_0 = 0 \), i.e., the springs have unstretched length of 0—admittedly unrealistic springs, and (b) \( x \) and \( y \) remain small compared to \( \ell \) throughout the motion, i.e., \( x/\ell \ll 1 \) and \( y/\ell \ll 1 \) for all time. Note: Statements like \( \text{diff}( L, \text{diff}(x(t),t) ) \) will generate an error message in MAPLE. To obtain the necessary derivatives, you will have to set up the Lagrangian first with a simple variable. If, for example, you sought the equations of motion for a 1D simple harmonic oscillator, for which the Lagrangian is

\[ L := \frac{1}{2} m \dot{x}^2 - \frac{1}{2} k x^2; \]

you would first use \( \dot{x} \), say, for \( \text{diff}(x(t),t) \), then evaluate the derivatives with respect to \( \dot{x} \), and finally, shift to a new variable \( y(t) \), say, for the displacement, with statements like

\[ \text{dL} \_\text{dydot} := \text{eval}( \text{diff}(L,\text{dot}(x(t)), \{ \text{dot}(x(t)), \text{dot}(y(t)) \} \); \]

\[ \text{dL} \_\text{dy} := \text{eval}( \text{diff}(L,x), \{ \text{dot}(x(t)), \text{dot}(y(t)) \} \); \]

\[ \text{eq} := \text{diff}( \text{dL} \_\text{dydot}, t) - \text{dL} \_\text{dy} = 0; \]

7.15. In the Cartesian coordinate system illustrated in Fig. 7.8, the coordinates of the two objects having mass \( m_1 \) and \( m_2 \) in the compound pendulum are given by

\[ x_1 = l_1 \sin \theta; \quad y_1 = -l_1 \cos \theta; \quad x_2 = l_1 \sin \theta + l_2 \sin \phi; \quad y_2 = -l_1 \cos \theta - l_2 \cos \phi \]

Taking \( \theta \) and \( \phi \) to be the generalized coordinates and remembering that

\[ KE = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_1 \dot{y}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2 + \frac{1}{2} m_2 \dot{y}_2^2; \quad PE = m_1 g y_1 + m_2 g y_2 \]
7.20. EXERCISES

7.16. The complete elliptic integrals of the first and second kinds are given by

\[ K(k) = \int_0^{\pi/2} \frac{d\phi}{(1 - k^2 \sin^2 \phi)^{1/2}}; \quad E(k) = \int_0^{\pi/2} (1 - k^2 \sin^2 \phi)^{1/2} d\phi \]

Use MAPLE to evaluate these integrals to \( O(k^6) \) by expanding the integrands in Taylor series before evaluating the integrals.

7.17. Find the Laplace transform of each of the functions

(a) \( f(t) = t^n \) \hspace{1cm} (b) \( f(t) = te^{-at} \) \hspace{1cm} (c) \( f(t) = \cosh(at) \) \hspace{1cm} (d) \( \frac{df(t)}{dt} \)

and the inverse Laplace transform of each of the functions

(e) \( \tilde{f}(s) = \frac{a + bs}{s^2 + \omega^2} \) \hspace{1cm} (f) \( \tilde{f}(s) = \frac{a}{(s^2 + 9\omega^2)(s^2 + 4\omega^2)(s^2 + \omega^2)} \)

In (c), you may have to express the hyperbolic cosine in exponential form while in (f) you may have to help MAPLE’s \texttt{invlaplace} routine by first invoking \texttt{convert} with the keyword \texttt{parfrac} to expand the desired function in partial fractions.

7.18. Given the three points \((x_i, y_i)\), \(i = 1, 2, 3\), (a) find symbolic expressions for the coefficients \(a, b,\) and \(c\) of the parabola \(y = ax^2 + bx + c\) that passes through these three points and then (b) find a symbolic expression for the value of \(x\) at which the extreme point of the parabola occurs. Finally, (c) determine numerically the angle at which the maximum range of a projectile occurs if the ranges at \(\theta = 30^\circ, 40^\circ,\) and \(41^\circ\) are 0.7251744, 0.729383, and 0.7258887, respectively.

7.19. Find symbolic expressions for the coefficients \(a, b,\) and \(c\) that will cause the parabola \(y = ax^2 + bx + c\) to pass through the three points \((x_1 = x_2 - \delta x, y_1), (x_2, y_2),\) and \(x_3 = x_2 + \delta x, y_3).\) Then integrate the parabola over the interval \(x_1 \leq x \leq x_3\) and deduce Simpson’s rule

\[ \int_{x_1}^{x_3} y(x) \, dx = \frac{\delta x}{3} \left( y_1 + 4y_2 + y_3 \right) \]

7.20. Create and test a command file that will define a procedure that will return the element-by-element product of two matrices having the same dimensions. The matrices are to be created with the command \texttt{array} (not \texttt{Array}). Try to code your procedure so that only the two matrices are supplied as input. If necessary, however, you may include the dimensions of the matrices as additional input.

7.21. The midpoint rule \(M\) and Simpson’s rule \(S\) for evaluating integrals numerically start with the assumptions that

\[ \int_a^b f(x) \, dx \approx M = (b - a) f \left( \frac{a + b}{2} \right); \quad \int_a^b f(x) \, dx \approx S = \frac{b - a}{6} \left( f(a) + 4 f \left( \frac{a + b}{2} \right) + f(b) \right) \]

respectively. To deduce the first of these expressions, we approximate \(f(x)\) over the interval \(a \leq x \leq b\) with a constant equal to the value of \(f(x)\) at the midpoint of the interval while deducing the second entails approximating the function with a quadratic polynomial that passes through \(f(x)\) at the endpoints and the midpoint of the interval. The midpoint rule will clearly be 100% accurate if \(f(x)\) is a constant and Simpson’s rule will be 100% accurate if \(f(x)\) is a quadratic polynomial.
Use symbolic manipulation to show that, surprisingly, the midpoint rule is in fact 100% accurate for the linear function \( f(x) = mx + p \) and Simpson’s rule is 100% accurate for the cubic polynomial \( f(x) = ax^3 + dx^2 + ex + g \). Optional: Try to construct geometric arguments that would provide insight into the correctness of these analytic results.

7.22. Using MAPLE, obtain graphs of the potential

\[
U(x) = -\frac{U_0 a^2 (a^2 + x^2)}{8a^4 + x^4}
\]

and the associated force. Note that the expression for the potential is simpler to plot if you plot not \( U(x) \) versus \( x \) but rather \( U(x)/U_0 \) versus \( x/a \), i.e., rewrite the function in the form

\[
\frac{U(x)}{U_0} = \frac{1 + \frac{x^2}{8 + \frac{x^4}{a^4}}}{a^2}
\]

You should be able to find a similar dimensionless version of the expression giving the force.

7.23. Using MAPLE, find complete (symbolic) solutions to each of the following problems, and use MAPLE also to verify that the solutions you obtain actually do satisfy the original ODE and initial conditions.

a. \( \frac{d^2 x}{dt^2} = a \), \( x(0) = x_0 \), \( v(0) = v_0 \), where \( a \) is constant, i.e., find position as a function of time for a particle moving under the action of a constant force and launched with arbitrary initial conditions.

b. \( m \frac{d^2 x}{dt^2} = -\varepsilon E_l \cos(\omega t + \theta) \), \( x(0) = x_0 \), \( v(0) = v_0 \), i.e., find position as a function of time for a charged particle moving under the action of a sinusoidal force and launched with arbitrary initial conditions.

c. \( m \frac{d^2 x}{dt^2} = -mg + b \left( \frac{dx}{dt} \right)^2 \), \( x(0) = 0 \), \( v(0) = 0 \), i.e., find position as a function of time for a particle released from rest at the origin and allowed to fall freely under the action of gravity and a viscous retarding force proportional to the square of the speed.

d. the differential equations

\[
m \frac{d^2 x}{dt^2} = -b \frac{dx}{dt}
\]

and

\[
m \frac{d^2 z}{dt^2} = -mg - b \left( \frac{dz}{dt} \right)
\]

for the motion of a projectile moving under gravity in a viscous medium when the motion starts at the origin with the initial velocity \( v = v_0 \hat{i} + v_0 \hat{j} \).

7.24. Using the functions \texttt{Gradient}, \texttt{Laplacian}, \texttt{Divergence}, and \texttt{Curl} defined in Section 7.8.10,

a. Evaluate the gradient of (i.e., the negative of the force field associated with) each of the functions

\[
V_1(x, y, z) = \frac{1}{(x^2 + y^2 + z^2)^{1/2}} \quad V_2(x, y, z) = \frac{z}{(x^2 + y^2 + z^2)^{3/2}}
\]

\[
V_3(x, y, z) = \frac{2x^2 - x^2 - y^2}{(x^2 + y^2 + z^2)^{3/2}} \quad V_4(x, y, z) = \frac{e^{-a(x^2 + y^2 + z^2)^{1/2}}}{(x^2 + y^2 + z^2)^{3/2}}
\]

of the Cartesian variables \((x, y, z)\).

b. Verify that each field obtained in part (a) is conservative by showing that the curl of each is zero.

c. With \( \mathbf{r} = x \hat{i} + y \hat{j} + z \hat{k} \), show (1) that \( \nabla \times \mathbf{r} = 0 \) and (2) that \( \nabla \cdot \mathbf{r} = 3 \).

d. With \( V_5(x, y, z) = x^2 + y^2 + z^2 \), show that \( \nabla^2 V_5(x, y, z) = \nabla \cdot \nabla V_5(x, y, z) = 6 \).

e. Show that \( \nabla^2 V_1(x, y, z) = 0 \). (Note: Except at \( x = y = z = 0 \).)

f. Evaluate the Laplacian of \( V_4(x, y, z) \), \( \nabla^2 V_4(x, y, z) \).
7.25. Using the functions Gradient, Laplacian, Divergence, and Curl defined in Section 7.8.10,

a. Evaluate the gradient of (i.e., the negative of the force field associated with) each of the functions

\[
\begin{align*}
V_1(r, \phi, z) &= \frac{1}{(r^2 + z^2)^{1/2}} \\
V_2(r, \phi, z) &= \frac{z}{(r^2 + z^2)^{3/2}} \\
V_3(r, \phi, z) &= \frac{2z^2 - r^2}{(r^2 + z^2)^{3/2}} \\
V_4(r, \phi, z) &= \frac{e^{-a(r^2+z^2)^{1/2}}}{(r^2 + z^2)^{1/2}}
\end{align*}
\]

of the cylindrical variables \( r \) (radial), \( \phi \) (azimuthal), and \( z \) (axial).

b. Verify that each field obtained in part (a) is conservative by showing that the curl of each is zero.

c. With \( \mathbf{r} = r \hat{r} + z \hat{k} \), show (1) that \( \nabla \times \mathbf{r} = 0 \) and (2) that \( \nabla \cdot \mathbf{r} = 3 \).

d. With \( V_5(r, \phi, z) = r^2 + z^2 \), show that \( \nabla^2 V_5(r, \phi, z) = \nabla \cdot \nabla V_5(r, \phi, z) = 6 \).

e. Show that \( \nabla^2 V_1(r, \phi, z) = 0 \). (Note: Except at \( r = z = 0 \).)

f. Evaluate the Laplacian of \( V_4(r, \phi, z) \), \( \nabla^2 V_4(r, \phi, z) \).

7.26. Using the functions Gradient, Laplacian, Divergence, and Curl defined in Section 7.8.10,

a. Evaluate the gradient of (i.e., the negative of the force field associated with) each of the functions

\[
\begin{align*}
V_1(r, \theta, \phi) &= \frac{1}{r} \\
V_2(r, \theta, \phi) &= \frac{z}{r^3} \\
V_3(r, \theta, \phi) &= \frac{r^2(3\cos^2 \theta - 1)}{r^5} \\
V_4(r, \theta, \phi) &= \frac{e^{-ar^{1/2}}}{r}
\end{align*}
\]

of the spherical coordinates \( r \) (radial), \( \theta \) (polar), and \( \phi \) (azimuthal).

b. Verify that each field obtained in part (a) is conservative by showing that the curl of each is zero.

c. With \( \mathbf{r} = r \hat{r} \), show (1) that \( \nabla \times \mathbf{r} = 0 \) and (2) that \( \nabla \cdot \mathbf{r} = 3 \).

d. With \( V_5(r, \theta, \phi) = r^2 \), show that \( \nabla^2 V_5(r, \theta, \phi) = \nabla \cdot \nabla V_5(r, \phi, z) = 6 \).

e. Show that \( \nabla^2 V_1(r, \theta, \phi) = 0 \). (Note: Except at \( r = z = 0 \).)

f. Evaluate the Laplacian of \( V_4(r, \theta, \phi) \), \( \nabla^2 V_4(r, \theta, \phi) \).

7.27. Create four three-component vectors \( \mathbf{A} \), \( \mathbf{B} \), and \( \mathbf{C} \) with statements like

\[
\begin{align*}
\mathbf{A} &:= [A_1, A_2, A_3] : \mathbf{B} := [B_1, B_2, B_3] : \mathbf{C} := [C_1, C_2, C_3] : \mathbf{D} := [D_1, D_2, D_3] :
\end{align*}
\]

Then, using the file `crossdot.mpl` as described in Section 7.11, show that

a. \( \mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A} \), or, equivalently, that \( \mathbf{A} \times \mathbf{B} + \mathbf{B} \times \mathbf{A} = 0 \).

b. \( \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C} \)

c. \( (\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{B} \cdot \mathbf{C})\mathbf{A} \)

d. \( \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} \)

e. \( (\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C}) \)

\[63\text{The variable D is protected in MAPLE.}\]
Chapter 9

Introduction to Programming

In this chapter, we address the task of composing sets of statements\(^1\) that will cause an obedient, efficient, and very literal servant (i.e., computer) to perform exactly the task intended by the master (i.e., programmer). A general strategy by which a particular task can be accomplished in a finite (though perhaps large) number of steps is called an algorithm. A specific expression of an algorithm in a suitable language is called a program. Hence, this chapter is about designing algorithms and implementing them in programs. More specifically, it is about designing algorithms for the performance of tasks that will ultimately be assigned to a computer and about implementing those algorithms in several possible computer languages.

Designing algorithms and implementing them in programs that direct a computer to perform various tasks is really not very different from designing algorithms and implementing them in programs that direct a baker to bake a cake, a knitter to knit a sweater, or a cab driver to drive from the airport to the hotel. In the aggregate, an algorithm will obtain all necessary inputs, manipulate those inputs in some way, and produce the required outputs. Each step in the process must be systematically specified using elementary statements, each of which means only one thing to the servant (person or computer) that will perform the task. Some of the appropriate elementary statements—particularly the action statements that specify simple actions—will vary with the general type of task to be performed. “Mix” and “whip”, for example, are among the elementary action statements that must be understood by the baker of cakes; “knit”, “purl”, and “cast on” must be part of the vocabulary of a knitter of sweaters; while “turn right” and “follow interstate 90 west” are action statements for the cab driver.

The performance of even simple tasks, however, entails the execution of suitable action statements in the right order. The complete description of an algorithm must therefore indicate not only which actions are to be performed but also the order of their performance. Those aspects of an algorithm that specify the order of performance of action statements are called control structures.

A language for specifying algorithms must therefore provide not only elementary action statements, which vary with the general type of task to be performed, but also control structures, which are more universal than the action statements. In the first two sections of this chapter, we focus particularly on identifying fundamental control structures and illustrating their role in several simple algorithms. In later sections, we explain how the general structures introduced in the first section are implemented in standard languages. More detailed information about various languages may be found in the references listed in Section 9.17.

\(^1\) Individual instructions in a computer language are usually called statements, and we use that word throughout this book.
9.1 Components of a Programming Language

While we could code programs directly in the binary language that computers use internally, the process would be slow, tedious, prone to error, and resistant to debugging. As an alternative, a wide assortment of high-level languages has been developed. Using a chosen high-level language, the programmer creates an ASCII file containing the source code, which lays out what the computer must do to accomplish the desired task. Then, that source code must be translated into machine code—a task that a computer equipped with the proper translating program can do for itself.

Actually, there are two approaches to this translation. In the first, the computer interprets the source code, which means that each statement in the code is translated by the computer each time the statement is executed; execution is slow but the process for us is simple: we write the source code and run the program. In the second approach, the computer first compiles the source code into binary object code, and then links the object code with an assortment of system routines and possibly additional user-written routines. Only after compilation and linking have been completed can the resulting binary or executable file actually be run. This second approach is more complicated for us, since we must both write the source code and then compile and link it. The advantages are twofold: (1) the final executable file is stored in the machine and can be run any number of times without repeating compilation and linking; and (2) execution of compiled code is faster than execution when the code is interpreted.

The prospective user of a computer need only learn how to construct the source code in whatever language is to be used. While the detailed syntax of the statements that can be constructed depends very much on the language chosen, certain common elements can be identified. In particular, all languages provide ways to make use of computer memory, to obtain input and display output, and to control the flow of execution within the program. In this section, we describe those common elements as a prelude to laying out the details for specific languages in later sections.

9.1.1 Variables, Variable Names, and Use of Memory

Computers provide a means for working with data. The data, however, must be accessible to the central processing unit (CPU), which is the part of the hardware that directs and controls all actions carried out by the computer. Let us, therefore, endow the CPU with a capacity to reserve an available memory cell (or a contiguous succession of them if one cell is not large enough) and assign to it (them) a variable name, which we specify. Throughout the execution of the program, the assigned name then refers to this unique cubbyhole in the machine’s memory.

While we do not explicitly impose a length limit on variable names, shorter names are preferred, simply because longer names take longer to type, take more space in the line, and, taken to extremes, result in program listings that are difficult to read. Generally, of course, we want to choose variable names that help us remember the significance of the quantity the name identifies.

---

2Some languages are case-sensitive and others are not. For our general discussion, we shall assume case insensitivity, so A and a are indistinguishable in variable names.
Even in the generic discussion of this section, however, we shall pay attention to the data type of each quantity represented. In Chapter 1, we distinguished floating point numbers, integers, and character strings from one another in several ways. In structuring programs, we must remain always aware of this distinction. Further, the computer in interpreting or compiling our source code must either make assumptions or be told the data type of each variable we use. Some languages (e.g., Pascal, C) require an explicit declaration of variable names and associated data types before the name can be used. Other languages (e.g., BASIC, FORTRAN) exploit implicit data typing by looking to the composition of the variable name to determine the intended data type—though more recent versions of FORTRAN, for example, also admit explicit data typing. Still others (e.g., IDL, MATLAB, OCTAVE) assign a data type dynamically and automatically on the basis of the value assigned to the variable. In our general discussion, we shall adopt a convention that keeps us consciously aware of data type every time we use a variable name. Following the pattern actually used in BASIC, we shall take variable names with no appended suffix to represent floating point numbers, variable names with an appended percent sign % to represent integers, and variable names with an appended dollar sign $ to represent character strings. Occasionally, we shall use an appended at sign @ to stand for any one of these three possibilities (no suffix, %, or $). Thus, in the pseudocode we are defining, the names x, position, and field identify memory cells for floating point values, the names I%, count%, and lower_limit% are valid names for cells storing integers, the names word$ and first_name$ are valid names for cells storing strings, and item@ identifies a quantity of any type.

The variables we have discussed so far are scalar or unstructured variables; each variable name stands for a single floating point number, integer, or character string. In scientific uses especially, we frequently want to refer to an aggregate of numbers (the three components of a position vector, the nine elements of a $3 \times 3$ matrix, ...). To that end, the array is among the structured variables available in all scientific programming languages. An array may be one-dimensional (a vector), two-dimensional (an $m \times n$ matrix), or even higher dimensional. As a structured entity, an array is identified by a single name, e.g., data, values%, or names$, depending on the data type of the elements of the array. Individual elements are identified by attaching an integer index or indices to the array name, e.g., data(I%,J%), values%(4%), or names$(12%). All by itself, the name of a scalar is sufficient to tell the compiler how much memory to reserve to store the scalar value. For arrays, however, we can’t simply use the name when it is first needed. In most languages, the source code must also convey how large the array will become during the execution of the program because the interpreter or compiler must set aside adequate memory to store the array before the interpretation or compilation can be completed. Thus, a program that uses arrays must include in its source code a directive informing the compiler or interpreter of the maximum dimensions of the array. In our generic discussion, we shall use a statement like

\[
\text{DIMENSION data}(4\%,251\%), \text{values}%(8\%), \text{names}$(25\%)
\]

to convey the number of elements in each array to the interpreter or compiler. From the beginning, be aware that some standard languages by default use array indices that run upwards from the value 1% while others start the indices at the value 0%. In both cases, the statement above creates an array values%, for example, with eight elements. In the first case, the indices run from 1% to 8% while in the second case they run from 0% to 7%.

### 9.1.2 Essential Action Statements

The CPU must also be able to respond to a minimum collection of action statements to permit the assignment of values to variables, the performance of elementary arithmetic, and the transfer of information from and to a standard I/O device. We shall use the following special symbols and words for these operations:

\[\text{DIMENSION data}(4\%,251\%), \text{values}%(8\%), \text{names}$(25\%)\]

\[
\text{DIMENSION data}(4\%,251\%), \text{values}%(8\%), \text{names}$(25\%)
\]
• Assign a value to a named memory location:

\[ \langle \text{variable} \rangle \leftarrow \langle \text{expression determining value to be assigned} \rangle \]

e.g.,

\[
\begin{align*}
\text{val} & \leftarrow \sin(\pi \times x) \\
\text{count}\% & \leftarrow \text{count}\% + 1\% \\
\text{first}\_\text{name}\$ & \leftarrow \text{"David"}
\end{align*}
\]

etc. Any valid arithmetic expression utilizing the symbols + for addition (or string concatenation), - for subtraction, * for multiplication, / for division, and ^ for exponentiation can appear on the right hand side of the assignment symbol \(\leftarrow\). Further, most computer languages make available a wide variety of standard functions (\(\sin, \cos, \tan, \sqrt{x}, \exp, \ldots\)) to facilitate scientific computation.

• Obtain a value from the keyboard and store it in a (named) memory cell:

\[
\text{READ PROMPT} = \text{"Enter first name: ", first}\_\text{name}\$
\]

• Transmit a value from a (named) memory cell and/or a (quoted) literal message to the screen:

\[
\text{WRITE } \text{"The value of the integral is ", value, "."}
\]

We here recognize one further necessary refinement. In the above, we have simply requested information from the keyboard or directed output to the screen. Most programming languages will accept such simple statements, adopting a default format in which to expect the input or produce the output. Almost always, we will wish to exert some control over that format, and the standard languages provide means to give us that control. At base, we want to be able to dictate how many character positions should be occupied by the number, whether the number is to be output as an integer or as a decimal number, whether the decimal number is to be presented in scientific or conventional notation, how many digits are to be placed after the decimal point, whether the number is to be rounded, \ldots. Further, we may want to create blank lines in the output, ignore blank lines in the input, or clear the screen. Since this list is (almost) endless, the task of describing the format in which input will be presented to the computer and specifying the format in which the computer should produce its output is among the most complicated tasks the programmer confronts. Unfortunately, different languages adopt significantly different ways to provide this facility. Hence, detailed discussion beyond this brief recognition of a need is best postponed until we discuss specific languages.

9.1.3 Logical Expressions and Conditions

Frequently, the CPU will need to make a decision on the basis of currently available information, performing different tasks depending on that decision. Usually, these decisions are binary. At base, the computer decides whether a particular logical proposition is true or false. Further, the propositions so examined are usually cast as a comparison of two quantities to determine how they would be ordered in some standard ordering sequence (numeric, alphabetic, \ldots). The six simple comparisons we might want to code and the circumstances under which the computer will judge each to be true are enumerated in Table 9.1.

\[
4\text{We declare that integer constants shall be explicitly identified with a trailing percent sign and that string constants shall be enclosed in double quotation marks. Some languages use single quotation marks, while others will accept either (provided they are paired).}
\]
Table 9.1: Simple logical expressions and the circumstances under which each is true. Remember that we have introduced the suffix @ to indicate any of the standard data types.

<table>
<thead>
<tr>
<th>(condition)</th>
<th>true if</th>
</tr>
</thead>
<tbody>
<tr>
<td>A@ = B@</td>
<td>A@ is the same as B@ (A@ equals B@)</td>
</tr>
<tr>
<td>A@ &lt; B@</td>
<td>A@ occurs before B@ in some collating sequence (e.g., numerical order, alphabetical order) (A@ less than B@)</td>
</tr>
<tr>
<td>A@ &gt; B@</td>
<td>A@ occurs after B@ in that collating sequence (A@ greater than B@)</td>
</tr>
<tr>
<td>A@ &lt;&gt; B@</td>
<td>A@ differs from B@ (A@ not equal to B@)</td>
</tr>
<tr>
<td>A@ &lt;= B@</td>
<td>A@ occurs before or is the same as B@ (A@ less than or equal to B@)</td>
</tr>
<tr>
<td>A@ &gt;= B@</td>
<td>A@ occurs after or is the same as B@ (A@ greater than or equal to B@)</td>
</tr>
</tbody>
</table>

Table 9.2: Truth tables for OR and AND.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Truth Value</th>
<th>Proposition</th>
<th>Truth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>true OR true</td>
<td>true</td>
<td>true AND true</td>
<td>true</td>
</tr>
<tr>
<td>true OR false</td>
<td>true</td>
<td>true AND false</td>
<td>false</td>
</tr>
<tr>
<td>false OR true</td>
<td>true</td>
<td>false AND true</td>
<td>false</td>
</tr>
<tr>
<td>false OR false</td>
<td>false</td>
<td>false AND false</td>
<td>false</td>
</tr>
</tbody>
</table>

Two additional capabilities are standard in computer languages. First, we endow our CPU with the ability to interpret compound conditions constructed out of simpler conditions either with the operator OR or the operator AND. A truth table showing the result of connecting each possible logical value with each of these operators is presented in Table 9.2. Second, we introduce the ability to negate a condition with the operator NOT, i.e., we introduce the expression

\[ \text{NOT} \langle \text{condition} \rangle \]

which we define to be true if \( \langle \text{condition} \rangle \) is false and false if \( \langle \text{condition} \rangle \) is true.

Further (and finally), we recognize that we may occasionally find a need for a variable—a Boolean variable—that can assume only the two values true and false. Recognizing that different languages treat these variables differently, let us symbolize such a variable generically with a suffix ? . Thus, for example, we might at some point code a statement like

\[ \text{EQUAL? } \leftarrow \text{N@ = M@} \]

in response to which the computer will assess whether N@ is equal to M@ and set EQUAL? to true or false, depending on the outcome of that assessment. With this expansion of our language, conditions might be expressed not only by the comparisons illustrated in Table 9.1 but also by the simple assertion of a single Boolean variable or by a logical expression involving combinations of comparisons and/or assertions of Boolean variables. Note, incidentally, that the statement in this paragraph reveals why computer languages must have a different symbol for assignment than for testing equality.5

9.1.4 Syntactic Wrinkles

In some programming contexts, we will find it convenient—and sometimes even necessary—to convey additional information about the structure of the code to the CPU. We might wish

5We have used ← and =. In later sections, we will identify the symbols used in other languages.
• to place more than one statement on a single physical line. In our generic code, we shall use the character ‘;’ to separate individual statements on a single line. The three lines of code early in Section 9.1.2 might be combined in one line with the coding

\[
\text{val} ← \sin(\pi \times \text{x}); \hspace{1em} \text{count}\% ← \text{count}\% + 1\%; \hspace{1em} \text{first\_name}\$ ← "\text{David}\"
\]

• to spread a single statement over more than one physical line. In our generic code, we shall use the symbol → at the end of a line to indicate that the statement continues on the next line. Thus, for example, the two-line statement

\[
U(I\%, J\%) ← 0.25 \times (U(I\%+1\%, J\%) + U(I\%-1\%, J\%) \rightarrow + U(I\%, J\%+1\%) + U(I\%, J\%-1\%))
\]

is to be seen as a single statement.⁶

• to group several statements together to form a block of statements so that they can be properly treated when the block is placed in a context in which the interpreter or compiler is expecting a single statement. In our generic code, we shall use the keywords BEGIN_BLOCK and END_BLOCK to “bracket” the several statements that we wish the compiler or interpreter to see as a single (compound) statement. For example, the coding

\[
\begin{align*}
\text{BEGIN\_BLOCK} \\
\text{val} ← \sin(\pi \times \text{x}) \\
\text{count}\% ← \text{count}\% + 1\% \\
\text{first\_name}\$ ← "\text{David}\" \\
\text{END\_BLOCK}
\end{align*}
\]

would group the three statements as a unit.

Different languages differ significantly in the way these three situations are coded. We shall be more explicit in subsequent sections as we address each language in turn.

### 9.1.5 Essential Control Structures

Four main control structures⁷ are generally provided in standard computer languages and figure significantly in the smooth expression of algorithms:

• Sequence, which is conveyed by the order of the statements in the algorithm.

• Two-way selection, which is conveyed generically with a statement like⁸,⁹

---

⁶Remember that spaces not in quoted strings are ignored by the compiler.

⁷Since the CASE structure can be expressed in terms of nested IF-THEN-ELSE structures and the IF-THEN-ELSE structure is simply a CASE structure with only two cases, there are really only three fundamental structures (sequence, selection, and repetition). General theorems in computer science prove that no task will require more than these few control structures.

⁸The structure of this single statement is sufficiently distinctive—it is not complete until the keyword END_IF is encountered—that we need not use the symbol → described in Section 9.1.4 to indicate that the statement is spread over several physical lines.

⁹We use the exclamation point to introduce comments. Judicious use of such comments, irrelevant though they may be to the computer, can clarify the algorithm for the human reader of the listing. To be useful, a comment should amplify the meaning of, or clarify the role of, the commented statement. The statement

\[
\text{CNT}\% ← 0\% \hspace{1em} ! \text{Set CNT}\%\% \text{ to } 0\%
\]

for example, might as well be uncommented, since the comment really says no more than can be inferred from the statement itself.
9.1. COMPONENTS OF A PROGRAMMING LANGUAGE

IF (condition)
  THEN (block1 of statements) ! the THEN clause
  ELSE (block2 of statements) ! the ELSE clause
END_IF

Here (block1 of statements) is executed when (condition) is true and (block2 of statements) is executed when (condition) is false. The ELSE clause may be omitted altogether if (block2 of statements) is null. The flow diagram in Fig. 9.1(a) is often used to convey this structure.

• Multi-way selection

CASE
  OF (condition1) DO (block1 of statements)
  OF (condition2) DO (block2 of statements)
  OF (condition3) DO (block3 of statements)
  ...
  OF OTHERS DO (blockO of statements)
END_CASE

In executing this overall statement, the computer will test each condition in turn, execute the block of statements associated with the first true condition it encounters, and then jump out of the CASE structure. The OTHERS clause may be omitted altogether if (blockO of statements) is null. The flow diagram in Fig. 9.1(b) is often used to convey this structure.

• Repetition

LOOP
  (block1 of statements)
  EXIT_LOOP WHEN (condition)
  (block2 of statements)
END_LOOP

Here, the statements in the body of the loop are executed repeatedly until (condition), which is tested at the indicated point in the loop, becomes true. Looping will continue forever unless repeated execution of the statements eventually causes (condition) to become true. The flow diagram in Fig. 9.1(c) is often used to convey this structure.

In some more recent languages, the explicit construction of a loop is in some cases not necessary. For example, suppose we have a vector X containing N% elements and we wish to create a second vector Y, each of whose elements is—say—the sine of the corresponding element in X. In the coding we have so far described, we would achieve this objective with an explicit loop involving the statements

\[ I\% \leftarrow 0\% \]
LOOP
  \[ I\% \leftarrow I\% + 1\% \]
  \[ Y(I\%) \leftarrow \sin(X(I\%)) \]
EXIT_LOOP WHEN I%=N%
END_LOOP

10As with the previous structure, the structure of this single statement is sufficiently distinctive—it is not complete until the keyword END_CASE is encountered—that we need not use the symbol → described in Section 9.1.4 to indicate that the statement is spread over several physical lines.

11Not all compilers adopt this strategy. Some will execute the blocks associated with every true condition in the structure.
(We assume that the vectors have already been appropriately dimensioned.) Were we working
with a language like IDL or MATLAB, which have built in array processing capabilities, this
loop would be automatically constructed in response to the single statement

\[
Y \leftarrow \sin(X)
\]

These languages simply understand that, when functions like the sine are supplied with an
argument that is an array (whatever its dimension), the program is to compute an array of the
same dimension, each of whose elements is that function of the corresponding element in the
argument. These languages greatly simplify the coding of many operations involving arrays
and, in addition, almost certainly generate a more efficient execution of the entire task. When
available in the language in use, these capabilities should be exploited as much as possible.

Since blocks of statements may themselves involve any of these structures, the elementary structures
can give rise to more complicated structures in which elementary structures are nested two or more
deep. Note that, however complicated the THEN and ELSE clauses, the statements between CASE and
END_CASE, or the body of the loop, the (outer) IF-END_IF statement, the (outer) CASE-END_CASE
statement, and the loop as a whole are all seen by the compiler or interpreter logically as a single
statement.

Although the LOOP structure identified above is quite general and, by itself, is adequate to
accommodate all situations that might arise, structures that implement the terminating test in the middle of the loop are rare in actual computer languages. Three alternative versions are usually
provided. In the first version, the test is at the beginning of the loop, e.g.,

\[
\text{WHILE } \langle \text{condition} \rangle \text{ DO } \langle \text{block of statements} \rangle
\]

and the block is not executed at all if \( \langle \text{condition} \rangle \) is false when the loop is entered. In the second
version, the test is at the end of the loop, e.g.,

\[
\text{REPEAT } \langle \text{block of statements} \rangle \text{ UNTIL } \langle \text{condition} \rangle
\]

and the block will be executed at least once, whether \( \langle \text{condition} \rangle \) is true or false when the loop
is entered. Both of these versions will lead to infinite loops unless the statements in the body of
the loop ultimately toggle the condition to the value that will terminate the loop. Flow diagrams
depicting these structures are shown in Figs. 9.2(a) and (b).

The third version of a loop incorporates a built-in incrementation of an integer index and the
automatic testing of that index, e.g.,

\[
\text{FOR } I% \leftarrow IMIN\% \text{ THRU IMAX\% DO } \langle \text{block of statements} \rangle
\]

When this loop is executed, the body of the loop is executed for \( I\% \) having the value \( IMIN\% \), then
for \( I\% \) having the value \( IMIN\%+1\% \), then for \( I\% \) having the value \( IMIN\%+2\% \), and ..., continuing
until the loop has been executed for the largest value of \( I\% \) that does not exceed \( IMAX\% \). The more
sophisticated form

\[
\text{FOR } I\% \leftarrow IMIN\% \text{ THRU IMAX\% STEP INC\% DO } \langle \text{block of statements} \rangle
\]
gives the user control over the increment by which the index is increased before each new pass
through the body of the loop. A flow diagram for this loop structure is shown in Fig. 9.2(c). Note
that the loop we have here depicted will be executed once if \( IMIN\% \) equals \( IMAX\% \) and not at all if
\( IMIN\% \) exceeds \( IMAX\% \)—but beware; different languages may behave differently in this regard.

Though it is not essential, one further control structure is standard in all scientific programming
languages. Conveyed in our generic code by the statement
EXECUTE ⟨procedure name⟩

this single statement makes possible the invocation of a (properly defined) procedure in a program (or for that matter in another procedure): it both facilitates a modular approach to the design of programs and provides a means to avoid duplication of program modules that must be invoked more than once to specify a task completely.
9.2 Sample Short Algorithms

Large algorithms for accomplishing complex tasks are frequently constructed by combining various smaller algorithms. In this section, we enumerate several program fragments that may serve as building blocks for the construction of larger algorithms.

1. Exchange the values stored in A@ and B@:\(^{12}\)

\[
\begin{align*}
& \text{TEMP\@} \leftarrow A\@ \quad ! \text{Save value in} \ A\@ \\
& A\@ \leftarrow B\@ \quad ! \text{Copy} \ B\@ \text{ to} \ A\@ \\
& B\@ \leftarrow \text{TEMP\@} \quad ! \text{Copy original} \ A\@ \text{ from} \ \text{TEMP\@}
\end{align*}
\]

The temporary memory cell TEMP@ saves the original value of A@ so that it is still retrievable after the value of B@ has been copied into cell A@, overwriting the original contents of cell A@.

2. Stopping a loop with a sentinel [and counting]:

\[
\begin{align*}
& \text{SENTINEL\@} \leftarrow \langle \text{agreed-upon special value} \rangle \\
& [\text{COUNT\%} \leftarrow 0\%] \\
& \text{LOOP} \\
& \quad \text{READ \ ITEM\@} \\
& \quad \text{EXIT\_LOOP \ WHEN} \ \text{ITEM\@} = \text{SENTINEL\@} \\
& \quad \langle \text{Statements processing} \ \text{ITEM\@} \rangle \\
& \quad [\text{COUNT\%} \leftarrow \text{COUNT\%} + 1\%] \\
& \text{END\_LOOP}
\end{align*}
\]

If the statements enclosed in \[\ldots\] are included, then when the loop is completed the variable COUNT% will have as its value the number of values of ITEM@ processed. Note that the position in the sequence at which COUNT% is incremented is critical. As a general rule, counters should be started at the value zero before anything happens and incremented by one immediately after each of the events to be counted. More often than not, the end result of thoughtless or unsystematic positioning of the incrementation will be a final count that is off by one, one way or the other.

3. Stopping a loop by counting up:

\[
\begin{align*}
& \text{NUMBER\_OF\_TIMES\%} \leftarrow \langle \text{desired number of executions} \rangle \\
& \text{COUNTER\%} \leftarrow 0\% \\
& \text{LOOP} \\
& \quad \text{EXIT\_LOOP \ WHEN} \ \text{COUNTER\%} = \text{NUMBER\_OF\_TIMES\%} \\
& \quad \langle \text{block of statements} \rangle \\
& \quad \text{COUNTER\%} = \text{COUNTER\%} + 1\% \\
& \text{END\_LOOP}
\end{align*}
\]

Again, careful initialization of the counter and careful positioning of its incrementation are critical to avoiding off-by-one errors.

4. Stopping a loop by counting down:

\[
\begin{align*}
& \text{TIMES\_REMAINING\%} \leftarrow \langle \text{desired number of executions} \rangle \\
& \text{LOOP} \\
& \quad \text{EXIT\_LOOP \ WHEN} \ \text{TIMES\_REMAINING\%} = 0\% \\
& \quad \langle \text{block of statements} \rangle \\
& \quad \text{TIMES\_REMAINING\%} \leftarrow \text{TIMES\_REMAINING\%} - 1\%
\end{align*}
\]

\(^{12}\)Note again the use of the character ! to flag comments. See footnote 9.
9.2. SAMPLE SHORT ALGORITHMS

This coding has a small advantage over the previous coding because it requires only one variable (TIMES_REMAINING) to control the loop. Note, however, that the initial value of that variable is irrecoverably lost by the time execution of the loop has been completed.

5. Summing [and counting]:

```
SENTINEL ← ⟨agreed-upon special value⟩
SUM ← 0.0
[COUNT% ← 0%]
LOOP
 READ ITEM
 EXIT_LOOP WHEN ITEM = SENTINEL
 SUM ← SUM + ITEM
 [COUNT% ← COUNT% + 1%]
END_LOOP
WRITE "The sum is "; SUM
```

This algorithm for adding numbers involves the same steps you would use to accomplish the task on a pocket calculator: initialize the accumulator to 0.0, enter each new value in turn, push the ‘add’ button after each entry, stop after the last value has been processed, and read the final value in the accumulator. Note the explicit decimal point in the floating point constant 0.0. Since some compilers and interpreters in some circumstances will treat numerical constants without explicit decimal points as integers, possibly producing unintended results, prudence dictates habitually placing an explicit decimal point in all integer constants that are in fact to be treated as floating point values. In the present situation, the variable SUM is implicitly declared to be a floating point variable, so the statement SUM ← 0 would result in an internal conversion of the integer value 0 to the floating point value 0.0, but it nonetheless pays to be cautious.

6. Finding extreme, stopping with a sentinel:

```
SENTINEL@ ← ⟨agreed-upon special value⟩
READ (first) ITEM@ from list
EXTREME@ ← ITEM@
LOOP
 READ (next) ITEM@ from list
 EXIT_LOOP WHEN ITEM@ = SENTINEL@
 IF ITEM@ and EXTREME@ are out of order
 THEN EXTREME@ ← ITEM@
 END_IF
END_LOOP
WRITE "The extreme value is "; EXTREME@
```

While this procedure can be executed with no a priori knowledge of the number of items and no special assumptions about the list to come, it has the disadvantage of requiring the first item of the list to be treated differently from the subsequent items. [Questions to the reader: (1) Does this procedure behave sensibly if the sentinel is entered as the first item? How might you improve the procedure on that score? Should you bother? (2) What error would occur in the output if the EXIT_LOOP WHEN statement were placed just before the END_LOOP statement?]

---

13For example, 5/2 = 2 in integer arithmetic; 5.0/2.0 = 2.5 in floating point arithmetic.
7. Finding extreme, stopping by counting:

```plaintext
NUMBER_OF_VALUES% ← ⟨number of items to be presented⟩
READ (first) ITEM@ from list
COUNTER% ← 1% ! Count item
EXTREME@ ← ITEM@ ! Assume first is extreme
LOOP
 EXIT_LOOP WHEN COUNTER% = NUMBER_OF_VALUES%
 READ (next) ITEM@ from list
 COUNTER% ← COUNTER% + 1%
 IF ITEM@ and EXTREME@ are out of order
 THEN EXTREME@ ← ITEM@
 END_IF
END_LOOP
WRITE "The extreme value is"; EXTREME@
```

[Question to the reader: What error would occur in the report if COUNTER% were incremented just before the EXIT_LOOP WHEN statement?]

8. Sequential search:

```plaintext
ITEM_SOUGHT@ ← ⟨item to be found⟩
NO_ELEMENTS% ← ⟨number of items in ITEMS@⟩
POINT% ← 0% ! Start at beginning
LOOP
 POINT% ← POINT% + 1% ! Advance pointer to next item
 EXIT_LOOP WHEN ITEMS@(POINT%) = ITEM_SOUGHT@ OR POINT%=NO_ELEMENTS%
END_LOOP
```

We assume that, by the time this procedure is invoked, the list of items to be examined has been stored in the one-dimensional array ITEMS and that we know the number of elements in that array. Note that the pointer POINT% is stepped through the records one at a time as the search unfolds. Finally, when this loop terminates, the item sought has been found if and only if the value in the record identified by POINT% matches the item sought.

9.3 Two Larger Algorithms

In this section, we discuss two algorithms in some detail, partly to illustrate the general features described in Section 9.1 more fully and partly to lay out the algorithms generically before we implement them in specific languages.

9.3.1 Solving Laplace’s Equation

Among the more important equations in mathematical physics, Laplace’s equation appears in the study of electromagnetic fields, steady state heat flow, fluid mechanics, and many other contexts. In two-dimensions and in Cartesian coordinates \((x, y)\), the equation assumes the form

\[
\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0
\]  

(9.1)

for a function \(U(x, y)\), which may be interpreted as an electrostatic potential, a temperature distribution, a velocity potential describing the incompressible, steady-state flow of a fluid, ... Beyond the partial differential equation itself, a complete problem requires the statement of boundary
conditions—often the stipulation of the value of \( U \)—at all points on the boundary of the region in which a solution is sought. Thus, for example, a complete problem might seek a solution to the Laplace equation in a square, subject to the requirement that the solution assume the value 0.0 on three edges of the square and the value 100.0 on the fourth edge, as shown in Fig. 9.3(a). Physically, this solution would convey the temperature within the square when three of its edges are maintained at 0\(^\circ\) and the fourth edge is maintained at 100\(^\circ\) or the electrostatic potential within the square when three edges are maintained at a potential of 0 Volts and the fourth edge is maintained at a potential of 100 Volts.

The basis for a simple algorithm for solving this problem numerically involves imposing an \( N \times N \) regular grid of points \((x_i,y_j), 1 \leq i,j \leq N,\) on the region. Then, we declare that we have found a solution when we know appropriate values for \( U_{i,j} = \hat{U}(x_i,y_j) \) at each grid point. The simplest boundary conditions, of course, tell us the values at all points for which \( i \) and/or \( j \) is either 1 or \( N \). The values we seek for the other points \((2 \leq i,j \leq N - 1)\) must in some sense reflect the differential equation. If, however, we know the values of \( U \) at three consecutive points along a line parallel to the \( x \) axis, say, we can use the approximation (see exercises)

\[
\frac{\partial^2 U}{\partial x^2} \approx \frac{U_{i+1,j} - 2U_{i,j} + U_{i-1,j}}{\Delta x^2}
\]  

(9.2)

where \( \Delta x \) is the (constant) spacing of consecutive grid points. A similar expression applies as an approximation to the second derivative of \( U \) with respect to \( y \). Discretizing Eq. (9.1) by substituting these finite-difference approximations for the derivatives and then rearranging the resulting equation, we conclude that

\[
U_{i,j} \approx \frac{1}{4} \left( U_{i+1,j} + U_{i-1,j} + U_{i,j+1} + U_{i,j-1} \right)
\]

(9.3)

i.e., that the value we should assign to the “squared” point in Fig. 9.3(b) is the average of the values we assign to its four nearest neighbors (the “circled” points).

We, of course, have one equation like Eq. (9.3) for each of the interior points in the illustrated grid. We also have exactly as many unknowns as we have interior points. Further, the equations are linear. Thus, we have deduced a (probably large) set of linear equations to be solved simultaneously for the unknown values \( U_{i,j} \) at the interior points. For this set of equations, a suitable strategy—called relaxation—Involves guessing a starting solution and then refining that solution iteratively by stepping systematically and repeatedly through the grid of interior points, replacing the value at each point by the average of the values at its four nearest neighbors. Each pass through the entire grid constitutes one iteration, and we keep going—iteration after iteration—until we are satisfied.
that the process has converged satisfactorily.\textsuperscript{14} Supposing that we seek a solution on a $15 \times 15$ grid of points, we make a first pass at constructing an algorithm to implement this overall strategy by listing the statements

\begin{verbatim}
DIMENSION U(15%,15%)
Set U(I%,J%) ←− 0.0 for all values of I%, J%
Set U(15%,J%) ←− 100.0 for all values of J%
FOR ITCNT% ←− 1% THRU 30% DO Conduct one iteration
Write solution to output device
\end{verbatim}

Here, we (1) reserve adequate space for the necessary array, (2) establish a starting solution in that array, (3) set the boundary conditions, (4) conduct 30 iterations, and (5) display the solution.

To refine the crude statements in the above algorithm, we would have to expand the implied loops. Indeed, since we are working with a two-dimensional array, stepping through all elements of the array (either in assigning initial values or in iterating once through the array) will require a \textit{double} loop. Thus, we might express this algorithm more explicitly as

\begin{verbatim}
DIMENSION U(15%,15%)
FOR I% ←− 1% THRU 15% DO
  FOR J% ←− 1% THRU 15% DO U(I%,J%) ←− 0.0
FOR J% ←− 1% THRU 15% DO
  U(15%,J%) ←− 100.0
FOR ITCNT% ←− 1% THRU 30% DO
  FOR I% ←− 2% THRU 14% DO
    FOR J% ←− 2% THRU 14% DO
      U(I%,J%) ←− 0.25 * ( U(I%+1%, J%) + U(I%-1%, J%) + U(I%, J%+1%) + U(I%, J%-1%) )
  FOR I% ←− 1% THRU 15% DO
    FOR J% ←− 1% THRU 15% DO WRITE U(I%,J%)
\end{verbatim}

We shall refine this algorithm even further as, later in this chapter, we implement it in various computer languages.

\subsection{9.3.2 File Output/Input}

The most convenient and flexible way to make a permanent record of numerical data is to store it in an ASCII file. Among other advantages, such files can be created in any number of ways, they can be examined with ordinary text editors, and they facilitate importing the data into whatever graphical package provides the best visualization of the specific features we wish to see. Most often the data are naturally organized into one or more two- or three-dimensional arrays, which frequently represent scalar or vector fields. In this section, we declare a standardized file format for the storage of these arrays and discuss a general algorithm by which files so structured can be created. In later sections, we describe how to implement this algorithm in various computer languages. Of course, the data file as an intermediary is unnecessary if generation and display occur in the same program.

These files are especially useful when data generated in one program are to be transferred to another program for display and/or when a program-independent permanent record of the data is desired.

\textsuperscript{14}The most common criterion of convergence involves comparing values until no element in one iterate differs from its counterpart in the next iterate by more than some predetermined tolerance. Developing suitable (and reliable) criteria for determining when satisfactory convergence has been achieved, however, is difficult. Because we are here focusing on programming aspects rather than algorithmic refinements, we shall ignore the issue of convergence for the moment. We shall return to it at appropriate points in later chapters.
9.3. TWO LARGER ALGORITHMS

Table 9.3: Sample data file having the structure described in Section 9.3.2. The line numbers in the first column and the comments in the third column of this table are not in the actual file.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Line in file</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Example Data File; Author: DMC; Date: 7-21-01</td>
<td>ID of file</td>
</tr>
<tr>
<td>02</td>
<td>First line of comments.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Second line of comments.</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Third line of comments.</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Fourth line of comments.</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>1</td>
<td>n (number of arrays)</td>
</tr>
<tr>
<td>07</td>
<td>2</td>
<td>n_x</td>
</tr>
<tr>
<td>08</td>
<td>3</td>
<td>n_y</td>
</tr>
<tr>
<td>09</td>
<td>1</td>
<td>n_z</td>
</tr>
<tr>
<td>10</td>
<td>0.33</td>
<td>A_{111}</td>
</tr>
<tr>
<td>11</td>
<td>0.28</td>
<td>A_{211}</td>
</tr>
<tr>
<td>12</td>
<td>0.50</td>
<td>A_{121}</td>
</tr>
<tr>
<td>13</td>
<td>0.42</td>
<td>A_{221}</td>
</tr>
<tr>
<td>14</td>
<td>0.66</td>
<td>A_{131}</td>
</tr>
<tr>
<td>15</td>
<td>0.57</td>
<td>A_{231}</td>
</tr>
</tbody>
</table>

At base, we imagine that the data files we create will store some number $n$ of identically dimensioned three-dimensional arrays $A_{ijk}$ whose three indices will assume $n_x$, $n_y$, and $n_z$ values, respectively, though at times $n_z$ will have the value 1 so that the storage of two-dimensional arrays can be accommodated. We adopt the following standard format for all data files:

- five lines of comments, possibly including title, author, and date;
- one line specifying the number $n$ of arrays in the file;
- one line specifying the number $n_x$ of values assumed by the first index $i$ of $A_{ijk}$;
- one line specifying the number $n_y$ of values assumed by the second index $j$ of $A_{ijk}$;
- one line specifying the number $n_z$ of values assumed by the third index $k$ of $A_{ijk}$; and finally
- $n_x n_y n_z$ lines specifying the values in the first array—one value per line in the order that results from the generic coding

```
FOR %I ← 1% THRU NZ% DO
 FOR %J ← 1% THRU NY% DO
 FOR %K ← 1% THRU NX% DO WRITE A(%I%, %J%, %K%)
```

—followed by a similarly structured presentation of the values in the second array, the third array, etc. That is, the order of elements for each array is created by allowing the first index to vary the most rapidly, the second index to vary next rapidly, and the third index to vary least rapidly.

The data file shown in Table 9.3 is a simple example. This file contains one $2 \times 3 \times 1$ (2 rows $\times$ 3 columns $\times$ 1 plane) array, namely

$$A = \begin{pmatrix} A_{111} & A_{121} & A_{131} \\ A_{211} & A_{221} & A_{231} \end{pmatrix} = \begin{pmatrix} 0.33 & 0.50 & 0.66 \\ 0.28 & 0.42 & 0.57 \end{pmatrix}$$

with the elements in the first column, then the elements in the second column, and finally the elements in the third column recorded in the file.

\footnote{In some languages, the actual values of these indices will range from 0 to $n_* - 1$; in other languages, the values will range from 1 to $n_*$. (The subscript $*$ stands for $x$, $y$, or $z$.) In a few languages, the user has control over the range of the indices.}
To be even more explicit, we would have to surround the basic output statement presented above with statements that dimension arrays appropriately, calculate (or otherwise determine) the values to insert in the arrays, prepare the file for access, and close the file after the last datum has been written to the file. To illustrate, suppose we seek to explore the two-dimensional scalar field given in the $xy$ plane by the function $f(x,y)$. Then, generating the desired file involves two main steps: (1) creation of an internal array containing values of the function at a grid of points overlayed on the region of interest in the $xy$ plane and (2) writing those values into a suitably labeled file structured as described earlier in this section. Though it may take a bit of exploration to decide on suitable ranges for the independent variable, let us here decide to examine the function in the region defined by $x_{\text{min}} \leq x \leq x_{\text{max}}$ and $y_{\text{min}} \leq y \leq y_{\text{max}}$ and to divide the $x$ interval with $n_x$ grid points into $n_x - 1$ segments and the $y$ interval with $n_y$ grid points into $n_y - 1$ segments. First, we prepare variables and arrays with the statements

\begin{verbatim}
DIMENSION ARRAY(n_x,n_y) ! Prepare array for values
NARR% ← 1% ! Set number of arrays
NX% ← n_x ! Set number of grid points in each coordinate
NY% ← n_y
NZ% ← 1%
DX ← (x_max - x_min)/(n_x - 1) ! Set increments
DY ← (y_max - y_min)/(n_y - 1)
\end{verbatim}

Then, we evaluate the function $f(x,y)$ with the double loop expressed in the code

\begin{verbatim}
FOR J% ← 1% THRU NY% DO
BEGIN_BLOCK
YF ← y_min + (J%-1%)*DY
FOR I% ← 1% THRU NX% DO
BEGIN_BLOCK
XF ← x_min + (I%-1%)*DX
ARRAY(I%,J%) ← f(XF,YF)
END_BLOCK
END_BLOCK
\end{verbatim}

Finally, we establish communication between the file and the program (in the jargon, we attach the file to the program on a selected channel), write the necessary labels and values to the file, and disconnect (i.e., detach the file from the program with the statements\footnote{A new file will be created, overwriting any existing file by the specified name. Some programming languages may provide a warning if an existing file will be deleted.}

\begin{verbatim}
ATTACH FILE ⟨filename⟩ ON CHANNEL 1 FOR WRITING
WRITE TO CHANNEL 1, "Line of explanation (Title, Author, Date?)"
WRITE TO CHANNEL 1, "Line of explanation"
WRITE TO CHANNEL 1, "***"
WRITE TO CHANNEL 1, "***"
WRITE TO CHANNEL 1, NARR%
WRITE TO CHANNEL 1, NX%
WRITE TO CHANNEL 1, NY%
WRITE TO CHANNEL 1, NZ%
FOR J% ← 1% TO NY% DO FOR I% ← 1% TO NX% DO WRITE TO CHANNEL 1, ARRAY(I%,J%)
CLOSE FILE ON CHANNEL 1
\end{verbatim}

Here, the first statement identifies the file and assigns to it a number—any number will do\footnote{Be aware that some languages reserve a few channel numbers for special ”files”, e.g., the keyboard or the screen.}—to be used for subsequent reference to the file. Next, the first five WRITE statements send five lines of
comments, all five of which must be physically present even if fewer than five are needed to contain necessary information about the file. Then, the sixth WRITE statement writes the number of arrays to the file, the seventh and eighth write the \( x \) and \( y \) dimensions to the file, and the ninth writes the \( z \) dimension to the file. Finally, the double loop writes the elements of the array to the file in the proper order, and the last statement makes sure the file is properly detached from the program so that it can be accessed by other programs.

Instead of writing data to a file, we frequently will need to read data from a file, perhaps as a means to import data generated by one program for use in a different program. Slight modification of the ATTACH and READ statements introduced earlier provide for that action. Specifically, the statements

\[
\text{ATTACH FILE (filename) ON CHANNEL 1 FOR READING} \\
\text{READ FROM CHANNEL 1, Comma-separated list of variables for storage of values} \\
\vdots \\
\text{CLOSE FILE ON CHANNEL 1}
\]

Here, the first statement opens an existing file for reading (and displays an error if the specified file does not exist), the remaining statements save the last read the information in the file and stores it in the specified variables, and the last statement detaches the file when, presumably all data have been read. Note that the structure of the READ statements must reflect the structure of the file, and the variables specified must have the data types of the values to be read. Normally, the READ statement reads a line at a time, but in some languages each READ statement reads as many values as needed to complete the list of variables, however these values are distributed over lines.

In the remaining sections of this chapter, we shall implement the two algorithms described in this section in different languages and, especially for the second algorithm, in a variety of different contexts.

### 9.4 Solving Laplace’s Equation with FORTRAN

*Note:* All FORTRAN programs (*.f) and FORTRAN-created data files (*.f.dat) referred to in this chapter are available in the directory \$HEAD/fortran, where (as defined in the *Local Guide*) \$HEAD must be replaced by the appropriate path for your site.

Rather than systematically laying out features of FORTRAN as a programming language before presenting a program, we elect to present a simple program illustrating several of those features and then comment thereon. A FORTRAN program implementing the algorithm laid out in Section 9.3.1 for solving Laplace’s equation is presented in Table 9.4. Note the following about this program:

- Except for characters within quoted strings, FORTRAN is insensitive to case.
- Lines with a \( \mathbf{C} \) in the first character position are comments. Further, while it is not standard FORTRAN, most FORTRAN compilers will accept comments introduced with an exclamation point.
- Legal variable names in FORTRAN begin with a letter, which may be followed by any number of characters chosen from the letters \( \text{A} - \text{Z} \), the numeric digits \( \text{0} - \text{9} \), and—in extended FORTRAN-77—the underscore \( \_ \), the dollar sign \( \$ \), and the period \( \cdot \). Note, however, that in *standard* FORTRAN-77 only six characters are allowed and further that in extended FORTRAN characters beyond the thirty-second will be ignored by the compiler.
PROGRAM LAPLACE

C This program solves Laplace’s equation in a square when
C three sides of the square are maintained at zero potential
C and the fourth side is maintained at a potential of 100 V.
C The solution on a 15 x 15 grid is stored in the array U.

PARAMETER( NXDIM = 15, NYDIM = 15, MAXIT = 300)

DIMENSION U( NXDIM, NYDIM )

C ***** Initialize U(I,J); set boundary conditions *****
DO I = 1, NXDIM ! Set all elements to zero
    DO J = 1, NYDIM
        U( I, J ) = 0.0
    ENDDO
ENDDO

DO J = 1, NYDIM ! Correct values on right edge
    U( NXDIM, J ) = 100.0
ENDDO

C ***** Iterate MAXIT times *****
DO ITCNT = 1, MAXIT

    DO I = 2, NXDIM-1 ! Conduct one iteration
        DO J = 2,NYDIM-1
            U( I, J ) = 0.25 * ( U(I+1,J) + U(I-1,J) + U(I,J+1) + U(I,J-1) )
        ENDDO
    ENDDO
ENDDO
ENDDO

C ***** Display solution *****
DO J = 1, NYDIM
    WRITE( UNIT = 6, FMT = 200 ) ( U(I,J), I=1,NXDIM )
ENDDO

200 FORMAT(‘ ’, 15F7.2 )

END
• For the most part, we shall exploit FORTRAN’s capability for implicit data typing, where a variable whose name begins with \texttt{I}, \texttt{J}, \texttt{K}, \texttt{L}, \texttt{M}, or \texttt{N} will be understood to represent an integer while a variable whose name begins with any other letter will be understood to represent a (single-precision) floating point number.

Extended FORTRAN-77 also admits explicit data typing (and dimensioning), where variable declarations like

\begin{verbatim}
REAL IMAP, LETTER(20)
DOUBLE PRECISION X, Y
CHARACTER A
INTEGER ROOT, Z(30,50)
\end{verbatim}

specify the indicated variables as having the indicated data type and can, as for example in the first statement, override the implied implicit type for a particular variable. Any variables not explicitly typed will be typed in accordance with the rules for implicit data typing unless the program includes the statement

\begin{verbatim}
IMPLICIT NONE
\end{verbatim}

in which case the compiler will complain if it encounters a variable that has not been explicitly typed.

• Statements can begin no earlier than the seventh character position in the line and cannot extend past the 72-nd character position.\textsuperscript{18}

• A FORTRAN program begins with a statement \texttt{PROGRAM} \langle ProgramName\rangle and concludes with the statement \texttt{END}.

• The statement beginning \texttt{PARAMETER} provides a means to assign a character string to a symbol such that subsequent use of the symbol triggers a literal replacement of the symbol with the assigned character string. These symbols are \textit{not} variables, since they cannot be assigned different values during execution of the program. The \texttt{PARAMETER} statement provides a way to bring together at the beginning of a program all those quantities whose value may change from time to time and place them at a point where they are easy to find in the listing so that changing the value means editing the file in only \textit{one} place.

• FORTRAN uses the symbols \texttt{+}, \texttt{-}, \texttt{*}, \texttt{/}, and \texttt{**} for addition, subtraction, multiplication, division, and exponentiation (raising to a power).

• In FORTRAN, the indices of elements of arrays are enclosed in ordinary parentheses and run upwards from 1. Thus, for example, an array dimensioned with the statement \texttt{DIMENSION U(15,15)} will have elements running from \texttt{U(1,1)} to \texttt{U(15,15)} with 15 values for each index.

• FORTRAN uses the equal sign for assignment. The operators \texttt{.gt.}, \texttt{.ge.}, \texttt{.lt.}, \texttt{.le.}, \texttt{.eq.}, and \texttt{.ne.} are used in logical expressions to symbolize greater than, greater than or equal to, less than, less than or equal to, equal to, and not equal to, respectively; the operators \texttt{.and.}, \texttt{.or.}, and \texttt{.not.} symbolize \texttt{AND}, \texttt{OR}, and \texttt{NOT}, respectively.

• A FORTRAN loop is introduced with the keyword \texttt{DO} and terminated with the keyword \texttt{ENDO}. The loops in this sample program are \textit{counted} loops, a feature conveyed by following the keyword \texttt{DO} with an \texttt{integer} variable name and a range of values to be assumed by the integer. A third (optional) element in that comma-separated list specifies the increment between successive values of the index; the default increment is 1. The (current) value of the index is

\textsuperscript{18}This feature is a hangover from the days of punched cards, when the first six and the last 8 character positions on a card with 80 character positions were assigned other meanings.
compared with the upper limit at the beginning of the loop and the incrementation of the index takes place after the statements in the body of the loop have been executed. Termination occurs as soon as the current value of the index exceeds the upper limit. Thus, the loop will be executed once if the upper limit is initially equal to the initial index and not at all if the upper limit is smaller than the initial index as the loop is started.

- Any character placed in the sixth character position in the line will be interpreted as meaning that the statement on that line is to be viewed as a continuation of the statement on the previous line.

- The one WRITE statement directs its output to channel 6, which is the screen (and is always “attached”—FORTRAN uses the verb “open”—and hence need not be explicitly attached and detached (i.e., opened and closed).

- The format of the output produced by the WRITE statement is specified in the FORMAT statement that has the label 200 placed in the first five character positions, to which the second argument in the first set of parentheses in the WRITE statement refers. This specific FORMAT statement tells the compiler that it should first send to the output destination a space (the quoted space as the first argument). Then, in the line to be output, there will be fifteen—the 15 in the designation 15F7.2—floating point numbers, each presented in ordinary decimal notation—the F—right-justified in a field (region) that is seven characters wide—the 7—with the number rounded to have two digits—the 2—after the decimal point in its presentation. In this particular problem, we know that all values should be positive and no value will be larger than 100. Thus, with the specified format, the largest value will be displayed as 100.00, right-justified in a seven-character field. Since this number requires six character positions, there will be at least one space between consecutive entries in each line of output.

- The WRITE statement producing the output appears to be embedded in a single loop (the loop on the index J). The argument to the WRITE statement in the second set of parentheses, however, contains an implied loop on the index I. We might alternatively have written the double loop

\[
\begin{align*}
\text{DO } J &= 1, NYDIM \\
\text{DO } I &= 1, NXDIM \\
\text{WRITE( UNIT = 6, FMT = 200 ) } U(I,J) \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}
\]

\[
\text{200 FORMAT(' ', F7.2 )}
\]

but the result would have been to use a new line for each value in the array.

---

19When FORTRAN was developed, output was almost always to a line printer, and the first character in each line of output was not printed. Rather, it was interpreted by the printer as a control character—new line, double space, skip to new page, depending on the character. The character telling the printer to start a new line was a space. Thus, we must assure that the first character sent in each line will be a space, which will not be printed. The technique shown here is one of the ways to achieve that objective.

20Solutions to Laplace’s equation can never have in the interior a value larger than the largest value nor smaller than the smallest value on the boundary.

21If we had to allow for the possibility of values ranging downward to -100, we would need one more character position (F8.2) to provide the position for a possible minus sign and guarantee at least one space between any possible consecutive entries in each line.

22One alternative to the F format is I, which is used for integers, e.g., 4110 for four integers each-right justified in a field ten characters wide. Another alternative, used particularly when the size of floating-point numbers varies considerably or is unknown a priori, is E, which outputs floating point numbers in scientific notation, e.g., 3E15.6 for three such numbers right-justified in fields fifteen characters wide, presented with six digits after the decimal point (and formatted—depending on the compiler—either with one digit or a zero before the decimal point). The format E15.6, for example, will present the number 100.00 as 0.100000E 03 or 1.000000E 02, requiring in both cases twelve character positions of the fifteen specified by the format.
This program is stored in a file named `laplace.f` in the directory `$HEAD/fortran`. Once that file has been copied to the default directory, it can be compiled, linked, and run with commands as described in the *Local Guide*. In UNIX, those commands might be\textsuperscript{23}

\begin{verbatim}
f77 -o laplace.xf laplace.f
./laplace.xf
\end{verbatim}

In response to these commands to the operating system, the program will be executed and the output—15 lines of 15 numbers each—will be displayed on the screen.\textsuperscript{24}

The solution displayed on the screen when the program is run is, of course, difficult to interpret (and would be even more so if we had solved the equation on a finer grid). Anticipating that we might want to import the output of this program into another—possibly a plotting—program, we might wish to direct the output to a file rather than to the screen. In UNIX, we could use the simple statement

\begin{verbatim}
./laplace.xf > laplace_f.dat
\end{verbatim}

to achieve that end without having to edit and recompile the program at all. Alternatively, and more generally, we would have to replace the output portion of the program with code that opens a file, writes the output to that file, and then closes the file. We might, for example, edit `laplace.f` by replacing the loop(s) containing the `WRITE` statement with the statements

\begin{verbatim}
OPEN( UNIT = 1, FILE = 'laplace_f.dat', STATUS = 'NEW' )
DO J = 1, NYDIM
    WRITE( UNIT = 1, FMT = 200 ) ( U(I,J), I=1,NXDIM )
ENDDO
CLOSE( UNIT = 1 )
200 FORMAT( ' ', 15F7.2 )
\end{verbatim}

where we have simply added the `OPEN` and `CLOSE` statements and edited the `WRITE` statement to specify the unit (channel) on which we opened the file. The program so edited is stored in the file `laplace_file.f` in the directory `$HEAD/fortran`. Once copied to the default directory, it can be compiled, linked, and run as with `laplace.f` above (see the *Local Guide*). In the end, the output file `laplace_f.dat` will be created in the default directory.

## 9.5 Additional Features of FORTRAN

The example program in the previous section has not provided a vehicle for illustrating a few additional important capabilities of the language. We here address those features.

### 9.5.1 Multi-Way Selection

The basic decision-making structure in FORTRAN involves key words, conditions, and actions in the general pattern conveyed by the listing

\textsuperscript{23}Throughout this book, we shall assume that we are using the FORTRAN-77 routines in a UNIX environment. In UNIX, `f90` and `f95` would invoke the FORTRAN-90 and FORTRAN-95, respectively. In other operating systems, the FORTRAN compiler might be invoked with the command `fortran` or `gfortran`, and the characters `/` may or may not be necessary to launch an executable program in the current directory. Further detail on how to invoke the FORTRAN compiler and run an executable program in your environment will be described in the *Local Guide*.

\textsuperscript{24}Incidentally, note that, if necessary, execution of a FORTRAN program can usually be aborted by typing (CONTROL/C).
IF \( \langle \text{condition1} \rangle \) THEN
\( \langle \text{block1 of statements} \rangle \)
Test \( \langle \text{condition1} \rangle \).

ELSE IF \( \langle \text{condition2} \rangle \) THEN
\( \langle \text{block2 of statements} \rangle \)
Test \( \langle \text{condition2} \rangle \) (if \( \langle \text{condition1} \rangle \) is false).

\( \vdots \)

ELSE IF \( \langle \text{conditionn} \rangle \) THEN
\( \langle \text{blockn of statements} \rangle \)
Test \( \langle \text{conditionn} \rangle \) (if \( \langle \text{condition}(n-1) \rangle \) is false).

ELSE
\( \langle \text{catch-all block of statements} \rangle \)
Execute \( \langle \text{catch-all block} \rangle \) and exit when all conditions are false.

END IF

Two-way selection is, of course, simply a version of multi-way selection in which there is only one condition in this sequence. Further, the ELSE clause can be omitted if it would contain no statements, and the keywords in this structure bracket the various blocks of statements so no additional blocking structure is necessary. The blocks can contain any number of statements, each on its own line, and the conditions can be logical variables, single logical expressions, or compound logical expressions.

If it should happen that the ELSE clause in a two-way selection is null and the THEN clause contains only a single statement, then the coding

IF \( \langle \text{condition} \rangle \) THEN
\( \langle \text{block1 of statements} \rangle \)
END IF

can be simplified to

IF \( \langle \text{condition} \rangle \) \( \langle \text{Single FORTRAN statement} \rangle \)

9.5.2 Reading Data from Keyboard

Data can be read from the keyboard in FORTRAN with a variety of statements. In the simplest approach, we might use the command write to print a prompting message conveying the item wanted and then the command read to read that item from the keyboard and store it in a suitable variable with statements like

\[
\begin{align*}
\text{WRITE( }*,*\text{ ) 'Suitable prompting message: ' } \\
\text{READ( }*,*\text{ ) VALUE}
\end{align*}
\]

where we have allowed the compiler to choose the default input and output devices (first asterisk in each statement; unit 6 for the write statement; unit 5 for the read statement). Further, the compiler will automatically identify the prompting message as a string and the entered value as a floating point value (second asterisk in each statement). The statements

\[
\begin{align*}
\text{WRITE( UNIT=*, FMT=* ) 'Suitable prompting message: ' } \\
\text{READ( UNIT=*, FMT=* ) VALUE}
\end{align*}
\]

are equivalent, though they use keywords to make explicit the function of the two asterisks.

While it is probably wise to use “free” format on input so we don’t have to be too careful about the position of the input in the line, we might at times want to specify the format of the output more specifically, for example, with a statement like\(^{25}\)

\[^{25}\text{Beyond the formats F, E, and I described in footnote 22, the descriptor A conveys to the compiler that it is to read characters from the input line. If only A is specified, the compiler reads and counts characters until \langle \text{RETURN} \rangle is typed; if the format descriptor takes the form An, the compiler reads n characters.}\]

\[
\begin{align*}
\text{WRITE( }UNIT=*, \text{ FMT=*) 'Suitable prompting message: ' } \\
\text{READ( }UNIT=*, \text{ FMT=*) VALUE}
\end{align*}
\]
9.5. ADDITIONAL FEATURES OF FORTRAN

WRITE( UNIT=*, FMT='(1X,A)' ) 'Suitable prompting message: '

or with a pair of statements like

WRITE( UNIT=*, FMT=157 ) 'Suitable prompting message: '
157 FORMAT( ' ', A )

Finally, note that two values would be entered in response to the prompting message if the read statement were coded like

READ( *, * ) VALUE, INDEX

The values would be separated by one or more spaces, one or more tabs, or simply a comma. In this specific example, of course, the first value would be stored as a single-precision floating point value while the second would be converted to an integer if necessary and stored as an integer.

9.5.3 Additional Loops

Standard FORTRAN-77 does not have any loops beyond the do/enddo loop already introduced. Extended versions of FORTRAN, however, may possess other structures. The loop

DO WHILE (condition)
   (block of statements)
ENDDO

which executes (block of statements) repeatedly as long as (condition) remains true is a particularly common extension.

9.5.4 Subroutines, Functions, and Common Storage

As with most computer languages, FORTRAN also admits the possibility of creating new commands/functions through the use subprograms. In essence, a subprogram is a self-contained segment of code that is given a name of its own and that can be invoked in another program with a single statement. Subprograms come in two types, In outline, we define a subroutine with a structure like

SUBROUTINE SubName( Arg1, Arg2, ... )
   Statements coding the desired action.
RETURN
END

Here, SubName is a user-assigned name for the subroutine, and Arg1, Arg2, ... are the names of the variables that communicate between the calling program and the subroutine, either by providing input to the subroutine or providing values returned to the calling program. All other variables in the subroutine are invisible to the calling program (and can, in fact, have the same names as variables in the calling program without generating conflict). The statements defining the subroutine must appear together in the listing of a full program but they can be placed either before or after the main program. Once in place, the subroutine itself can be invoked at any point in the program with the single statement

26Check your local FORTRAN manual for the features of the FORTRAN compiler available at your site.
CALL SubName( Arg1, Arg2, ... )

This time, the arguments can be either variable names identifying the storage location for values to be submitted to (or returned by) the subroutine or, for quantities input to the subroutine, they can be actual values. Further, while the order of the arguments is critical to the proper interpretation of each, the variable names used in invoking a subroutine need not be—and in general will not be—the same as those used in defining the subroutine in the first place. Data types and dimensions must match, but names need not.

The second type of subprogram is called a function and allows us to supplement the standard functions built into FORTRAN. A function is defined with a structure like

```
FUNCTION FuncName(Arg1, Arg2, ...)
 Statements coding the desired function.
 FuncName = (value to be returned)
RETURN
END
```

Here, FuncName is the user-assigned name for the function, and the arguments can only be used for input to the function. In contrast to subroutines, which are called simply by asserting their names, user-defined functions are invoked with a statement like

```
VarName = FuncName(Arg1, Arg2, ...)
```

where VarName is the name of the variable into which the function will deposit the result it returns to the invoking program.

In later chapters, we will at times find it necessary to “sneak” values of some variables into a subroutine or function without using the “official” arguments. Named common storage is designed to permit that operation. We simply invoke a directive such as

```
COMMON /ArbitraryName/ Var1, Var2, ...
```

which tells the compiler to store the values of the indicated variables in a special area of memory to which it assigns the specified name. Though only the order, the dimensions and the data types, not the actual names of the variables must be the same, similar statements must appear in each subprogram that needs access to the identified variables. In this way, any one of the subprograms containing the directive COMMON can have access to values placed in the common area by any other of those subprograms.

### 9.6 Solving Laplace’s Equation with C

Note: All C programs (*.c) and C-created data files (*.c.dat) referred to in this chapter are available in the directory $HEAD/cc, where (as defined in the Local Guide) $HEAD must be replaced by the appropriate path for your site.

Rather than systematically laying out features of C as a programming language before presenting a program, we elect to present a simple program illustrating several of those features and then comment thereon. A C program implementing the algorithm laid out in Section 9.3.1 for solving Laplace’s equation is presented in Table 9.5. Note the following about this program:

27Note, incidentally, that the slashes enclosing the name of the common area are part of the syntax; they must be there.
Table 9.5: A C program to solve Laplace’s equation.

/* PROGRAM laplace.c */

/* This program solves Laplace’s equation in a square when
three sides of the square are maintained at zero potential
and the fourth side is maintained at a potential of 100 V.
The solution on a 15 x 15 grid is stored in the array U. */

#include <stdio.h>
#include <math.h>
define xdim 15
#define ydim 15
#define maxit 300

main()
{
    /* ***** Declare variables *****/

    float U[xdim][ydim];    /* For solution */
    int i, j, itcnt;        /* For loop control */

    /* ***** Initialize U(I,J); set boundary conditions *****/
    for(i=0; i<xdim; i++)
        for(j=0; j<ydim; j++)
            U[i][j] = 0.0;
    for(j=0; j<ydim; j++)
        U[xdim-1][j] = 100.0;

    /* ***** Iterate to solution *****/
    for(itcnt=1; itcnt<=maxit; itcnt++)
        for(i=1; i<xdim-1; i++) /* Conduct one iteration */
            for(j=1; j<ydim-1; j++)
                U[i][j] = 0.25 * ( U[i+1][j] + U[i-1][j] + U[i][j+1] + U[i][j-1] );

    /* ***** Display solution *****/
    for(j=0; j<ydim; j++)
    {
        for(i=0; i<xdim; i++)
            printf( "%.7f", U[i][j] );
        printf("\n");
    }
• C is sensitive to case.

• Comments are introduced with the characters /* and terminated with the characters */.

• Directives to the compiler are introduced with the character #. Only a very small set of built-in routines is included without explicit request. If we want to do any I/O at all, we must explicitly include the standard I/O header file stdio.h with the first include statement. Further, using even simple mathematical operations requires explicit inclusion of the math header file math.h.

• The compiler directives beginning #define provide a means to assign character strings to symbols such that subsequent use of the symbol triggers a literal replacement of the symbol with the assigned character string. These symbols are not variables, since they cannot be assigned different values during execution of the program. This compiler directive provides a way to bring together at the beginning of a program all those quantities whose value may change from time to time and place them at a point where they are easy to find in the listing so that changing the value means editing the file in only one place.

• The main program is introduced with the statement main().

• Every C statement must be terminated with a semicolon. Thus, statements can be freely spread over several lines. The compiler doesn’t take the statement to be complete until it encounters the semicolon. The semicolon can also be used to separate distinct statements placed physically on the same line.

• Legal variable names—the C term is identifier—begin with a letter, which may be followed by any number of characters chosen from the letters A–Z, the letters a–z, the numeric digits 0–9, and the underscore _, which is regarded as a letter (so it can also be a first character in an identifier). Though the feature varies among compilers, we can count on at least the first 31 characters being recognized.

• C uses explicit data typing, so all variables to be used must be declared as float or int (integer) or char (character) or ...

• C uses the symbols +, -, *, and / for addition, subtraction, multiplication, and division.

• To raise a variable to a power in C, we must invoke the function pow, which has two arguments, the first identifying the variable to be raised to a power and the second specifying the power. For example, $x^2$ would, in C, be coded as pow(x,2.0). Further, pow is not defined unless the header file math.h has been included.

• The indices of elements of arrays are enclosed in square brackets and each index has its own set of brackets. Further, the dimensioning of an array is incorporated in the statement that declares the variable. Array indices run upwards from 0 and an array declared, for example, as float U[15][15]; will have elements running from U[0][0] to U[14][14] with 15 values for each index.

• C uses the equal sign for assignment. The operators >, >=, <, <=, ==, and != are used in logical expressions to symbolize greater than, greater than or equal to, less than, less than or equal to, equal to, and not equal to, respectively; the operators &&, ||, and ! symbolize AND, OR, and NOT, respectively.

• A counted C loop is introduced with the keyword for, which is followed by three arguments enclosed in parentheses and separated by semicolons. The first of these arguments (e.g., i=0) identifies the loop index and initializes it, the second (e.g., i<xdim) specifies the condition which must be true for the loop to continue, and the third (e.g., i++, which is a shorthand for i=i+1) specifies (cryptically) that the index is to be incremented by one with each pass through the loop. The condition is tested at the beginning of the loop and the incrementation of the index takes place after the statements in the body of the loop have been executed. Thus,
on the first pass through the loop, the statements are executed with the initial value of the index, and the loop will not be executed at all if the condition is false for the initial value of the index. Note that consecutive arguments are separated by a semicolon.

- The printf statement directs its output to the standard output device, which is the screen [and is always “attached”—C uses the verb “open”—and hence need not be explicitly attached and detached (i.e., opened and closed)].

- The first argument in the printf statement is a quoted string that conveys not only characters to be transmitted literally to the output device but also specifications effecting the formatting of the value(s) of the variable(s) that is (are) listed in the second and subsequent arguments. In particular, the notation \n transmits the control character to start a new line.

- The format of the output produced by the printf statement is specified by inclusions in the opening character string, each of which is introduced by a percent sign %. The specification \7.2f, for example, stipulates that the number to be displayed should be displayed in ordinary decimal notation—the f—right-justified in a field (region) that is seven characters wide—the 7—with the number rounded to have two digits—the 2—after the decimal point. In this particular problem, we know that all values should be positive and no value will be larger than 100.\(^{28}\) Thus, with the specified format, the largest value will be displayed as 100.00, right-justified in a seven-character field. Since this number requires six character positions, there will be at least one space between consecutive entries in each line of output.\(^{29,30}\)

- The printf statement that sends a single value of \texttt{U} to the screen is embedded in the inner loop in the output section of this program. Note that that loop runs 15 times and that no new-line character is included in the format string in that inner loop. The new-line character is supplied once in the outer loop for every complete execution of that inner loop. Thus, a new line will be started only after each group of fifteen values has been output by the inner loop.

- In C, opening and closing braces (\{ and \}) are used to group statements together into blocks. Note in particular that the entire program is enclosed within the opening brace in the line immediately following the phrase \texttt{main()} and the closing brace in the very last line of the listing. The one other block in this program is in the display section where two statements (a for loop and the statement printf("\n"); must be blocked together to form the “object” of the outer for loop.

This program is stored in a file named \texttt{laplace.c} in the directory \$HEAD/cc. Once that file has been copied to the default directory, it can be compiled, linked, and run with commands as described in the Local Guide. In UNIX, those commands might be\(^{31}\)

\begin{verbatim}
cc -o laplace.xc laplace.c
./laplace.xc
\end{verbatim}

\(^{28}\) Solutions to Laplace’s equation can never have in the interior a value larger than the largest value nor smaller than the smallest value on the boundary.

\(^{29}\) If we had to allow for the possibility of values ranging downward to -100, we would need one more character position (\%8.2f) to provide the position for a possible minus sign and guarantee at least one space between any possible consecutive entries in each line.

\(^{30}\) One alternative to the f format is \texttt{d}, which is used for integers, e.g., \%8d for an integer to be right-justified in a field eight characters wide. Another alternative, used particularly when the size of floating-point numbers varies considerably or is unknown \textit{a priori}, is \texttt{e}, which outputs floating point numbers in scientific notation, e.g., \%15.6e for a floating point number to be right-justified in fields fifteen characters wide, presented with six digits after the decimal point (and formatted—depending on the compiler)—either with one digit or a zero before the decimal point. The format \%15.6e, for example, will present the number 100.00 as 0.100000e 03 or 1.000000e 02, requiring in both cases twelve character positions of the fifteen specified by the format. Further, note that the simpler specifications %f, %d, and %e will allow the compiler to make its own judgment about the appropriate field sizes.

\(^{31}\) Throughout this book, we shall assume that we are working in a UNIX environment, though cc is fairly standard for invoking the C compiler. In other operating systems, the characters ./ may or may not be necessary to launch an executable program in the current directory. Further detail on how to invoke the C compiler and run an executable program in your environment will be described in the Local Guide.
In response to these commands to the operating system, the program will be executed and the output—15 lines of 15 numbers each—will be displayed on the screen.\footnote{Incidentally, note that, if necessary, execution of a C program can usually be aborted by typing \texttt{\langle CONTROL/C\rangle}.}

The solution displayed on the screen when the program is run is, of course, difficult to interpret (and would be even more so if we had solved the equation on a finer grid). Anticipating that we might want to import the output of this program into another—possibly a plotting—program, we might wish to direct the output to a file rather than to the screen. In UNIX and in a Windows command window, we could use the simple statement

\texttt{./laplace.xc > laplace_c.dat}


\texttt{FILE *fptr; /* For file pointer */}

to achieve that end without having to edit and recompile the program at all. Alternatively, and more generally, we would have to replace the output portion of the program with code that opens a file, writes the output to that file, and then closes the file. We might, for example, edit \texttt{laplace.c} in two ways. First we would add the statement

\begin{verbatim}
FILE *fptr; /* For file pointer */
\end{verbatim}

to the declaration section, thereby identifying a variable to play the role of a file pointer. Second, we would replace the output section with the statements

\begin{verbatim}
fptr=fopen( "laplace_c.dat", "w" );
for(j=0; j<ydim; j++)
{
  for(i=0; i<xdim; i++)
    fprintf( fptr, "%7.2f", U[i][j] );
  fprintf( fptr, "\n" );
}
fclose( fptr );
\end{verbatim}

using \texttt{fopen} to open the file for writing (the \"w\") and to associate it with the pointer \texttt{fptr}. \texttt{fprintf} (rather than \texttt{printf}) to write everything to the file, and finally \texttt{fclose} to close the file. Except for the added first argument, the \texttt{fprintf} statement is structured in the same way as the \texttt{printf} statement. The program so edited is stored in the file \texttt{laplace_file.c} in the directory \$\texttt{HEAD/cc}. Once copied to the default directory, it can be compiled, linked, and run as with \texttt{laplace.c} above (see the \texttt{Local Guide}). In the end, the output file \texttt{laplace_c.dat} will be created in the default directory.

\section{Additional Features of C}

The example program in the previous section has not provided a vehicle for illustrating a few additional important capabilities of the language. We here address those features.

\subsection{Multi-Way Selection}

The basic decision-making structure in C involves keywords, conditions, and actions in the general pattern conveyed by the listing
9.7. ADDITIONAL FEATURES OF C

if (condition1)
    (block1 of statements)
else if (condition2)
    (block2 of statements)
;
else if (conditionn)
    (blockn of statements)
else
    (catch-all block of statements)

In this construction, if a particular block of statements consists of a single statement, it can simply be presented in the proper position in the structure (terminated, of course, with a semicolon). When a block requires more than one logical statement, the statements as a group must be enclosed in braces so the compiler will treat them logically as a single statement. Further, two-way selection is simply a version of multi-way selection in which there is only one condition in this sequence, and the final else clause can be omitted if it contains no statements. The blocks can contain any number of statements, each terminated with a semicolon, and the conditions can be logical variables, single logical expressions, or compound logical expressions.

The above chain of if-else-if structures is a bit awkward. As an alternative, C also provides the structure

\begin{verbatim}
switch (expression)
{
    case (constant-expression1): (block1 of statements)
    case (constant-expression2): (block2 of statements)
    ;
    case (constant-expressionn): (blockn of statements)
    default: (block-def of statements)
}
\end{verbatim}

Here, the expression following the keyword switch must yield an integer value. When that integer matches the value of one of the constant expressions distinguishing a case, the statements in that case will be executed. If no case is satisfied, the statements in the default case will be executed, though the default case can be omitted altogether if specific actions are to be coded only for the cases explicitly mentioned.

9.7.2 Reading Data from Keyboard

Data can be read from the keyboard in C with a variety of statements. In the simplest approach, we might use the command printf to print a prompting message conveying the item wanted and then the command scanf to read that item from the keyboard and store it in a suitable variable with statements like

```
printf("\nSuitable prompting message: ");
scanf("%f", &value);
```

(Note the ampersand preceding the variable name; it makes sure that the argument refers explicitly to the address of the memory cell(s) in which the value of the variable is to be stored and must be present for proper functioning.) Finally, note that, when coded like

```
scanf("%f %d", &value, &index);
```
two values would be entered in response to the prompting message, the values being separated by one or more spaces or by one or more tabs. In this specific example, of course, the two variables would previously have been declared as a single-precision floating point value and an integer, respectively.

### 9.7.3 Additional Loops

Beyond the `for` loop, C makes available a `while` loop and a `do/while` loop. The `while` loop places the condition controlling the loop at the beginning and is coded with a structure like

```
while ⟨condition⟩
 ⟨block of statements⟩
```

where each statement in the block must—as always—be terminated with a semicolon and, except when it consists of a single statement, the block must be enclosed in braces. The statements in the block will be executed repeatedly as long as ⟨condition⟩ remains true, and the loop will be infinite unless the action of the statements in the loop ultimately turns the condition to false.

The `do/while` loop places the condition controlling the loop at the end and is coded with a structure like

```
do
 ⟨block of statements⟩
while ⟨condition⟩;
```

where each statement in the block must—as always—be terminated with a semicolon and, except when it consists of a single statement, the block must be enclosed in braces. The statements in the block will be executed repeatedly as long as ⟨condition⟩ remains true, and the loop will be infinite unless the action of the statements in the loop ultimately turns the condition to false.

### 9.7.4 Functions and Global Variables

As with most computer languages, C also admits the possibility of creating new commands/functions through the use functions. In essence, a function is a self-contained segment of code that is given a name of its own and that can be invoked in another program with a single statement. In outline, we define a function with a structure like

```
dt FuncName(dt1 Arg1, dt2 Arg2, ...)
{
 Statements coding the desired action.
}
```

Here, `dt` specifies the data type of the value returned by the function (and may be `void` if no value is returned); `FuncName` is a user-selected name for the function; and `dt1, dt2, ...` specify the data types of the arguments `Arg1, Arg2, ...`, which are the names of the variables that communicate (either by providing input to the function or providing values returned to the calling program) between the calling program and the function. All other variables in the function are invisible to the calling program (and can, in fact, have the same names as variables in the calling program without causing confusion). The statements defining the function must appear together in the listing of a full program and each function definition must appear in the listing before its first invocation within the total program unless the compiler is alerted to its later presence in the listing with a statement that simply repeats the first line of the function definition. Once in place, the function itself can be invoked at any point in the program with the single statement
9.11. SOLVING LAPLACE'S EQUATION WITH PYTHON

This time, the arguments can be variable names identifying the storage location for the values to be submitted to the function or they can be actual values. Further, while the order of the arguments is critical to the proper interpretation of each, the variable names used in invoking a function need not be—and in general will not be—the same as those used in defining the function in the first place. Data types and dimensions must match, but names need not.

If the data type of the function is not void, then somewhere—often at the very end—in the function definition there must appear a statement of the form

```python
return (expression giving value to be returned)
```

Then, the function would be invoked with a statement of the form

```python
VarName = FuncName(Arg1, Arg2, ...)
```

where `VarName` is the name of a variable of the appropriate data type into which the value returned by the function is to be stored.

In later chapters, we will at times find it necessary to “sneak” values of some variables into a function without using the “official” arguments. To do so in C, we must make use of global variables, which are declared by placing the declarations early in the listing and, in particular, outside and before any of the functions that will make use of them. Once the declarations have been so positioned, the variables by the names declared are known everywhere and can be used by those names anywhere in the listing. While they are needed in some circumstances (see later chapters), global variables are dangerous and must be used sparingly. Once declared, they are known everywhere and must not be used unless their global meaning is intended. Ignoring this rule can result in unpleasant, perhaps even disastrous, interactions among portions of the code that are supposed to be independent.

9.11 Solving Laplace’s Equation with PYTHON

Note: All PYTHON programs (*.py) and FORTRAN-created data files (*.py.dat) referred to in this chapter are available in the directory $HEAD/python, where (as defined in the Local Guide) $HEAD must be replaced by the appropriate path for your site.

We have already laid out many features of PYTHON as a programming language in Chapter 5. We elect here to present a simple program and then comment on any needed features not already introduced. Implementing the algorithm laid out in Section 9.3.1, a simple program for solving Laplace’s equation and storing the results in a file is presented in Table 9.6. Note the following about this program:

- The `for` loop was introduced in Section 5.4. Remember, in particular that the first line in a loop ends with a `colon` and that indentation of the body of a loop is critical to conveying the bounds of the loop to the PYTHON interpreter.

- The formatting of the output illustrated in the innermost statement in the segment ‘Display solution on the screen’ was introduced in Section 5.6.3. The comma terminating the first `print` statement in this innermost statement suppresses the automatic line feed at the end of each execution of that statement. The simpler statement `print(U)` would also display the solution on the screen, though the resulting output (especially if we had used a much large array for U) might be quite uninterpretable.
CHAPTER 9. INTRODUCTION TO PROGRAMMING

Table 9.6: A PYTHON program to solve Laplace’s equation.

```python
laplace.py

This program solves Laplace’s equation in a square when
three sides of the square are maintained at zero potential
and the fourth side is maintained at a potential of 100 V.
The solution on a 15 x 15 grid is stored in the array U.

import numpy as np # Import needed packages
xdim = 15; ydim = 15; maxit = 300 # Set parameters
U = np.zeros((xdim, ydim))

***** Initialize U(i,j); set boundary conditions *****
for j in np.arange(ydim): U[xdim-1,j] = 100.0

***** Iterate to solution *****
for itcnt in np.arange(maxit):
 for i in np.arange(1,xdim-1): # Conduct one iteration
 for j in np.arange(1,ydim-1):
 U[i,j] = 0.25 * (U[i+1,j] + U[i-1,j] + U[i,j+1] + U[i,j-1])

***** Display solution on screen *****
for j in np.arange(ydim):
 for i in np.arange(xdim):
 print('{0:7.2f}'.format(U[i,j])),
 print

***** Write solution to a file *****

f = open('laplace_py.dat', 'w')
for j in np.arange(ydim):
 for i in np.arange(xdim):
 f.write('{0:7.2f}'.format(U[i,j]))
 f.write('
')
f.close()
```

- Anticipating that we might want subsequently to import this solution to a different tool for examination, the last segment in this program writes the solution to a file in the default directory.

- Whether we write the file or not, we could also have displayed the solution as a mesh diagram on the screen by adding after U has been computed the statements:

```python
xx = np.linspace(0.0,1.0,15); yy = np.linspace(0.0,1.0,15)
x, y = np.meshgrid(xx, yy)
```

These commands were first described in Section 5.11.
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = plt.axes( projection='3d' )
ax.plot_wireframe(x,y,U, color='black')
plt.show()

This program is stored in a file named laplace.py in the directory $HEAD/python. Once that file has been copied to the default directory, it can be run with a command as described in the Local Guide. In particular, in some installations, the command

python laplace.py

issued at an MS-DOS or UNIX/LINUX command window; the statement

execfile('laplace.py') or exec(open('laplace.py').read() )

issued at the PYTHON prompt >>>, or selecting ‘Run Module’ from the Run Menu or pressing F5 in the PYTHON Edit Window will execute the program and create the file laplace.py.dat in the default directory.\^34

### 9.12 Creating and Storing Two-Dimensional Scalar Arrays

We turn now to the storage of one or more arrays representing scalar and vector fields in files with the structure described in Section 9.3.2. Suppose, first, that we wish to explore the two-dimensional scalar field representing the irradiance produced by Fraunhofer diffraction at a square aperture and given analytically by the expression

\[
I(x, y) = I_0 \left( \frac{\sin x}{x} \right)^2 \left( \frac{\sin y}{y} \right)^2
\]

(9.4)

Here, \( I_0 \) is the irradiance at the center of the pattern \((x = y = 0)\). Let us here decide that we seek values of \( I(x, y)/I_0 \) over the region \(-3\pi \leq x, y \leq 3\pi\), and that we shall divide each axis into 49 segments of length \(6\pi/49\), which will entail evaluating \( I(x, y)/I_0 \) at 50 values of \(x\) and 50 values of \(y\)—a total of \(50 \times 50 = 2500\) values.\^35

### 9.12.1 ... with FORTRAN

A program in FORTRAN to create a file containing values of the two-dimensional irradiance from an illuminated square aperture begins with a “preamble” in which the program is identified and necessary variables are dimensioned. The program continues with a segment in which the internal array is created, and concludes with a segment in which appropriate labels and the values in that internal array are written into the desired file. We (1) identify the program, (2) use the PARAMETER statement so that the dimensions of the array are explicitly present in only one place, facilitating changes, (3) dimension the one needed array, and (4) set appropriate values for a few constants with the lines\^36

\[^{34}\text{Incidentally, remember that, if necessary, execution of a PYTHON program can usually be aborted by typing (CONTROL}/C).}

\[^{35}\text{Note that the function to be evaluated is ill-defined at } x = 0 \text{ and at } y = 0. \text{ We choose } 49 \text{ rather than } 50 \text{ segments so as to avoid having some of the points at which the function is evaluated fall at } x = 0 \text{ or } y = 0. \text{ Were the function well defined everywhere, such an awkward number of divisions would not be necessary.}

\[^{36}\text{In the general structure of Section 9.3.2, we should here be imagining that we are preparing to store one } 50 \times 50 \times 1 \text{ array, and we should thus specify the dimensions as } I(50,50,1,1). \text{ Since the last two indices are both } 1, \text{ however, they can be omitted.} \]
PROGRAM IRRAD

PARAMETER( NARR = 1, IX = 50, IY = 50, IZ = 1 )

DIMENSION RI( IX, IY ) ! For irradiance

THREEPI = 3.0*3.1415926535 ! Set constant
DX = 2.0*THREEPI/(IX-1.0) ! Set increments
DY = DX

(Here, we use RI rather than I for the array because—with implicit data typing—the latter would anticipate only integer values for the elements of the array.) Next, we evaluate the irradiance given by Eq. (9.4) with the lines

DO J = 1, IY
   YF = (J-1)*DY - THREEPI
   DO I = 1, IX
      XF = (I-1)*DX - THREEPI
      RI(I,J) = ( (SIN(XF)/XF)**2 ) * ( (SIN(YF)/YF)**2 )
   ENDDO
ENDDO

Finally, we open the file, write the (nine) heading lines and then the array into the file, and close the file with the lines

f77 -o irrad.xf irrad.f
./irrad.xf

Once this (or the appropriate alternative) sequence of commands has been executed by the operating system, the file irrad.f.dat will exist in the default directory.

9.12.2 ... with C

A program in C to create a file containing values of the irradiance given by Eq. (9.4) begins with a “preamble” in which the program is identified in a comment, necessary standard libraries (input/output and math libraries) are included and necessary variables are declared. The program continues with a segment in which the internal array is created, and concludes with a segment in which appropriate labels and the values in that internal array are written into the desired file. We label the program, include the “include” files, define constants (so the dimensions of the arrays appear in only one place), and declare variables with the lines listed in Table 9.8. Then we set appropriate values for a few constants with the lines

Program notes: (1) With IX=50, the loop controlled by the statement DO I = 1, IX is executed first for I=1, then for I=2, I=3, ..., continuing until it has been executed for I=50, which is the index of the IXth element. (2) With I and J ranging from 1 to 50 and DX and DY defined as 6π/49, XF and YF range from −3π to 3π in 49 equal steps. (3) Note the position of the statement evaluating YF. For computational efficiency, it has been placed in the outer loop. (4) The double asterisk ** symbolizes raising to a power, i.e., R**T evaluates r^t. (5) In the general structure of Section 9.3.2, we should here be imagining that we are preparing to store one 50 × 50 × 1 array, and we should thus specify the dimensions as I[50][50][1][1]. Since the last two indices are both 1, however, they can be omitted.
9.12. CREATING AND STORING TWO-DIMENSIONAL SCALAR ARRAYS

Table 9.7: Final lines in program \texttt{irrad.f}. Here, we use explicit \texttt{FORM}AT statements for \textit{text} output and “list-directed” format—symbolized by the component \texttt{FMT = *} (which gives the compiler the authority to choose what it thinks to be an appropriate format)—for numerical output. Note also the blank space at the beginning of each line of text. This initial character is not printed; instead, it signals the printer to start a new line.

\begin{verbatim}
OPEN( UNIT = 1, FILE = 'irrad_f.dat', STATUS = 'NEW' )
WRITE( UNIT = 1, FMT = 10 )
10 FORMAT( ' Irradiance; Author: David M. Cook; Date: 15 June 1995' )
WRITE( UNIT = 1, FMT = 20 )
20 FORMAT( ' Fraunhofer diffraction at square aperture' )
WRITE( UNIT = 1, FMT = 30 )
30 FORMAT( ' Program described in CPSUP' )
WRITE( UNIT = 1, FMT = 40 )
40 FORMAT( ' **' )
WRITE( UNIT = 1, FMT = 50 )
50 FORMAT( ' **' )
WRITE( UNIT = 1, FMT = * ) NARR
WRITE( UNIT = 1, FMT = * ) IX
WRITE( UNIT = 1, FMT = * ) IY
WRITE( UNIT = 1, FMT = * ) IZ
DO J = 1, IY
  DO I = 1, IX
    WRITE( UNIT = 1, FMT = * ) RI(I, J)
  END DO
END DO
CLOSE( UNIT = 1 )
END
\end{verbatim}

\begin{verbatim}
threepi = 3.0*3.1415926535; /* Set constant */
dx = 2.0*threepi/(xdim-1.0); /* Set increments */
dy = dx;
\end{verbatim}

Next, we evaluate the irradiance given by Eq. (9.4) with the lines\textsuperscript{39}

\textsuperscript{39}Program notes: (1) With $\texttt{xdim}$=50, the loop controlled by the statement \texttt{for( x=0; x<xdim; x++ )} is executed first for $x$=0, then for $x$=1, $x$=2, ..., continuing until it has been executed for $x$=49, which is the index of the $\texttt{xdim/2}$ element. (2) With $x$ and $y$ ranging from 0 to 49 and $dx$ and $dy$ defined as $6\pi/49$, $xf$ and $yf$ range from $-3\pi$ to $3\pi$ in 49 equal steps. (3) Note the position of the statement evaluating $yf$. For computational efficiency, it has been placed in the outer loop. (4) The function $\texttt{pow(r,t)}$ evaluates $r^t$. 
Table 9.8: Beginning lines of program irrad.c.

```c
/* PROGRAM irrad.c */

#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math routines */
define narr 1 /* Set number of arrays */
define xdim 50 /* Set dimensions: 50x50x1 */
define ydim 50
#define zdim 1

main()
{
 FILE *fptr; /* For file pointer */
 float I[xdim][ydim]; /* For irradiance */
 float xf, yf; /* For coordinates */
 float dx, dy; /* For increments */
 float threepi; /* For constant */
 int x, y; /* For loop control */

 for(y=0; y<ydim; y++)
 {
 yf = y*dy - threepi;
 for(x=0; x<xdim; x++)
 {
 xf = x*dx - threepi;
 I[x][y] = pow(sin(xf)/xf, 2.0) * pow(sin(yf)/yf, 2.0);
 }
 }

 Finally, we open the file, write the (nine) heading lines and then the irradiance into the file, and close the file with the lines listed in Table 9.9 A full listing of this program will be found in Section 9.B. The program itself is stored in the file irrad.c in the directory $HEAD/cc. Once that file has been copied to the default directory, it can be compiled, linked, and run with commands as described in the Local Guide. In UNIX, those commands might be

 cc -o irrad.xc irrad.c -lm
 ./irrad.xc

 Once this (or the appropriate alternative) sequence of commands has been executed by the operating system, the file irrad.c.dat will exist in the default directory.

9.12.6 ... with PYTHON

A PYTHON program to create a file containing values of the two-dimensional irradiance from an illuminated square aperture begins with a "preamble" in which the program is identified, needed modules are imported, and necessary variables are dimensioned. The program continues with a segment in which the internal array is created, and concludes with a segment in which appropriate labels and the values in that internal array are written into the desired file. We (1) identify the
Table 9.9: Final lines of program irraddr.c.

```c
fptr=fopen( "irrad_c.dat", "w" );

fprintf( fptr, "Irradiance; Author: David M. Cook; Date: 15 June 1995\n" );
fprintf( fptr, "Fraunhofer diffraction at square aperture\n" );
fprintf( fptr, "Program described in CPSUP\n" );
fprintf( fptr, "**\n" );
fprintf( fptr, "**\n" );
fprintf( fptr, "%d\n", narr );
fprintf( fptr, "%d\n", xdim );
fprintf( fptr, "%d\n", ydim );
fprintf( fptr, "%d\n", zdim );

for( y=0; y<ydim; y++ )
{
    for( x=0; x<xdim; x++ )
    {
        fprintf( fptr,"%e\n", I[x][y] );
    }
}

fclose( fptr );
}
```

Program notes: (1) With $ix=50$, the loop controlled by the statement for i in np.arange(ix) is executed first for $i=0$, then for $i=1$, $i=2$, ..., continuing until it has been executed for $i=49$, which is the index of the ixth element. (2) With i and j ranging from 0 to 49 and dx and dy defined as $6\pi/49$, xf and yf range from -3π to 3π in 49 equal steps. (3) Note the position of the statement evaluating yf. For computational efficiency, it has been placed in the outer loop.

Next, we evaluate the irradiance given by Eq. (9.4) with the lines:

```python
# irraddr.py
import numpy as np
narr = 1; ix = 50; iy = 50; iz = 1  # Set dimensions
I = np.zeros( (ix,iy) )  # For irradiance
threepi = 3.0*np.pi  # Set constant
dx = 2.0*threepi/(ix-1.0)  # Set increments
dy = dx

Next, we evaluate the irradiance given by Eq. (9.4) with the lines:
```

In the general structure of Section 9.3.2, we should here be imagining that we are preparing to store one $50 \times 50 \times 1$ array, and we should thus specify the dimensions as $I(50,50,1,1)$. Since the last two indices are both 1, however, they can be omitted. (2) Program notes: (1) With $ix=50$, the loop controlled by the statement for i in np.arange(ix) is executed first for $i=0$, then for $i=1$, $i=2$, ..., continuing until it has been executed for $i=49$, which is the index of the ixth element. (2) With i and j ranging from 0 to 49 and dx and dy defined as $6\pi/49$, xf and yf range from -3π to 3π in 49 equal steps. (3) Note the position of the statement evaluating yf. For computational efficiency, it has been placed in the outer loop.
Table 9.10: Closing lines of program irrad.py.

```python
f = open( 'irrad_python.dat', 'w' )
f.write( 'Irradiance; Author: David M. Cook; Date: 30 August 2018
' )
f.write( 'Fraunhofer diffraction at square aperture
' )
f.write( 'Program described in CPSUP
' )
f.write( '***
' )
f.write( '***
' )
f.write( 'str(narr)+'
' )
f.write( 'str(ix)+'
' )
f.write( 'str(iy)+'
' )
f.write( 'str(iz)+'
' )
for j in np.arange(iy):
    for i in np.arange(ix):
        f.write( str( I[i,j] ) + '\n' )
f.close()

for j in np.arange(iy):
    yf = j*dy - threepi
    for i in np.arange(ix):
        xf = i*dx - threepi
        I[i,j] = (np.sin(xf)/xf)**2 * (np.sin(yf)/yf)**2
```

Finally, we open the file, write the (nine) heading lines and then the array into the file, and close the file with the lines listed in Table 9.10. A full listing of this program will be found in Appendix 9.C. The program itself is stored in the file `irrad.py` in the directory `$HEAD/python`. Once that file has been copied to the default directory, it can be executed with commands as described in the `Local Guide`. In particular, in some installations, executing the statement

```python
python irrad.py
```

at an MS-DOS or UNIX/LINUX command window, or executing the statement

```python
execfile('irrad.py') or exec(open('irrad.py').read() )
```

at the PYTHON prompt `>>>`, or selecting ‘Run Module’ or pressing F5 in the PYTHON Edit Window will run the program and create the file `irrad_python.dat` in the default directory.

9.13 Creating and Storing Three-Dimensional Scalar Arrays

As an example of a three-dimensional scalar function, we choose the normalized probability density $p(x, y, z)$ for the electron in the $(n, l, m) = (3, 2, 0)$ state in the hydrogen atom. This probability density is given as a function of Cartesian coordinates (x, y, z) with the nucleus located at the origin by

$$p(x, y, z) = \frac{1}{2\pi(27)^3} e^{-2\rho/3} \left(\frac{3z^2}{\rho^2} - 1 \right)^2 = \frac{1}{2\pi(27)^3} e^{-2\rho/3} \left(9z^4 - 6z^2 \rho^2 + \rho^4 \right)$$

(9.5)
where the coordinates are all measured in units of the Bohr radius and

\[\rho = \sqrt{x^2 + y^2 + z^2} \] \hspace{1cm} (9.6)

This function of three variables is commonly visualized either by focusing on the function in various planes intersecting the three-dimensional volume (thereby reducing the display to a family of two-dimensional displays) or by displaying various contour surfaces. Programs producing such displays need a three-dimensional array of values as input. Suppose, then, we anticipated using some graphical visualization program to explore the quantum probability given by Eq. (9.6). Let us decide to determine values of \(p(x, y, z) \) over the region \(-10 \leq x, y, z \leq 10\), dividing each axis into 29 segments, which will entail evaluating \(p(x, y, z) \) at 30 values of \(x \), 30 values of \(y \), and 30 values of \(z \)—a total of \(30 \times 30 \times 30 = 27000 \) values.

Since the programs discussed in this section differ very little from those presented in Section 9.12, we elect here to include full code only in the listings in the appendices. We comment in the text only on major differences and subtleties.

9.13.1 . . . with FORTRAN

A FORTRAN program for creating and storing a three-dimensional scalar array is similar to the program presented in Section 9.12.1. We need one \(30 \times 30 \times 30 \) array, each element of which is the probability density at the corresponding point in the three-dimensional space. The program, a full listing of which will be found in Section 9.D, is named \texttt{pdens.f} and contains sections

- Identifying the program.
- Setting parameters for the number of arrays, the dimensions of each array, the ranges of coordinates on the three axes, and the lowest coordinate on each axis.
- Dimensioning the one \(30 \times 30 \times 30 \) array needed for the probability density and evaluating several useful constants.
- Evaluating the probability density given by Eq. (9.5). Basically, we need three loops, one ranging over each coordinate from its initial value \([X0,Y0,Z0]\) to its final value \([X0,Y0,Z0] + [XRANGE,YRANGE,ZRANGE]\). In the present case, it is convenient (and computationally efficient) to evaluate each coordinate and then its square as far from the center of the loop as possible and then to evaluate the radial coordinate and its square before evaluating the probability density itself.
- Opening the file, writing the heading lines and the probability densities into the file, and closing the file.

As with previous programs, \texttt{pdens.f} can be copied from the directory \$\texttt{HEAD}/\texttt{fortran} into your own directory, compiled, linked, and run or—should this be necessary for your application—edited before being compiled, linked, and run to create the desired file.\(^{42}\) Once the program has been executed, the file \texttt{pdens.f.dat} will exist in the default directory.

9.13.2 . . . with C

A C program for creating and storing the necessary three-dimensional scalar array is similar to the program presented in Section 9.12.2. We need one \(30 \times 30 \times 30 \) array, each element of which is the probability density at the corresponding point in the three-dimensional space. The program, a full listing of which will be found in Section 9.E, is named \texttt{pdens.c} and contains sections

\(^{42}\)For instructions on how to compile and run the program, see Section 9.12.1 and the \textit{Local Guide}.\n
• Identifying the program, including standard libraries, defining constants, and declaring necessary variables. To facilitate translating integers x, y, and z into the corresponding real coordinates x_f, y_f, and z_f, we introduce symbols $[x\text{range},y\text{range},z\text{range}]$ for the interval on each axis and $[x_0,y_0,z_0]$ for the lowest value of each coordinate. Further, since only one array is to be stored, the array P for the probability densities is dimensioned at $P[30][30][30]$ rather than at $P[30][30][30][1]$. Finally, we introduce variables x_s, y_s, and z_s for the squares of the coordinates and ρ and ρ_s for the radial coordinate and its square.

• Evaluating the probability density given by Eq. (9.5). Basically, we need three loops, one ranging over each coordinate from its initial value $[x_0,y_0,z_0]$ to its final value $[x_0,y_0,z_0] + [x\text{range},y\text{range},z\text{range}]$. In the present case, it is convenient (and computationally efficient) to evaluate each coordinate and then its square as far from the innermost loop as possible and then to evaluate the radial coordinate and its square before evaluating the probability density itself.

• Opening the file, writing the heading lines and the probability densities into the file, and closing the file.

As with previous programs, $\text{pdens}.c$ can be copied from the directory $\$HEAD/cc$ into your own directory, compiled, linked, and run or—should this be necessary for your application—edited before being compiled, linked, and run to create the desired file.43 Once the program has been executed, the file $\text{pdens}.c.dat$ will exist in the default directory.

\subsection*{9.13.6 \ldots with \textsc{python}}

A \textsc{python} program for creating and storing the necessary three-dimensional scalar array is similar to the program presented in Section 9.12.6. We need one $30 \times 30 \times 30$ array, each element of which is the probability density at the corresponding point in the three-dimensional space. The program, a full listing of which will be found in Appendix 9.F, is named $\text{pdens}.py$ and contains sections

• Identifying the program, importing necessary modules, and setting values for several constants. Further, since only one array is to be stored, the array P for the probability densities is dimensioned at $P[30,30,30]$ rather than at $P[30,30,30,1]$. Finally, we introduce variables x_s, y_s, and z_s for the squares of the coordinates and ρ and ρ_s for the radial coordinate and its square.

• Evaluating the probability density given by Eq. (9.5). Basically, we need three loops, one ranging over each coordinate from its initial value $[x,y,z]_0$ to its final value $[x,y,z]_0 + [x,y,z]\text{range}$. In the present case, it is convenient (and computationally efficient) to evaluate each coordinate and then its square as far from the innermost loop as possible and then to evaluate the radial coordinate and its square before evaluating the probability density itself.

• Opening the file, writing the heading lines and the probability densities into the file, and closing the file.

As with previous programs, $\text{pdens}.py$ can be copied from the directory $\$HEAD/python$ into your own directory, executed or—should this be necessary for your application—edited before being executed to create the desired file.44 Once the program has been executed, the file $\text{pdens}.\text{python}.dat$ will exist in the default directory.

43For instructions on how to compile and run the program, see Section 9.12.2 and the \textit{Local Guide}.

44For instructions on how to compile and run the program, see Section 9.12.6 and the \textit{Local Guide}.
9.14 Creating and Storing Two-Dimensional Vector Arrays

Display of a vector field in two dimensions requires a two-dimensional vector array, i.e., a two-dimensional array, each of whose elements is itself a vector. Instead of creating a single two-dimensional vector array, however, we elect to construct a pair of two-dimensional scalar arrays, one for each component of the vector. The first array contains the first component of the vector field at each point on a grid covering the region of interest and the second array contains the second component of the vector field on that same grid.

As an example of a two-dimensional vector field, we choose the magnetic field in a transverse electric (TE) electromagnetic wave propagating in a waveguide with perfectly conducting walls (though we choose also to compute and save the associated electric field). As shown in Fig. 9.4, we take the waveguide to be oriented so that the wave propagates in the positive \(x\) direction. Let the guide have a rectangular cross-section with dimensions \((b,d)\), i.e., \((0 < y < b, 0 < z < d)\). Further, let the wave be polarized in the \(z\) direction and consider the particular TE waves whose electric field does not depend on \(z\). In mksa units, the (complex) fields in this guide are given by

\[
\begin{align*}
\mathbf{E}(\mathbf{r},t) &= A \sin \frac{n\pi y}{b} e^{i(\kappa_x x - \omega t)} \hat{k} \\
\mathbf{H}(\mathbf{r},t) &= \frac{\nabla \times \mathbf{E}}{i\omega \mu_0} = A \left(\frac{n\pi}{b} \cos \frac{n\pi y}{b} \hat{i} - i\kappa_x \sin \frac{n\pi y}{b} \hat{j} \right) e^{i(\kappa_x x - \omega t)}
\end{align*}
\]

(9.7)

where \(n = 1, 2, 3, \ldots\) and, with \(c\) standing for the speed of light,

\[
\kappa_x^2 = \frac{\omega^2}{c^2} - \left(\frac{n\pi}{b} \right)^2
\]

(9.9)

If we focus on the physical fields (real parts of \(\mathbf{E}\) and \(\mathbf{H}\)) specifically at \(t = 0\), we find that

\[
\begin{align*}
\mathbf{E}(\mathbf{r}) &= A \cos \kappa_x x \sin \frac{n\pi y}{b} \hat{k} \\
\mathbf{H}(\mathbf{r}) &= \frac{An\pi}{\omega \mu_0 b} \sin \kappa_x x \cos \frac{n\pi y}{b} \hat{i} - \frac{A\kappa_x}{\omega \mu_0} \cos \kappa_x x \sin \frac{n\pi y}{b} \hat{j}
\end{align*}
\]

(9.10)

\footnote{For a derivation of the magnetic field for a wave propagating in the \(z\) direction and a discussion on wave guides in general, see The Theory of the Electromagnetic Field by David M. Cook (Prentice-Hall, Englewood Cliffs, NJ, 1975) or Introduction to Electrodynamics by David J. Griffiths (Prentice-Hall, Upper Saddle River, NJ, 1999), Third Edition. The first of these books, out of print since the early 1990’s, became available in a Dover reprint in January, 2003, but is now (January 2017) also out of print. It may still be available in your local library.}
To simplify these equations further, we divide E by A and H by $A n \pi / \omega \mu_0 b$, and we elect to measure lengths in units of b by introducing the variables $\bar{y} = y/b$ and $\bar{x} = x/b$. Equation (9.10) then becomes

$$
\bar{E}(\bar{r}) = \frac{E(r)}{A} = \cos \kappa_x b \bar{x} \sin n \pi \bar{y} \hat{k} \\
\bar{H}(\bar{r}) = \frac{H(r)}{A n \pi / \omega \mu_0 b} = \sin \kappa_x b \bar{x} \cos n \pi \bar{y} \hat{i} - \frac{\kappa_x b}{n \pi} \cos \kappa_x b \bar{x} \sin n \pi \bar{y} \hat{j}
$$

(9.11)

and we find that the field of interest depends on two parameters n and $\kappa_x b$. Further, Eq. (9.9) imposes the constraint

$$
\left(\frac{\kappa_x b}{n \pi}\right)^2 = \left(\frac{\omega b}{n \pi c}\right)^2 - 1
$$

(9.12)

on these parameters. The only non-zero components of the fields in Eq. (9.11) are

$$
\bar{E}_z = \cos \kappa_x b \bar{x} \sin n \pi \bar{y} \\
\bar{H}_x = \sin \kappa_x b \bar{x} \cos n \pi \bar{y} \\
\bar{H}_y = -\frac{\kappa_x b}{n \pi} \cos \kappa_x b \bar{x} \sin n \pi \bar{y}
$$

(9.13)

For the sake of a specific example, we choose $b = 1$ and $n = 2$, and then we choose ω so that $\kappa_x b / 2\pi$ turns out to have the value 1. With these choices, we find that the fields we seek to display are given by

$$
\bar{E}_z = \cos 2\pi \bar{x} \sin 2\pi \bar{y} \\
\bar{H}_x = \sin 2\pi \bar{x} \cos 2\pi \bar{y} \\
\bar{H}_y = -\cos 2\pi \bar{x} \sin 2\pi \bar{y}
$$

(9.14)

where \bar{x} can range over any values—we choose $0 \leq \bar{x} \leq 1$—but to be inside the guide, \bar{y} is confined to the region $0 \leq \bar{y} \leq 1$. Each component of these fields can now be represented by a two-dimensional array. The H field, which has two non-zero components, then is translated into two such arrays; the E field, which has only one non-zero component, requires only one such array. To be explicit, we determine values of $\bar{H}_x(\bar{x}, \bar{y})$, $\bar{H}_y(\bar{x}, \bar{y})$, and $\bar{E}_z(\bar{x}, \bar{y})$ over the region $0 \leq \bar{x}, \bar{y} \leq 1$, dividing each axis into 30 segments of length 1/29, which will entail evaluating the field components at 30 values of \bar{x} and 30 values of \bar{y}—a total of $30 \times 30 = 900$ values. Normally, these field components would be stored in three 30×30 two-dimensional arrays. Because of our declared file format, however, we must view ourselves as needing storage for $30 \times 30 \times 1$ three-dimensional arrays. We shall, however, view the structure as a single $30 \times 30 \times 1 \times 3$ array H, with $H(*, *, 1, 1)$ storing \bar{H}_x, $H(*, *, 1, 2)$ storing \bar{H}_y, and $H(*, *, 1, 3)$ storing \bar{E}_z.\[46\]

9.14.1 ... with FORTRAN

A FORTRAN program for creating the necessary arrays is similar to the program discussed in Section 9.12.1. First, we identify the program, dimension necessary variables, and set various constants with the lines\[47,48\]

\[46\] We have supposed indices starting at 1. In languages where indices start at 0, the associations would, of course, be $H(*, *, 0, 0)$ storing \bar{H}_x, $H(*, *, 0, 1)$ storing \bar{H}_y, and $H(*, *, 0, 2)$ storing \bar{E}_z.

\[47\] Note that the third index of H is always one, the only value when the dimension of the array in that index is 1.

\[48\] Note also that, for computational efficiency, various quantities involving only XF have been calculated in the outer loop.
9.14. CREATING AND STORING TWO-DIMENSIONAL VECTOR ARRAYS

PROGRAM WAVEGD

PARAMETER(NARR = 3, IX = 30, IY = 30, IZ = 1)

DIMENSION H(IX, IY, IZ, NARR) ! For field components

TWOPI = 2.0*3.1415926535; ! Set constant
DX = TWOPI/(IX-1.0) ! Set increments
DY = DX

Then we evaluate the field components in Eq. (9.14) with the lines

DO I = 1, IX
XF = (I-1)*DX
SXF = SIN(XF)
CXF = COS(XF)
DO J = 1, IY
YF = (J-1)*DY
SYF = SIN(YF)
CYF = COS(YF)
H(I,J,1,1) = SXF * CYF ! Hx
H(I,J,1,2) = -CXF * SYF ! Hy
H(I,J,1,3) = -H(I,J,1,2) ! Ez
ENDDO
ENDDO
ENDDO

Finally, we open the file, write the (nine) heading lines and then the array into the file, and close the file with the lines listed in Table 9.11. A full listing of this program will be found in Section 9.G. The program itself is stored in the file wavegd.f in the directory $HEAD/fortran. It can be copied into your own directory, compiled, linked, and run or—should this be necessary for your application—edited before being compiled, linked, and run to create the desired file.\footnote{For instructions on how to compile and run the program, see Section 9.12.1 and the Local Guide.}

Once the program has been executed, the file wavegd.f.dat will exist in the default directory.

9.14.2 ... with C

A C program for creating and storing the necessary arrays is similar to the program discussed in Section 9.12.2. After identifying the program in a comment, including necessary standard “include” libraries (input/output and math libraries), defining assorted constants, and declaring necessary variables with the lines listed in Table 9.12, the main routine continues by setting appropriate values for a few other quantities with the lines

\texttt{twopi = 2.0*3.1415926535;} /* Set constant */
\texttt{dx = twopi/(xdim-1.0)} /* Set increments */
\texttt{dy = dx;}

Then we evaluate the field components in Eq. (9.14) with the lines listed in Table 9.13.\footnote{Note that the third index of \texttt{H} is always zero, the only value when the dimension of the array in that index is 1.} \footnote{Note also that, for computational efficiency, various quantities involving only \texttt{xf} have been calculated in the \texttt{outer} loop.} \footnote{Note, finally, the use of braces to create blocks of statements that the compiler is to see as single statements.}

Finally, we open the file, write the (nine) heading lines and then the array into the file, and close the file with the lines listed in Table 9.14. A full listing of this program will be found in Section 9.H.
Table 9.11: Closing lines of program wavegd.f.

```
OPEN( UNIT = 1, FILE = 'wavegd_f.dat', STATUS = 'NEW' )

WRITE( UNIT = 1, FMT = 10 )
10 FORMAT( ' Waveguide; Author: David M. Cook; Date: 15 June 1995' )
WRITE( UNIT = 1, FMT = 20 )
20 FORMAT( ' H and E fields in rectangular waveguide' )
WRITE( UNIT = 1, FMT = 30 )
30 FORMAT( ' Program described in CPSUP' )
WRITE( UNIT = 1, FMT = 40 )
40 FORMAT( ' **' )
WRITE( UNIT = 1, FMT = 50 )
50 FORMAT( ' **' )

WRITE( UNIT = 1, FMT = * ) NARR
WRITE( UNIT = 1, FMT = * ) IX
WRITE( UNIT = 1, FMT = * ) IY
WRITE( UNIT = 1, FMT = * ) IZ

DO N = 1, NARR
  DO J = 1, IY
    DO I = 1, IX
      WRITE( UNIT = 1, FMT = * ) H(I,J,1,N)
    ENDDO
  ENDDO
ENDDO

CLOSE( UNIT = 1 )
END
```

The program itself is stored in the file wavegd.c in the directory $HEAD/cc. It can be copied into your own directory, compiled, linked, and run or—should this be necessary for your application—edited before being compiled, linked, and run to create the desired file.53 Once the program has been executed, the file wavegd_c.dat will exist in the default directory.

9.14.6 ... with PYTHON

A PYTHON program for creating and storing the necessary arrays is similar to the program discussed in Section 9.12.6. After identifying the program in a comment, including needed modules, and defining assorted constants with the lines

53For instructions on how to compile and run the program, see Section 9.12.2 and the Local Guide.
9.14. CREATING AND STORING TWO-DIMENSIONAL VECTOR ARRAYS

Table 9.12: Opening lines of program wavegd.c.

/* PROGRAM wavegd.c */
#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math routines */
#define narr 3 /* Set number of arrays */
#define xdim 30 /* Set dimensions: 30x30x1 */
#define ydim 30
#define zdim 1

main()
{
 FILE *fptr; /* For file pointer */
 float H[xdim][ydim][zdim][narr]; /* For H */
 float xf, yf; /* For coordinates */
 float sxf, cxf, syf, cyf; /* For sin, cos */
 float dx, dy; /* For increments */
 float twopi; /* For constant */
 int n, x, y; /* For loop control */

table 9.13: Coding to calculate the field in program wavegd.c.

for(x=0; x<xdim; x++)
{
 xf = x*dx;
 sxf = sin(xf);
 cxf = cos(xf);
 for(y=0; y<ydim; y++)
 {
 yf = y*dy;
 syf = sin(yf);
 cyf = cos(yf);
 H[x][y][0][0] = sxf * cyf; /* Hx */
 H[x][y][0][1] = -cxf * syf; /* Hy */
 H[x][y][0][2] = -H[x][y][0][1]; /* Ez */
 }
}

wavegd.py

import numpy as np # Import needed module.
narr = 3 # Set number of arrays.
xdim = 30; ydim = 30; zdim = 1 # Set dimensions: 30x30x1.
twopi = 2.0*np.pi # Set constant.
dx = twopi/(xdim-1.0) # Set increments.
dy = dx
H=np.zeros((xdim,ydim,zdim,narr)) # Prepare for values
we evaluate the field components in Eq. (9.14) with the lines54,55

\begin{verbatim}
for ix in np.arange(xdim):
 xf = ix*dx; sxf = np.sin(xf); cxf = np.cos(xf)
 for iy in np.arange(ydim):
 yf = iy*dy; syf = np.sin(yf); cyf = np.cos(yf)
 H[ix,iy,0,0] = sxf * cyf
 H[ix,iy,0,1] = -cxf * syf
 H[ix,iy,0,2] = -H[ix,iy,0,1]
\end{verbatim}

Finally, we open the file, write the (nine) heading lines and then the array into the file, and close the file with the lines listed in Table 9.15. A full listing of this program will be found in Appendix 9.I. The program itself is stored in the file \texttt{wavegd.py} in the directory \$HEAD/python. It can be copied into your own directory and executed or—should this be necessary for your application—edited before being executed to create the desired file.56 Once the program has been executed, the file \texttt{wavegd_python.dat} will exist in the default directory.

54Note that the third index of \(H \) is always zero, the only value when the dimension of the array in that index is 1.

55Note also that, for computational efficiency, various quantities involving only \texttt{xf} have been calculated in the outer loop.

56For instructions on how to run the program, see Section 9.12.6 and the \textit{Local Guide}.

Table 9.14: Closing lines of program \texttt{wavegd.c}.

\begin{verbatim}
fptr = fopen("wavegd_c.dat", "w");

fprintf(fptr, "Waveguide; Author: David M. Cook; Date: 15 June 1995\n"
); fprintf(fptr, "H and E fields in rectangular waveguide\n"); fprintf(fptr, "Program described in CPSUP\n"); fprintf(fptr, "**\n"); fprintf(fptr, "**\n"); fprintf(fptr, "%d\n", narr); fprintf(fptr, "%d\n", xdim); fprintf(fptr, "%d\n", ydim);

for(n=0; n<narr; n++)
 { for(y=0; y<ydim; y++)
 { for(x=0; x<xdim; x++)
 { fprintf(fptr, "%e\n", H[x][y][0][n]); }
 }
 }

fclose(fptr);
\end{verbatim}
9.15 Creating and Storing Three-Dimensional Vector Arrays

Display of a vector field in three dimensions requires a three-dimensional vector array, i.e., a three-dimensional array, each of whose elements is itself a vector. Instead of creating a single three-dimensional vector array, however, we elect to construct a triplet of three-dimensional scalar arrays, one for each component of the vector. The first array contains the first component of the vector field at each point on a grid covering the region of interest, the second array contains the second component of the vector field on that same grid, and the third array contains the third component of the vector field. This section describes convenient ways to produce such triplets of arrays and to write them into ASCII files for transfer to other programs.

As an example of a three-dimensional vector field, we choose the electric field produced by a quadrupole consisting of four charges at the corners of a square of side $2a$ with its center at the origin and its plane in the xy plane. Choosing to measure the coordinates x, y and z in units of a, we find that this field is given by

$$
\frac{[E_x(x, y, z), E_y(x, y, z), E_z(x, y, z)]}{q/4\pi\varepsilon_0 a^2} = \left[\frac{x - 1, y - 1, z}{[(x - 1)^2 + (y - 1)^2 + z^2]^{3/2}} - \frac{x + 1, y - 1, z}{[(x + 1)^2 + (y - 1)^2 + z^2]^{3/2}} \right] + \left[\frac{x + 1, y + 1, z}{[(x + 1)^2 + (y + 1)^2 + z^2]^{3/2}} - \frac{x - 1, y + 1, z}{[(x - 1)^2 + (y + 1)^2 + z^2]^{3/2}} \right] \right]^{3/2}
$$

To be explicit, we determine values of the field components over the region $-2.0 \leq x, y, z \leq 2.0$, dividing each axis into 29 segments, which will entail evaluating the components at 30 values of x, 30 values of y, and 30 values of z—a total of $30 \times 30 \times 30 = 27000$ values. Because of our declared file format, however, we must view ourselves as needing storage for three $30 \times 30 \times 30$ three-dimensional arrays. We shall, however, view the structure as a single $30 \times 30 \times 30 \times 3$ array E, with $E(*,*,*,1)$ storing E_x, $E(*,*,*,2)$ storing E_y, and $E(*,*,*,3)$ storing E_z.\(^{57}\)

\(^{57}\)We have supposed indices starting at 1. In languages where indices start at 0, the associations would, of course, be $E(*,*,0,0)$ storing E_x, $E(*,*,0,1)$ storing E_y, and $E(*,*,0,2)$ storing E_z.\)
Since the programs discussed in this section differ very little from those presented in Section 9.14, we elect here to include full code only in the listings in the appendices. We comment in the text only on major differences and subtleties.

9.15.1 ... with FORTRAN

A FORTRAN program to create data for the electric field from the quadrupole described above can be constructed based on the FORTRAN program for three-dimensional scalar arrays. The reader should be familiar with that program, which appears in Section 9.13.1. This time, however, we must exploit the fourth dimension that our file format allows us. Each point in \(xyz\) space has three components associated with it, so we set the fourth dimension \(n\) (the number of arrays) equal to 3 to allow for those components. The program, a full listing of which will be found in Section 9.J, is named \texttt{quadpole.f} and contains sections

- Identifying the program.
- Setting parameters for the number of arrays, the dimensions of each array, the ranges of coordinates on the three axes, and the lowest coordinate on each axis.
- Dimensioning the one \(30 \times 30 \times 30 \times 3\) array needed for the three components of the field and evaluating several useful constants. Since three arrays are to be stored, the array \(E\) for the electric field components is dimensioned at \(E(30,30,30,3)\), with \(E_x\) stored in \(E(*,*,*,1)\), \(E_y\) stored in \(E(*,*,*,2)\), and \(E_z\) stored in \(E(*,*,*,3)\).
- Evaluating the electric field components given by Eq. (9.15). Basically, we need three loops, one ranging over each coordinate from its initial value \([X_0,Y_0,Z_0]\) to its final value \([X_0,Y_0,Z_0] + [XRANGE,YRANGE,ZRANGE]\). In the present case, it is convenient (and computationally efficient) to evaluate as many quantities as possible as far from the center of the loop as possible and then to evaluate the denominators before evaluating the field components themselves. For computational efficiency, we introduce variables \(XFM, XFP, YFM\) and \(YFP\) for \(x - 1, x + 1, y - 1,\) and \(y + 1\), respectively; variables \(XFMS, XFPS, YFMS, YFPS\), and \(ZFS\) for \((x - 1)^2, (x + 1)^2, (y - 1)^2, (y + 1)^2,\) and \(z^2\), respectively; and variables \(RMM, RMP, RPM\) and \(RPP\) for the four denominators in Eq. 9.15.
- Opening the file, writing the heading lines and the field components into the file, and closing the file.

As with previous programs, \texttt{quadpole.f} can be copied from the directory \texttt{$HEAD/fortran} into your own directory, compiled, linked, and run or—should this be necessary for your application—edited before being compiled, linked, and run to create the desired file.58 Once the program has been executed, the file \texttt{quadpole.f.dat} will exist in the default directory.

9.15.2 ... with C

A C program for creating and storing three-dimensional vector arrays is similar to the other C programs presented so far, in particular the three-dimensional scalar program in Section 9.13.2. This time, however, we must exploit the fourth dimension that our file format allows us. Each point in \(xyz\) space has three components associated with it, so we set the fourth dimension \(n\) (the number of arrays) equal to 3 to allow for those components. The program, a full listing of which will be found in Section 9.K, is named \texttt{quadpole.c} and contains sections

58For instructions on how to compile and run the program, see Section 9.12.1 and the \textit{Local Guide}.
Identifying the program, including standard libraries, defining constants, and declaring necessary variables. To facilitate translating integers x, y, and z into the corresponding real coordinates xf, yf, and zf, we introduce symbols [xrange, yrange, zrange] for the interval on each axis and [x0, y0, z0] for the lowest value of each coordinate. Since three arrays are to be stored, the array E for the electric field components is dimensioned at E[30][30][30][3], with E_x stored in E[*][*][*][0], E_y stored in E[*][*][*][1], and E_z stored in E[*][*][*][2]. Finally, we introduce variables xfm, xfp, yfm and yfp for $x - 1$, $x + 1$, $y - 1$, and $y + 1$, respectively; variables xfms, xfps, yfms, yfps, and zfs for $(x - 1)^2$, $(x + 1)^2$, $(y - 1)^2$, $(y + 1)^2$, and z^2, respectively; and variables rmm, rmp, rpm and rpp for the four denominators in Eq. 9.15.

Evaluating the electric field components given by Eq. (9.15). Basically, we need three loops, one ranging over each coordinate from its initial value $[x0, y0, z0]$ to its final value $[x0, y0, z0] + [xrange, yrange, zrange]$. In the present case, it is convenient (and computationally efficient) to evaluate as many quantities as possible as far from the center of the loop as possible and then to evaluate the denominators before evaluating the field components themselves.

Opening the file, writing the heading lines and the field components into the file, and closing the file.

As with previous programs, quadpole.c can be copied from the directory $HEAD/cc$ into your own directory, compiled, linked, and run or—should this be necessary for your application—edited before being compiled, linked, and run to create the desired file.59 Once the program has been executed, the file quadpole_c.dat will exist in the default directory.

9.15.6 ... with PYTHON

A PYTHON program for creating and storing three-dimensional vector arrays is similar to the other PYTHON programs presented so far, in particular the two-dimensional scalar program in Section 9.12.6. This time, however, we must exploit the fourth dimension that our file format allows us. Each point in xyz space has three components associated with it, so we set the fourth dimension n (the number of arrays) equal to 3 to allow for those components. The program, a full listing of which will be found in Appendix 9.L, is named quadpole.py and contains sections

- Identifying the program, importing necessary modules, and setting values for several constants. Since three arrays are to be stored, the array E for the electric field components is dimensioned at E[30][30][30][3], with E_x stored in E[*][*][*][0], E_y stored in E[*][*][*][1], and E_z stored in E[*][*][*][2]. Finally, we introduce variables xfm, xfp, yfm and yfp for $x - 1$, $x + 1$, $y - 1$, and $y + 1$, respectively; variables xfms, xfps, yfms, yfps, and zfs for $(x - 1)^2$, $(x + 1)^2$, $(y - 1)^2$, $(y + 1)^2$, and z^2, respectively; and variables rmm, rmp, rpm and rpp for the four denominators in Eq. 9.15.

- Evaluating the electric field components given by Eq. (9.15). Basically, we need three loops, one ranging over each coordinate from its initial value $[x, y, z]0$ to its final value $[x, y, z]0 + [x, y, z]range$. In the present case, it is convenient (and computationally efficient) to evaluate as many quantities as possible as far from the center of the loop as possible and then to evaluate the denominators before evaluating the field components themselves.

- Opening the file, writing the heading lines and the field components into the file, and closing the file.

As with previous programs, quadpole.py can be copied from the directory $HEAD/python$ into your own directory, executed or—should this be necessary for your application—edited before being executed to create the desired file.60 Once the program has been executed, the file quadpole_python.dat will exist in the default directory.

59For instructions on how to compile and run the program, see Section 9.12.2 and the Local Guide.
60For instructions on how to run the program, see Section 9.12.6 and the Local Guide.
9.16 Reading Files

Full use of the files that we have learned how to create in the previous sections, of course, depends on an ability to read files created with a program in one language into a program in another—or possibly the same—language. This section will lay out the necessary features.

9.16.1 ... with FORTRAN

Data can be read from the files in FORTRAN with a variety of statements. Unfortunately, in the simplest situations, arrays must be dimensioned at the time of compilation. Thus, for the simplest programs, we must know the size of the array(s) to be read when we write the program. In this subsection, then, we will develop a FORTRAN program to read the file `irrad_f.dat` created in Section 9.12.1, understanding that programs to read other files will be similar.

The task involves only a few steps. First, we must open the file for read access with a statement like

```fortran
OPEN( UNIT = 1, FILE = 'irrad_f.dat', STATUS = 'OLD' )
```

Then we must declare appropriate variables and read past the five lines of comments with statements like

```fortran
CHARACTER*120 LN1, LN2, LN3, LN4, LN5
READ( UNIT=1, FMT='(A)' ) LN1
READ( UNIT=1, FMT='(A)' ) LN2
READ( UNIT=1, FMT='(A)' ) LN3
READ( UNIT=1, FMT='(A)' ) LN4
READ( UNIT=1, FMT='(A)' ) LN5
```

Next, we read the four dimensions from the file with the statement

```fortran
READ( UNIT=1, FMT=* ) NARR, IX, IY, IZ
```

(We will not—though for security we probably should—verify that the values read from the file for these integers actually are the values—1, 50, 50, 1—we have used for the dimensions of the array.) Finally, we dimension an array for the data, read the values from the file, and close the file with the statements

```fortran
DIMENSION RI( 50, 50, 1, 1 )
DO N = 1, NARR
   DO K = 1, IZ
      DO J = 1, IY
         DO I = 1, IX
            READ( UNIT=1, FMT=* ) RI(I,J,K,N)
         END DO
      END DO
   END DO
END DO
CLOSE( UNIT = 1 )
```

Execution of these statements will recreate the variable `RI` as it was when the file `irrad_f.dat` was created in Section 9.12.1. A fully commented and properly ordered listing of the program `read_irrad.f` is presented in Section 9.M.

61Reading the dimensions of the necessary array from the file at execution time is simple enough but creating the array at that time is much trickier. We choose not to address the necessary strategy in this book.
9.16. READING FILES

9.16.2 ... with C

Data can be read from the files in C with a variety of statements. Unfortunately, in the simplest situations, arrays must be dimensioned at the time of compilation. Thus, for the simplest programs, we must know the size of the array(s) to be read when we write the program. In this subsection, then, we will develop a C program to read the file `irrad_c.dat` created in Section 9.12.2, understanding that programs to read other files will be similar.

The task involves only a few steps. First, we must declare a suitable pointer to be used in referring to the file and open the file for read access with the statements

```
FILE *fptr;
fptr = fopen( "irrad_c.dat", "r" );
```

Then we must declare appropriate variables and read past the five lines of comments with statements like

```
char ln1[120], ln2[120], ln3[120], ln4[120], ln5[120];
int narr, ix, iy, iz;
fgets( ln1, 120, fptr );
fgets( ln2, 120, fptr );
fgets( ln3, 120, fptr );
fgets( ln4, 120, fptr );
fgets( ln5, 120, fptr );
```

Next, we declare appropriate variables and read the four dimensions from the file with the statements

```
int narr, ix, iy, iz;
scanf( fptr, "%d %d %d %d", narr, ix, iy, iz );
```

(We will not—though for security we probably should—verify that the values read from the file for these integers actually are the values—1, 50, 50, 1—we have used for the dimensions of the array.)

Finally, we declare an appropriate array for the data, declare integers for the loop indices, read the values from the file, and close the file with the statements

```
int n, i, j, k;
float I[50][50][1][1];
for( n=0; n<narr; n++ )
    for( k=0; k<iz; k++ )
        for( j=0; j<iy; j++ )
            for( i=0; i<ix; i++ )
                fscanf( fptr, "%g", &I[i][j][k][n] );
fclose( fptr );
```

Execution of these statements will recreate the variable I as it was when the file `irrad_c.dat` was created in Section 9.12.2. A fully commented and properly ordered listing of the program `read_irrad.c` is presented in Section 9.N.

62Reading the dimensions of the necessary array from the file at execution time is simple enough but creating the array at that time is much trickier. We choose not to address the necessary strategy in this book.
9.16.6 ... with PYTHON

Data can be read from the files in PYTHON with a variety of statements. Unfortunately, the structure of the file must be known before we can create a program to read it. In this subsection, then, we will develop a PYTHON program to read the file `irrad_python.dat` created in Section 9.12.6, understanding that programs to read other files will be similar.

The task involves only a few steps. First, we must open the file for read access with the statement

```python
f = open( 'irrad_python.dat', 'r' )
```

Then we must read past the five lines of comments with statements like

```python
ln1=f.readline(); ln2=f.readline(); ln3=f.readline()
ln4=f.readline(); ln5=f.readline()
```

Next, we read the four dimensions from the file with the statements

```python
narr=int(f.readline())
ix=int(f.readline()); iy=int(f.readline()); iz=int(f.readline())
```

Here, the action of the command `int` both strips off the end-of-line character and converts the string read from the file into an integer. (We will not—though for security we probably should—verify that the values read from the file for these integers actually are the values—1, 50, 50, 1—we have used for the dimensions of the array.) Finally, we initialize an appropriate array for the data, read the values one at a time from the file, and close the file with the statements

```python
import numpy as np
I = np.zeros( (ix,iy) )
for j in np.arange(iy):
    for i in np.arange(ix):
        I[i,j] = float( f.readline() )

f.close()
```

Here, the command `float` both strips the end-of-line character from what is read and converts the result from a character string into a floating point number. We also recognize that the file really contains only a 50×50 array even though our construction of the file envisioned it to be an equivalent $50 \times 50 \times 1 \times 1$ array, so we have created I in the more simple form.

Execution of these statements will recreate the variable I as it was when the file `irrad_python.dat` was created in Section 9.12.6. A fully commented and properly ordered listing of the program `read_irrad.py` is presented in Appendix 9.O.

63 Remember that the character `\n` will at the end of each line will be included in the values assigned to the variables `ln?`.

64 Indeed, creating it as an array with two dimensions equal to 1 results in an error message when we attempt to invoke a loop that is iterated only once.
Table 9.16: Algorithm for Exercise 99.1.

PROGRAM PARK
Obtain date and time of entry to lot
Obtain date and time of exit from lot
Determine time in lot in days, hours, and minutes
Report time in lot
IF time in lot less than one day
 THEN calculate fee for less than one day
ELSE calculate fee for one day or longer
END_IF
Report fee
END_PROGRAM

9.17 References

For PYTHON, see Section 5.17.

9.18 Exercises

9.1. Pricing at an airport parking lot is as follows: 50 cents for the first half hour, 35 cents for the second half hour, and 25 cents for each subsequent hour (or fraction thereof) to a maximum of 250 cents per 24-hour period. The higher charge for the first hour applies *only* on the first day. Make the algorithm listed in Table 9.16 for determining the parking fee for a particular patron more explicit by expanding the two statements in the IF-THEN-ELSE structure. *Hint*: Work through several numeric examples by hand, noting particularly all decisions that you must make in order to know what arithmetic to do. Optional: Describe a procedure for determining the time in the lot from the dates and times of entry and exit. Assume first that the two dates are in the same month, but then give some thought to generalizing your procedure to handle cases where the two dates span two or more months or years.

9.2. Figure 9.5 shows three different alternative structures. Express each structure using (a) *only* CASE structures and (b) *only* IF-THEN-ELSE structures. In these figures, T, F, C, and B stand for true, false, condition, and block of statements, respectively. Use proper indentation as illustrated in the examples.

9.3. Identify the basic actions performed by the automatic pin setting apparatus at the end of a bowling alley. Then write an algorithm to control the operation of this device.

9.4. For the game of bowling, identify appropriate elementary action statements and then write an algorithm that will accept the number of pins knocked over with each ball and report the frame-by-frame scores.
9.5. (a) Cast Algorithm (6) of Section 9.2 in a form more specific to finding the largest integer in a list of integers.

(b) The algorithm shown in Table 9.17 is an alternative to the algorithm deduced in (a). Essentially, an alternative method of initializing LARGEST% is adopted. Write a few sentences identifying the advantages and disadvantages of the two different methods.

9.6. Basing your work on Algorithm (6) of Section 9.2, write an algorithm that will obtain words one at a time and ultimately report the word that would occur first if the list were to be alphabetized.

9.7. Basing your work on Algorithm (6) of Section 9.2, write an algorithm that will obtain words one at a time and ultimately report (1) the word that would appear last if the list were alphabetized, (2) the word that would appear first if the list were alphabetized, (3) the total number of words given, and (4) the position of each extreme word in the original list. Only one pass through the list is permitted.

9.8. Write an algorithm that will find and report all triplets of positive integers (zero excluded) $A\%$, $B\%$, $C\%$ satisfying $A\%^2 + B\%^2 = C\%^2$, subject to the restriction that $A\%$, $B\%$, and $C\%$ shall all be smaller than some value MAXNUM% supplied as input. Hint: Systematically examine all possibilities, but do so thoughtfully. For example, there is no point in examining cases for which $C\%\leq A\%$ or $C\%\leq B\%$. Express your loops so that these cases (and any others that you can reject a priori) will not even be considered. Optional: For MAXNUM% = 20%, determine the number of executions of your
Table 9.17: Algorithm for Exercise 9.5.

```plaintext
SENTINEL% ← ⟨agreed-upon special value⟩
LARGEST% ← ⟨assumed fictitious integer known to occur before any possible real integer in the list⟩
LOOP
  READ ITEM%
  EXITLOOP WHEN ITEM% = SENTINEL%
  IF ITEM% > LARGEST%
    THEN LARGEST% ← ITEM%
  END_IF
END_LOOP
Report LARGEST%
```

Table 9.18: Procedure for Exercise 9.9.

```plaintext
PROCEDURE ???????
SCANEND% ← N%
LOOP
  CARD% ← 1%
  Obtain word on card CARD% and store in WORD$
  LATEST_WORD$ ← WORD$
  LATEST_CARD% ← CARD%
  LOOP
    CARD% ← CARD% + 1%
    Obtain word on card CARD% and store in WORD$
    IF WORD$ occurs after LATEST_WORD$
      THEN BEGIN_BLOCK
        LATEST_WORD$ ← WORD$
        LATEST_CARD% ← CARD%
      END_BLOCK
    END_IF
  END_LOOP
  EXIT_LOOP WHEN CARD% = SCANEND%,
END_LOOP
Exchange card LATEST_CARD% with card SCANEND%
SCANEND% ← SCANEND% - 1%
EXITLOOP WHEN SCANEND% = 1%
END_LOOP
END_PROCEDURE
```

innermost loop.

9.9. Suppose you have N% cards laid out in a row on a table. On each card is a single word. Determine the end result of applying the mystery procedure laid out in Table 9.18 to that array of cards and choose a suitable name for the procedure.

9.10. Let the digits in an integer be counted from the left end of the integer, i.e., in the four-digit number "4358", call "4" digit 1, "3" digit 2, "5" digit 3, and "8" digit 4. Determine the function of the mystery procedure in Table 9.19 and choose a suitable name for the procedure.

PROCEDURE ??????
Obtain a positive integer A% from a friend
Obtain a (second) positive integer B% from a friend
CASE
 OF A% has more digits than B% DO
 LOOP
 Add digit 0 in front of B% and call result B%
 EXIT_LOOP WHEN B% and A% have same number of
digits
 END_LOOP
 OF B% has more digits than A% DO
 LOOP
 Add digit 0 in front of A% and call result A%
 EXIT_LOOP WHEN A% and B% have same number of
digits
 END_LOOP
END_CASE
WRITE A% on a piece of paper
WRITE B% under A% with corresponding digits in same
column
Draw a line under B%
DIGIT% ← number of digits in either number
CARRY% ← 0%
LOOP
 SUM% ← digit DIGIT% of A% + digit DIGIT% of B% +
 CARRY%
 IF SUM% < 10% THEN CARRY% ← 0%
 ELSE BEGIN
 CARRY% ← 1%
 SUM% ← SUM% - 10%
 END_BEGIN
END_LOOP
WRITE SUM% under digit DIGIT% of B%
DIGIT% ← DIGIT% - 1%
EXIT_LOOP WHEN DIGIT% = 0%
END_LOOP
IF CARRY% = 1% THEN WRITE CARRY% in front of all digits beneath line
END_IF
END_PROCEDURE

9.11. Starting with the approximation
\[\frac{du}{dx} \bigg|_{x + \frac{1}{2} \Delta x} \approx \frac{u(x + \Delta x) - u(x)}{\Delta x} \]
deduce the finite difference approximation
\[\frac{d^2 u}{dx^2} \bigg|_x \approx \frac{u(x + \Delta x) - 2u(x) + u(x - \Delta x)}{\Delta x^2} \]
for the second derivative.
9.12. Write, compile, and test a program that asks for the input of a temperature in Celsius and prints out the corresponding temperature in Fahrenheit. To make it a bit more of a challenge, write the program in such a way that it asks repeatedly for Celsius temperatures until the temperature 9999 is entered, at which point the program terminates smoothly.

9.13. (a) Copy `laplace_file.f` from `$HEAD/fortran` to your directory, naming it `laplace15_file.f`. Then compile, link, and run `laplace15_file.f` to generate the file `laplace_f.dat`, which you should rename `laplace15_f.dat`.

(b) Produce the program `laplace29_file.f` by copying `laplace15_file.f` to the new file and editing the new file so that the program, when run, generates a solution on a 29×29 grid.

(c) Compile, link, and run `laplace29_file.f` and rename the output file to `laplace30_f.dat`.

(d) Import both `laplace15_f.dat` and `laplace30_f.dat` into an available program for graphical visualization and then

i. generate a graphical display of each solution, either a contour map in the xy plane or a surface plot over the xy plane (or perhaps both). In either case (or both cases), make sure the axes are labeled correctly with the proper coordinate values. Warning: This latter requirement is a bit subtle. Beware.

ii. develop a way to compare the two solutions at those grid points that are common to the two and display the differences graphically.

(e) Copy the file `laplace29_file.f` to a new name—your choice—and then edit that file so that the program it conveys monitors the change from one iteration to the next and displays on the screen the *maximum* absolute value of the change that occurs during the course of each iteration.

(f) Edit the last program again so that iteration is stopped when the maximum change falls below a tolerance that is specified as input when the program is run (or—to prevent infinite loops—when the number of iterations exceeds some maximum value). Arrange for the program to display the number of iterations carried out when the solution finally converges. Compile, link, and run this last program and explore the way the number of iterations varies with the tolerance specified. Was 300 iterations as a trial in the original programs vast overkill?

9.14. (a) Copy `laplace_file.c` from `$HEAD/cc` to your directory, naming it `laplace15_file.c`. Then compile, link, and run `laplace15_file.f` to generate the file `laplace_c.dat`, which you should rename `laplace15_c.dat`.

(b) Produce the program `laplace29_file.f` by copying `laplace15_file.f` to the new file and editing the new file so that the program, when run, generates a solution on a 29×29 grid.

(c) Compile, link, and run `laplace29_file.f` and rename the output file to `laplace30_f.dat`.

(d) Import both `laplace15_c.dat` and `laplace30_c.dat` into an available program for graphical visualization and then

i. generate a graphical display of each solution, either a contour map in the xy plane or a surface plot over the xy plane (or perhaps both). In either case (or both cases), make sure the axes are labeled correctly with the proper coordinate values. Warning: This latter requirement is a bit subtle. Beware.

ii. develop a way to compare the two solutions at those grid points that are common to the two and display the differences graphically.

(e) Copy the file `laplace29_file.c` to a new name—your choice—and then edit that file so that the program it conveys monitors the change from one iteration to the next and displays on the screen the *maximum* absolute value of the change that occurs during the course of each iteration.

(f) Edit the last program again so that iteration is stopped when the maximum change falls below a tolerance that is specified as input when the program is run (or—to prevent infinite loops—when the number of iterations exceeds some maximum value). Arrange for the program to display the number of iterations carried out when the solution finally converges. Compile, link, and run this last program and explore the way the number of iterations varies with the tolerance specified. Was 300 iterations as a trial in the original programs vast overkill?
9.15. Consider two circular current loops, each of radius a and lying with its center on and its plane perpendicular to the z axis. The first loop is centered at the point $(0,0,b)$ and the second loop is centered at the point $(0,0,-b)$. The axial component of the magnetic field at the point $(0,0,z)$ is given by the equation

$$B(z) = \frac{1}{2} B_0 \left(\frac{a^2 + b^2}{z} \right)^{3/2} \left[\frac{1}{(a^2 + (z+b)^2)^{3/2}} + \frac{1}{(a^2 + (z-b)^2)^{3/2}} \right]$$

where B_0 is the magnetic field at the origin. This field can be considered as a function not only of z, the coordinate of a point on the z axis, but also of b, (half) the separation of the two loops. Create a file conforming to the structure described in Section 9.3.2 and containing values of this function seen as a two-dimensional scalar function of z/a and b/a. Suggestion: Write values of B/B_0 into the file.

9.16. The trajectory of a particle in three-dimensional space is given parametrically as a function of time t by the position vector

$$r = x(t) \hat{i} + y(t) \hat{j} + z(t) \hat{k}$$

You desire to fathom out the general character of this trajectory by using a graphical visualization tool that does not have much computational capability. Thus, you must generate the data using one tool but will visualize the trajectory with another tool. You elect to use an ASCII file to communicate the data from the first tool to the second. Suppose that the ASCII file produced by the first tool is to be structured as follows:

- five lines of text describing the contents of the file and its origin,
- one line containing the number of points N on the trajectory included in the file, and
- N lines, each of which contains four floating point values separated by commas, those values being in order t, $x(t)$, $y(t)$, and $z(t)$ for a point on the trajectory. (The N lines are ordered by increasing value of t.)

Describe a general procedure to create this file and then implement that procedure in at least one language of your choice, testing your program(s) with the trajectory given by

$$r = \cos t \hat{i} + \sin t \hat{j} + 0.1 t \hat{k}$$

which describes the path followed by a charged particle in a constant magnetic field along the z axis.

9.17. Following the pattern illustrated in Section 9.13, use at least one language to create a file containing values for at least one of the three-dimensional scalar fields

$$p_{3.1.0}(x,y,z) = \frac{8}{(27)^2 \pi} \rho^2 \left(1 - \frac{\rho}{6} \right)^2 e^{-2\rho/3} \cos^2 \theta$$

$$p_{3.1.1}(x,y,z) = \frac{4}{(27)^2 \pi} \rho^2 \left(1 - \frac{\rho}{6} \right)^2 e^{-2\rho/3} \left(1 - \cos^2 \theta \right)$$

$$p_{3.2.1}(x,y,z) = \frac{3}{(27)^2 \pi} \rho^4 e^{-2\rho/3} \cos^2 \theta \left(1 - \cos^2 \theta \right)$$

$$p_{3.2.2}(x,y,z) = \frac{3}{(27)^2 \pi} \rho^4 e^{-2\rho/3} \left(1 - \cos^2 \theta \right)^2$$

giving the probability density for the hydrogen states $(n,l,m) = (3,1,0)$, $(n,l,m) = (3,1,1)$, $(n,l,m) = (3,2,1)$, and $(n,l,m) = (3,2,2)$. These fields are expressed in dimensionless form, where ρ is the radial coordinate in units of the Bohr radius. In terms of the Cartesian coordinates x,y,z, $\rho = \sqrt{x^2 + y^2 + z^2}$ and $\cos \theta = z/\rho$. Hint: To avoid divisions by zero, recast the expressions in terms of (x,y,z) explicitly before evaluating any of them.

9.18. The (gauge) pressure $p(x,y,z,t)$ inside a cubical box located in the region $0 \leq x,y,z \leq a$ is given by

$$p(x,y,z,t) = A \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{a} \sin \frac{m\pi z}{a} \cos \omega t$$
9.18. EXERCISES

235

9.19. A point charge of strength q is located on the y axis at $r_+ = a \mathbf{j}$ and a point charge of strength $-q$ is located on the y axis at $r_- = -a \mathbf{j}$. The electric field \mathbf{E} at the point $\mathbf{r} = x \mathbf{i} + y \mathbf{j}$ in the xy plane is given in mks units by

$$
\mathbf{E}(x, y) = \frac{q}{4\pi\epsilon_0} \left[\frac{x \mathbf{i} + (y - a) \mathbf{j}}{[x^2 + (y - a)^2]^{3/2}} - \frac{x \mathbf{i} + (y + a) \mathbf{j}}{[x^2 + (y + a)^2]^{3/2}} \right]
$$

Expressing coordinates in terms of the dimensionless variables $\bar{x} = x/a$ and $\bar{y} = y/a$ and measuring \mathbf{E} in the unit $q/(4\pi\epsilon_0 a^2)$, create a file conforming to the structure described in Section 9.3.2 and containing the x and y components of this field over the interval $-2a \leq x, y \leq 2a$. Divide the interval in each coordinate direction into about 25 segments, but choose the precise number carefully so as to avoid division by zero in evaluating the field at any point. Optional: Read your file into a suitable graphical display program and produce graphs showing the character of this field.

9.20. The velocity field of an object rotating about the z axis with angular momentum ω is given in terms of the angular velocity and the position vector \mathbf{r} by the expression

$$
\mathbf{v} = \omega \times \mathbf{r} = \omega \hat{\mathbf{k}} \times (x \mathbf{i} + y \mathbf{j} + z \mathbf{k}) = \omega(-y \mathbf{i} + x \mathbf{j})
$$

Choosing a unit of length a and expressing coordinates in units of a and velocities in units of ωa, create a file conforming to the structure described in Section 9.3.2 and containing the x and y components of this field over the interval $-2a \leq x, y \leq 2a$. Choose the number of divisions in each coordinate direction so as to generate a display which is neither too sparse to be useful nor too busy to be intelligible. Optional: Read your file into a suitable graphical display program and produce graphs showing the character of this field.

9.21. A point charge of strength q is located on the z axis at $r_+ = a \hat{\mathbf{k}}$ and a point charge of strength $-q$ is located on the z axis at $r_- = -a \hat{\mathbf{k}}$. The electric field \mathbf{E} at the point $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ is given in mks units by

$$
\mathbf{E}(x, y, z) = \frac{q}{4\pi\epsilon_0} \left[\frac{x \mathbf{i} + y \mathbf{j} + (z - a) \hat{\mathbf{k}}}{[x^2 + y^2 + (z - a)^2]^{3/2}} - \frac{x \mathbf{i} + y \mathbf{j} + (z + a) \hat{\mathbf{k}}}{[x^2 + y^2 + (z + a)^2]^{3/2}} \right]
$$

Expressing coordinates in terms of the dimensionless variables $\bar{x} = x/a$, $\bar{y} = y/a$, and $\bar{z} = z/a$ and measuring \mathbf{E} in the unit $q/(4\pi\epsilon_0 a^2)$, create a file conforming to the structure described in Section 9.3.2 and containing the x, y, and z components of this field over the interval $-2a \leq x, y, z \leq 2a$. Divide the interval in each coordinate direction into about 25 segments, but choose the precise number carefully so as to avoid division by zero in evaluating the field at any point. Optional: Read your file into a suitable graphical display program and produce graphs showing the character of this field.

9.22. Write and test a program to ask for the latitude and longitude of both a point of departure D and a point of arrival A on the surface of the earth and then calculate and print out the "crow-flies" distance along a great circle route from D to A. Make sure your program prints the shorter of the two distances, regardless of the location of the points, and make sure your program doesn’t run into difficulties if the two points happen to be at opposite ends of a diameter. Take the earth to be a perfect sphere with a circumference of 24900 miles (radius 3963 miles). For purposes of testing, note that Albany, NY, is at $43\degree40\prime$N, $73\degree45\prime$W; Grand Junction, CO, is at $39\degree55\prime$N, $108\degree33\prime$W; Los Angeles, CA, is at $34\degree3\prime$N, $118\degree15\prime$W; Appleton, WI, is at $44\degree16\prime$N, $88\degree25\prime$W; Calcutta India, is at $22\degree32\prime$N, $88\degree20\prime$E; Sydney, Australia, is at $33\degree52\prime$S, $151\degree12\prime$E; Paris, France, is at $48\degree49\prime$N, $2\degree29\prime$E; and Stockholm, Sweden, is at $59\degree21\prime$N, $18\degree4\prime$E.
9.A Listing of irrad.f

PROGRAM IRRAD

PARAMETER(NARR = 1, IX = 50, IY = 50, IZ = 1)

! ***** DIMENSION VARIABLES, EVALUATE CONSTANTS *****

DIMENSION RI(IX, IY) ! For irradiance
THREEPI = 3.0*3.1415926535 ! Set constant
DX = 2.0*THREEPI/(IX-1.0) ! Set increments
DY = DX

! ***** EVALUATE IRRADIANCE *****

DO J = 1, IY
 YF = (J-1)*DY - THREEPI
 DO I = 1, IX
 XF = (I-1)*DX - THREEPI
 RI(I,J) = ((SIN(XF)/XF)**2) * ((SIN(YF)/YF)**2)
 END DO
END DO

! ***** OPEN FILE FOR WRITING, WRITE HEADING LINES TO FILE *****

OPEN(UNIT = 1, FILE = 'irrad_f.dat', STATUS = 'NEW')
WRITE(UNIT = 1, FMT = 10)
10 FORMAT(' Irradiance; Author: David M. Cook; Date: 15 June 1995')
WRITE(UNIT = 1, FMT = 20)
20 FORMAT(' Fraunhofer diffraction at square aperture')
WRITE(UNIT = 1, FMT = 30)
30 FORMAT(' Program described in CPSUP')
WRITE(UNIT = 1, FMT = 40)
40 FORMAT(' **')
WRITE(UNIT = 1, FMT = 50)
50 FORMAT(' **')
WRITE(UNIT = 1, FMT = *) NARR
WRITE(UNIT = 1, FMT = *) IX
WRITE(UNIT = 1, FMT = *) IY
WRITE(UNIT = 1, FMT = *) IZ

! ***** WRITE IRRADIANCE TO FILE, CLOSE FILE *****

DO J = 1, IY
 DO I = 1, IX
 WRITE(UNIT = 1, FMT = *) RI(I, J)
 END DO
END DO
CLOSE(UNIT = 1)

END
9.B Listing of irrad.c

/* PROGRAM irrad.c */

/* The details of this program are described in CPL-620. */

#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math routines */
#define narr 1 /* Set number of arrays */
#define xdim 50 /* Set dimensions: 50x50x1 */
#define ydim 50
#define zdim 1

main()
{

/***** DECLARE VARIABLES, EVALUATE CONSTANTS *****/

FILE *fptr; /* For file pointer */
float I[xdim][ydim]; /* For irradiance */
float xf, yf; /* For coordinates */
float dx, dy; /* For increments */
float threepi; /* For constant */
int x, y; /* For loop control */

threepi = 3.0*3.1415926535; /* Set constant */
dx = 2.0*threepi/(xdim-1.0); /* Set increments */
dy = dx;

/***** EVALUATE IRRADIANCE *****/

for(y=0; y<ydim; y++)
{
 yf = y*dy - threepi;
 for(x=0; x<xdim; x++)
 {
 xf = x*dx - threepi;
 I[x][y] = pow(sin(xf)/xf, 2.0) * pow(sin(yf)/yf, 2.0);
 }
}

/***** OPEN FILE IN WRITE MODE; GET POINTER *****/

fptr = fopen("irrad_c.dat", "w");

/***** WRITE HEADING LINES TO FILE *****/

fprintf(fptr, "Irradiance; Author: David M. Cook; Date: 15 June 1995\n");
fprintf(fptr, "Fraunhofer diffraction at square aperture\n");
fprintf(fptr, "Program described in CPSUP\n");
fprintf(fptr, "\n\n\n\n%d\n\n%d\n\n", narr, xdim);
fprintf(fptr, "%d\n", ydim);
fprintf(fptr, "%d\n", zdim);

/***** WRITE IRRADIANCE TO FILE *****/

for(y=0; y<ydim; y++)
{
 for(x=0; x<xdim; x++)
 {
 fprintf(fptr, "%e\n", I[x][y]);
 }
}

/***** CLOSE FILE *****/

fclose(fptr);

9.C Listing of irrad.py

irrad.py

import numpy as np # Import needed package
narr = 1; ix = 50; iy = 50; iz = 1 # Set dimensions
I = np.zeros((ix,iy)) # Prepare array for irradiance
threepi = 3.0*np.pi # Set constant
dx = 2.0*threepi/(ix-1.0) # Set increments
dy = dx

for j in np.arange(iy): # Evaluate irradiience
 yf = j*dy - threepi
 for i in np.arange(ix):
 xf = i*dx - threepi
 I[i,j] = (np.sin(xf)/xf)**2 * (np.sin(yf)/yf)**2

***** Open file for writing and write initial lines *****

f = open('irrad_python.dat', 'w')
f.write('Irradiance; Author: David M. Cook; Date: 30 August 2018\n')
f.write('Fraunhofer diffraction at square aperture\n')
f.write('Program described in CPSUP\n')
f.write('****** Open file for writing and write initial lines *****\n')
f.write(str(narr)+'\n')
f.write(str(ix)+'\n')
f.write(str(iy)+'\n')
f.write(str(iz)+'\n')

***** Write irradiience to file, one value per line *****

for j in np.arange(iy):
 for i in np.arange(ix):
 f.write(str(I[i,j]) + '\n')

***** Close file *****

f.close()
9.D Listing of pdens.f

PROGRAM PDENS

PARAMETER(NARR=1, IX=30, IY=30, IZ=30)
PARAMETER(XRANGE=20.0, YRANGE=20.0, ZRANGE=20.0)
PARAMETER(X0=-10.0, Y0=-10.0, Z0=-10.0)

!****** DIMENSION VARIABLES; EVALUATE CONSTANTS ******

DIMENSION P(IX, IY, IZ) ! For probability density

TWOPI = 2.0*3.1415926536 ! Set other constants
PFACTOR = 1/(TWOPI*(27.0*27.0*27.0))
DX = XRANGE/(IX-1.0) ! Set increments
DY = YRANGE/(IY-1.0)
DZ = ZRANGE/(IZ-1.0)

!****** EVALUATE PROBABILITY DENSITY ******

DO K = 1, IZ
 ZF = (K-1)*DZ + Z0
 ZFS = ZF*ZF
 DO J = 1, IY
 YF = (J-1)*DY + Y0
 YFS = YF*YF
 DO I = 1, IX
 XF = (I-1)*DX + X0
 XFS = XF*XF
 RHOS = XF*XF + YF*YF + ZF*ZF
 RHO = SQRT(RHOS)
 P(I,J,K) = PFACTOR * EXP(-2.0*RHO/3.0) *
 (9.0*ZFS*ZFS - 6.0*ZFS*RHOS + RHOS*RHOS)
 END DO
 END DO
END DO

!****** OPEN FILE FOR WRITING ******

OPEN(UNIT = 1, FILE = 'pdens_f.dat', STATUS = 'NEW')

!****** WRITE HEADING LINES TO FILE ******

WRITE(UNIT = 1, FMT = 10)
10 FORMAT(' Prob. Dens.; Author: Michael Stenner; Date: 6/21/95')
WRITE(UNIT = 1, FMT = 20)
20 FORMAT(' The probability density for the electron in the')
WRITE(UNIT = 1, FMT = 30)
30 FORMAT(' (n,l,m) = (3,2,0) state in the hydrogen atom.')
WRITE(UNIT = 1, FMT = 40)
40 FORMAT(' Program described in CPSUP')
WRITE(UNIT = 1, FMT = 50)
50 FORMAT(' **')
WRITE(UNIT = 1, FMT = *) NARR
9.D. LISTING OF PDENS.F

WRITE(UNIT = 1, FMT = *) IX
WRITE(UNIT = 1, FMT = *) IY
WRITE(UNIT = 1, FMT = *) IZ

!***** WRITE PROBABILITY DENSITY TO FILE *****

DO K = 1, IZ
 DO J = 1, IY
 DO I = 1, IX
 WRITE(UNIT = 1, FMT = *) P(I,J,K)
 END DO
 END DO
END DO

!***** CLOSE FILE *****

CLOSE(UNIT = 1)

END
9.E Listing of pdens.c

/* PROGRAM pdens.c */

/* The details of this program are described in CPL-620. */

#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math routines */
#define narr 1 /* Set number of arrays */
#define xdim 30 /* Set dimensions: 30x30x30 */
#define ydim 30
#define zdim 30
#define twopi 6.28321853 /* Set 2*pi */
#define xrange 20.0 /* Set length of interval in x */
#define yrange 20.0 /* Set length of interval in y */
#define zrange 20.0 /* Set length of interval in z */
#define x0 -10.0 /* Set starting value of x */
#define y0 -10.0 /* Set starting value of y */
#define z0 -10.0 /* Set starting value of z */

main()
{

/***** DECLARE VARIABLES; EVALUATE CONSTANTS *****/

FILE *fptr; /* For file pointer */
float P[xdim][ydim][zdim]; /* For probability density */
float xf, yf, zf; /* For coordinates */
float dx, dy, dz; /* For increments */
float xs, ys, zs; /* For x^2, y^2, z^2 */
float rho, rhos; /* For radial coordinate */
float pfactor; /* For constant */
int x, y, z; /* For loop control */

pfactor = 1.0/(twopi*27.0*27.0*27.0); /* Set constant */

dx = xrange/(xdim - 1.0); /* Set increments */

dy = yrange/(ydim - 1.0);

dz = zrange/(zdim - 1.0);

/***** EVALUATE PROBABILITY DENSITY *****/

for(z=0; z<zdim; z++)
{
 zf = z * dz + z0;
 zs = zf*zf;
 for(y=0; y<yd; y++)
 {
 yf = y * dy + y0;
 ys = yf*yf;
 for(x=0; x<xd; x++)
 {
 xf = x * dx + x0;
 xs = xf*xf;
 }
 }
}
rhos = xs + ys + zs;
rho = sqrt(rhos);
P[x][y][z] = pfactor * exp(-2.0*rho/3.0) *
(9*zs*zs - 6*zs*rhos + rhos*rhos);
}
}
}

/***** OPEN FILE IN WRITE MODE; GET POINTER *****/
fptr = fopen("pdens_c.dat", "w");

/***** WRITE HEADING LINES TO FILE *****/
fprintf(fptr, "Probability density; Author: Chris Schmidt;");
fprintf(fptr, " Date: 26 June 1995\n");
fprintf(fptr, "The probability density for the electron in the\n");
fprintf(fptr, "(n,l,m) = (3,2,0) state in the hydrogen atom.\n");
fprintf(fptr, "Program described in CPSUP\n");
fprintf(fptr, "**\n");
fprintf(fptr, "%d\n", narr);
fprintf(fptr, "%d\n", zdim);
fprintf(fptr, "%d\n", ydim);
fprintf(fptr, "%d\n", xdim);

/***** WRITE PROBABILITY DENSITY TO FILE *****/
for(z=0; z<zdim; z++)
{
 for(y=0; y<ydim; y++)
 {
 for(x=0; x<xdim; x++)
 {
 fprintf(fptr, "%e\n", P[x][y][z]);
 }
 }
}

/***** CLOSE FILE *****/
fclose(fptr);
}
Listing of pdens.py

```python
# pdens.py

# ***** Preliminaries *****
import numpy as np  # Import needed package
narr = 1; xdim = 30  # Set dimensions
ydim = 30; zdim = 30

twopi = 2.0*np.pi  # Set constant
xrange=20; yrange=20; zrange=20  # Set lengths of intervals
x0=-10.0; y0=-10.0; z0=-10.0  # Set starting values of x,y,z

dx = xrange/(xdim-1.0)  # Set increments
dy = yrange/(ydim-1.0)
dz = zrange/(zdim-1.0)

pfactor = 1.0/(twopi*27.0**3)  # Evaluate constant
P = np.zeros( (xdim,ydim,zdim) )  # Prepare array for values

# ***** Evaluate probability density *****
for iz in np.arange(zdim):
    zf = iz * dz + z0
    zs = zf**2
    for iy in np.arange(ydim):
        yf = iy * dy + y0
        ys = yf**2
        for ix in np.arange(xdim):
            xf = ix * dx + x0
            xs = xf**2
            rhos = xs + ys + zs
            rho = np.sqrt(rhos);
            P[ix,iy,iz] = pfactor * np.exp( -2.0*rho/3.0 ) * \
                          ( 9*zs*zs - 6*zs*rhos + rho*rhos )

# ***** Open file in write mode, get file ID *****

f = open( 'pdens_python.dat', 'w' )

# ***** Write heading lines to file *****

f.write( 'Probability density; Author: David M. Cook;' )
f.write( ' Date: 31 August 2018\n' )
f.write( 'The probability density for the electron in the
' )
f.write( '(n,l,m) = (3,2,0) state in the hydrogen atom.
' )
f.write( 'Program described in CPSUP\n' )
f.write( '**\n' )

f.write( str(narr)+'\n' )

f.write( str(zdim)+'\n' )

f.write( str(ydim)+'\n' )

f.write( str(xdim)+'\n' )

# ***** Write probability density to file; close file *****

f.write( str(narr)+'\n' )
f.write( str(zdim)+'\n' )
f.write( str(ydim)+'\n' )
f.write( str(xdim)+'\n' )
```

244 CHAPTER 9. INTRODUCTION TO PROGRAMMING

9.F Listing of pdens.py
for iz in np.arange(zdim):
 for iy in np.arange(ydim):
 for ix in np.arange(xdim):
 f.write(str(P[ix,iy,iz]) + '\n')

f.close()
9.G Listing of wavegd.f

PROGRAM WAVEGD

PARAMETER(NARR = 3, IX = 30, IY = 30, IZ = 1)

!***** DIMENSION VARIABLES; EVALUATE CONSTANTS *****

DIMENSION H(IX, IY, IZ, NARR) ! For field components

TWOPI = 2.0*3.1415926535 ! Set constant
DX = TWOPI/(IX-1.0) ! Set increments
DY = DX

!***** EVALUATE FIELD COMPONENTS *****

DO I = 1, IX
 XF = (I-1)*DX
 SXF = SIN(XF)
 CXF = COS(XF)
 DO J = 1, IY
 YF = (J-1)*DY
 SYF = SIN(YF)
 CYF = COS(YF)
 H(I,J,1,1) = SXF * CYF ! Hx
 H(I,J,1,2) = -CXF * SYF ! Hy
 H(I,J,1,3) = -H(I,J,1,2) ! Ez
 END DO
END DO

!***** OPEN FILE FOR WRITING *****

OPEN(UNIT = 1, FILE = 'wavegd_f.dat', STATUS = 'NEW')

!***** WRITE HEADING LINES TO FILE *****

WRITE(UNIT = 1, FMT = 10)
10 FORMAT(' Waveguide; Author: David M. Cook; Date: 15 June 1995')
WRITE(UNIT = 1, FMT = 20)
20 FORMAT(' H and E fields in rectangular waveguide')
WRITE(UNIT = 1, FMT = 30)
30 FORMAT(' Program described in CPSUP')
WRITE(UNIT = 1, FMT = 40)
40 FORMAT(' **')
WRITE(UNIT = 1, FMT = 50)
50 FORMAT(' **')
WRITE(UNIT = 1, FMT = *) NARR
WRITE(UNIT = 1, FMT = *) IX
WRITE(UNIT = 1, FMT = *) IY
WRITE(UNIT = 1, FMT = *) IZ

!***** WRITE FIELD COMPONENTS TO FILE *****

WRITE(UNIT = 1, FMT = *) H(I,J,1)
! Write H to file
DO N = 1, NARR
 DO J = 1, IY
 DO I = 1, IX
 WRITE(UNIT = 1, FMT = *) H(I,J,1,N)
 END DO
 END DO
END DO

!***** CLOSE FILE *****

CLOSE(UNIT = 1)

END
CHAPTER 9. INTRODUCTION TO PROGRAMMING

9.H Listing of wavegd.c

/* PROGRAM wavegd.c */

/* The details of this program are described in CPL-620. */

#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math routines */
#define narr 3 /* Set number of arrays */
#define xdim 30 /* Set dimensions: 30x30x1 */
#define ydim 30
#define zdim 1

main()
{

/***** DECLARE VARIABLES; EVALUATE CONSTANTS *****/

FILE *fptr; /* For file pointer */
float H[xdim][ydim][zdim][narr]; /* For H */
float xf, yf; /* For coordinates */
float sx, cf, sy, cy; /* For sin, cos */
float dx, dy; /* For increments */
int n, x, y; /* For loop control */
int twopi; /* For constant */

twopi = 2.0*3.1415926535; /* Set constant */
dx = twopi/(xdim-1.0); /* Set increments */
dy = dx;

/***** EVALUATE FIELD COMPONENTS *****/

for(x=0; x<xdim; x++)
{
 xf = x*dx;
sx = sin(xf);
cf = cos(xf);
 for(y=0; y<ydim; y++)
 {
 yf = y*dy;
sy = sin(yf);
cy = cos(yf);
 H[x][y][0][0] = sx * cy; /* Hx */
 H[x][y][0][1] = -cf * sy; /* Hy */
 H[x][y][0][2] = -H[x][y][0][1]; /* Ez */
 }
}

/***** OPEN FILE IN WRITE MODE; GET POINTER *****/

fptr = fopen("wavegd_c.dat", "w");

/***** WRITE HEADING LINES TO FILE *****/
fprintf(fptr, "Waveguide; Author: David M. Cook; Date: 15 June 1995\n");
fprintf(fptr, "H and E fields in rectangular waveguide\n");
fprintf(fptr, "Program described in CPSUP\n");
fprintf(fptr, "\n\n");
fprintf(fptr, "%d\n", narr);
fprintf(fptr, "%d\n", xdim);
fprintf(fptr, "%d\n", ydim);
fprintf(fptr, "%d\n", zdim);

/***** WRITE FIELD TO FILE *****/

for(n=0; n<narr; n++)
{
 for(y=0; y<ydim; y++)
 {
 for(x=0; x<xdim; x++)
 {
 fprintf(fptr, "%e\n", H[x][y][0][n]);
 }
 }

/***** CLOSE FILE *****/

fclose(fptr);
}
wavegd.py

***** Preliminaries *****

```python
import numpy as np  # Import needed package
narr = 3  # Set number of arrays
xdim = 30; ydim = 30; zdim = 1  # Set dimensions: 30x30x1
twopi = 2.0*np.pi  # Set constant
dx = twopi/(xdim-1.0)  # Set increments
dy = dx
H=np.zeros((xdim,ydim,zdim,narr))  # Prepare for values
```

***** Evaluate field components *****

```python
for ix in np.arange(xdim):
    xf = ix*dx; sxf = np.sin(xf); cxf = np.cos(xf)
    for iy in np.arange(ydim):
        yf = iy*dy; syf = np.sin(yf); cyf = np.cos(yf)
        H[ix,iy,0,0] = sxf * cyf
        H[ix,iy,0,1] = -cxf * syf
        H[ix,iy,0,2] = -H[ix,iy,0,1]
```

***** Open file in write mode, get file ID *****

```python
f = open( 'wavegd_python.dat', 'w' )
```

***** Write heading lines to file *****

```python
f.write( 'Waveguide; Author: David M. Cook; Date: 31 August 2018
');
f.write( 'H and E fields in rectangular waveguide
');
f.write( 'Program described in CPSUP
');
f.write( '**
');
f.write( '**
');
f.write( str(narr)+'
' )
f.write( str(xdim)+'
' )
f.write( str(ydim)+'
' )
f.write( str(zdim)+'
' )
```

***** Write field to file; close file *****

```python
for n in np.arange(narr):
    for iy in np.arange(ydim):
        for ix in np.arange(xdim):
            f.write( str(H[ix,iy,0,n])+'
' )
```

```python
f.close()
```
9.J Listing of quadpole.f

PROGRAM QUADPOLE

PARAMETER(NARR=3, IX=30, IY=30, IZ=30)
PARAMETER(X RANGE=4.0, Y RANGE=4.0, Z RANGE=4.0)
PARAMETER(X0=-2.0, Y0=-2.0, Z0=-2.0)

***** DIMENSION VARIABLES; EVALUATE CONSTANTS *****

DIMENSION E(IX, IY, IZ, NARR) ! For electric field
DX = XRANGE/(IX-1.0) ! Set increments
DY = YRANGE/(IY-1.0)
DZ = ZRANGE/(IZ-1.0)

***** EVALUATE ELECTRIC FIELD *****

DO K = 1, IZ
 ZF = (K-1)*DZ + Z0
 ZFS = ZF*ZF
 DO J = 1, IY
 YF = (J-1)*DY + Y0
 YFM = YF - 1.0
 YFP = YF + 1.0
 YFMS = YFM*YFM
 YFPS = YFP*YFP
 DO I = 1, IX
 XF = (I-1)*DX + X0
 XFM = XF - 1.0
 XFP = XF + 1.0
 XFMS = XFM*XFM
 XFPS = XFP*XFP
 RMM = (XFMS + YFMS + ZFS)**1.5
 RMP = (XFMS + YFPS + ZFS)**1.5
 RPP = (XFPS + YFPS + ZFS)**1.5
 RPM = (XFPS + YFMS + ZFS)**1.5
 E(I,J,K,1) = XFM * (1.0/RMM - 1.0/RMP) + XFP * (1.0/RPP - 1.0/RPM) ! Ex
 E(I,J,K,2) = YFM * (1.0/RMM - 1.0/RPM) + YFP * (1.0/RPP - 1.0/RPM) ! Ey
 E(I,J,K,3) = ZF * (1.0/RMM - 1.0/RMP) + 1.0/RPP - 1.0/RPM) ! Ez
 END DO
 END DO
END DO

! OPEN FILE FOR WRITING *****

OPEN(UNIT = 1, FILE = 'quadpole_f.dat', STATUS = 'NEW')

! WRITE HEADING LINES TO FILE *****

WRITE(UNIT = 1, FMT = 10)
10 FORMAT(Quadpole.; Author: Michael Stenner; Date: 6/26/95')
WRITE(UNIT = 1, FMT = 20)
20 FORMAT(' The electric field of a quadrupole with charges of +1')
WRITE(UNIT = 1, FMT = 30)
30 FORMAT(' at (1,1) and (-1,-1) and charges of -1 at (1,-1) and')
WRITE(UNIT = 1, FMT = 40)
40 FORMAT(' (-1,1). Values are dimensionless vectors. N=1 denotes')
WRITE(UNIT = 1, FMT = 50)
50 FORMAT(' x components; N=2, y components; and N=3, z components')
WRITE(UNIT = 1, FMT = *) NARR
WRITE(UNIT = 1, FMT = *) IX
WRITE(UNIT = 1, FMT = *) IY
WRITE(UNIT = 1, FMT = *) IZ

!***** WRITE ELECTRIC FIELD TO FILE *****

DO N = 1, NARR
 DO K = 1, IZ
 DO J = 1, IY
 DO I = 1, IX
 WRITE(UNIT = 1, FMT = *) E(I,J,K,N)
 END DO
 END DO
 END DO
END DO

!***** CLOSE FILE *****

CLOSE(UNIT = 1)
9.K Listing of quadpole.c

/* PROGRAM quadpole.c */

/* The details of this program are described in CPL-620. */

#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math routines */
#define narr 3 /* Set number of arrays */
#define xdim 30 /* Set dimensions: 30x30x3 */
#define ydim 30
#define zdim 30
#define xrange 4.0 /* Set length of interval in x */
#define yrange 4.0 /* Set length of interval in y */
#define zrange 4.0 /* Set length of interval in z */
#define x0 -2.0 /* Set starting value of x */
#define y0 -2.0 /* Set starting value of y */
#define z0 -2.0 /* Set starting value of z */

main()
{
 FILE *fptr; /* For file pointer */
 float E[30][30][30][3]; /* For electric field */
 float xf, yf, zf; /* For coordinates */
 float dx, dy, dz; /* For increments */
 float xfm, xfp, yfm, yfp; /* For x+1, x-1, etc. */
 float xfms, xfps, yfms, yfps, zfs; /* For (x+1)^2, (x-1)^2, etc. */
 float rmm, rmp, rpm, rpp; /* For denominators */
 int n, x, y, z; /* For loop control */
 dx = xrange/(xdim - 1.0); /* Set increments */
 dy = yrange/(ydim - 1.0);
 dz = zrange/(zdim - 1.0);

 /***** EVALUATE ELECTRIC FIELD *****/

 for (z=0; z<zdim; z++)
 {
 zf = z * dz + z0;
 zfs = zf*zf;
 for (y=0; y<ydim; y++)
 {
 yf = y * dy + y0;
 yfm = yf - 1.0;
 yfp = yf + 1.0;
 yfms = yfm*yfm;
 yfps = yfp*yfp;
 for (x=0; x<xdim; x++)
 {
 xf = x * dx + x0;
 xfm = xf - 1.0;
 xfp = xf + 1.0;
 xfms = xfm*xfm;
 /* Remaining code... */
 }
 }
 }
}
xfps = xfp*xfp;
rm = pow(xfms + yfms + zfs, 1.5);
rmp = pow(xfms + yfps + zfs, 1.5);
rmp = pow(xfps + yfms + zfs, 1.5);
E[x][y][z][0] = xfm*(1.0/rmm - 1.0/rmp) /* Ex */
 + xfp*(1.0/rpp - 1.0/rpm);
E[x][y][z][1] = yfm*(1.0/rmm - 1.0/rmp) /* Ey */
 + yfp*(1.0/rpp - 1.0/rpm);
E[x][y][z][2] = zf*(1.0/rmm - 1.0/rmp /* Ez */
 + 1.0/rpp - 1.0/rpm);
}
}

/************************ OPEN FILE IN WRITE MODE; GET POINTER ****************************/

fptr = fopen("quadpole_c.dat", "w");

/************************ WRITE HEADING LINES TO FILE ****************************/

fprintf(fptr, "Quadrapole; Author: Chris Schmidt;");
fprintf(fptr, " Date: 27 June 1995\n");
fprintf(fptr, "The electric field from 4 point charges positioned\n");
fprintf(fptr, "on the corners of a square.\n");
fprintf(fptr, "Program described in CPSUP\n");
fprintf(fptr, "**\n");
fprintf(fptr, "%d\n", narr);
fprintf(fptr, "%d\n", zdim);
fprintf(fptr, "%d\n", ydim);
fprintf(fptr, "%d\n", xdim);

/************************ WRITE ELECTRIC FIELD TO FILE ****************************/

for(n=0; n<narr; n++)
{
 for(z=0; z<zdim; z++)
 {
 for(y=0; y<ydim; y++)
 {
 for(x=0; x<xdim; x++)
 {
 fprintf(fptr, "%e\n", E[x][y][z][n]);
 }
 }
 }
}

/************************ CLOSE FILE ****************************/

fclose(fptr);
quadpole.py

import numpy as np # Import needed packages
narr = 3 # Set number of arrays
xdim=30; ydim=30; zdim=30 # Set dimensions: 30x30x3
xrange=4.0 # Set length of intervals
yrange=4.0
zrange=4.0
x0=-2.0; y0=-2.0; z0=-2.0 # Set starting values of x,y,z
E=np.zeros((xdim,ydim,zdim,narr)) # Set increments
dx = xrange/(xdim - 1.0);
dy = yrange/(ydim - 1.0);
dz = zrange/(zdim - 1.0);

***** Evaluate electric field *****

for z in np.arange(zdim):
zf = z * dz + z0; zfs = zf**2
for y in np.arange(ydim):
yf = y * dy + y0; yfm = yf - 1.0; yfp = yf + 1.0
yfms = yfm**2; yfps = yfp**2
for x in np.arange(xdim):
xf = x * dx + x0; xfm = xf - 1.0; xfp = xf + 1.0
xfms = xfm**2; xfps = xfp**2
rmm = (xfms + yfms + zfs)**1.5
rpm = (xfms + yfms + zfs)**1.5
rpp = (xfps + yfps + zfs)**1.5
rpm = (xfps + yfms + zfs)**1.5
E[x,y,z,0] = xfm*(1.0/rmm - 1.0/rmp)
+ xfp*(1.0/rpp - 1.0/rmp)
E[x,y,z,1] = yfm*(1.0/rmm - 1.0/rpm)
+ yfp*(1.0/rpp - 1.0/rmp)
E[x,y,z,2] = zf*(1.0/rmm - 1.0/rmp)
+ 1.0/rpp - 1.0/rmp

***** Open file in write mode; get ID *****

f = open('quadpole_python.dat', 'w')

***** Write heading lines to file *****

f.write('Quadrapole; Author: David M. Cook;')
f.write(' Date: 31August 2018\n'
)f.write('The electric field from 4 point charges positioned
')
f.write('on the corners of a square.\n')
f.write('Program described in CPSUP\n')
f.write('**\n'
)
f.write(str(narr)+'\n')
f.write(str(zdim)+'\n')
f.write(str(ydim)+'\n')
f.write(str(xdim)+'\n')
***** Write field components to file; close file *****

for n in np.arange(narr):
 for z in np.arange(zdim):
 for y in np.arange(ymid):
 for x in np.arange(xdim):
 f.write(str(E[x,y,z,n])+'\n')

f.close()
9.M Listing of read_irrad.f

PROGRAM READ_IRRAD

C This program reads the file irrad_f.dat containing data on the
C irradiance produced in the diffraction pattern of a rectangular
C aperture. The file contains a single 50x50 array, but that
C array is viewed as a four-dimensional array having dimensions
C 50x50x1x1.

C ***** Set variables to store comments, array *****

CHARACTER*120 LN1, LN2, LN3, LN4, LN5
DIMENSION RI(50, 50, 1, 1)

C ***** Open file for reading; read comments and dimensions *****

OPEN(UNIT = 1, FILE = 'irrad_f.dat', STATUS = 'OLD')
READ(UNIT=1, FMT='(A)') LN1
READ(UNIT=1, FMT='(A)') LN2
READ(UNIT=1, FMT='(A)') LN3
READ(UNIT=1, FMT='(A)') LN4
READ(UNIT=1, FMT='(A)') LN5
READ(UNIT=1, FMT='*') NARR, IX, IY, IZ

C ***** Read array in proper order; close file *****

DO N = 1, NARR
 DO K = 1, IZ
 DO J = 1, IY
 DO I = 1, IX
 READ(UNIT=1, FMT='*') RI(I,J,K,N)
 END DO
 END DO
 END DO
END DO
CLOSE(UNIT = 1)

C ***** Coding that processes the array as desired would then follow
C at this point in the program.

END
9.N Listing of read_irrad.c

/* PROGRAM read_irrad.c */
/* This program reads the file irrad_c.dat containing data on the */
/* irradiance produced in the diffraction pattern of a rectangular */
/* aperture. The file contains a single 50x50 array, but that */
/* array is viewed as a four-dimensional array having dimensions */
/* 50x50x1x1. */

#include <stdio.h>
#include <math.h>

main()
{
 FILE *fptr; /* For file pointer */
 char ln1[120], ln2[120], ln3[120]; /* For comments */
 char ln4[120], ln5[120]; /* For dimensions of array */
 int narr, ix, iy, iz; /* For dimensions of array */
 int n, i, j, k; /* For loop indices */
 float I[50][50][1][1]; /* For array */

 fptr = fopen("irrad_c.dat", "r"); /* Open file */

 fgets(ln1, 120, fptr); /* Read comment lines */
 fgets(ln2, 120, fptr);
 fgets(ln3, 120, fptr);
 fgets(ln4, 120, fptr);
 fgets(ln5, 120, fptr);

 fscanf(fptr, "%d%d%d%d", &narr,&ix,&iy,&iz); /* Read dimensions */

 for(n=0; n<narr; n++) /* Read data for array */
 for(k=0; k<iz; k++)
 for(j=0; j<iy; j++)
 for(i=0; i<ix; i++)
 fscanf(fptr, "%g", &I[i][j][k][n]);

 fclose(fptr); /* Close file */

 /* Coding that processes the array as desired would then follow */
 /* at this point in the program. */
}

9.O Listing of read_irrad.py

read_irrad.py

import numpy as np # Import needed package

***** Open file, read past five comment lines *****
f = open('irrad_python.dat', 'r')
ln1=f.readline(); ln2=f.readline(); ln3=f.readline()
ln4=f.readline(); ln5=f.readline()

***** Read controlling parameters; convert to integers *****
narr=int(f.readline())
ix=int(f.readline()); iy=int(f.readline()); iz=int(f.readline())

***** Create for data; read data; close file *****
I = np.zeros((ix,iy))
for j in np.arange(iy):
 for i in np.arange(ix):
 I[i,j] = float(f.readline())
f.close()
Chapter 10

Introduction to Numerical Recipes

The Numerical Recipes package1,2 contains numerous subroutines implementing a wide variety of numerical algorithms and provides a valuable and time-saving starting point for the writing of programs to carry out almost any numerical analysis. Some programming knowledge in FORTRAN or C is prerequisite to successful use of the recipes. In this chapter, we provide basic information about the way the files in the package are stored, and we illustrate how to use those files. Additional applications are described in subsequent chapters. These several discussions, however, are in no way intended to comprise the ultimate document on the usage of the recipes. Full documentation is contained in two source books: \textit{Numerical Recipes: The Art of Scientific Computing} (hereafter referred to as the main source book) and \textit{Numerical Recipes: Example Book} (the example source book).3 These books describe not only the various methods and routines employed by the recipes but also the mathematical theory behind them. A pair of books exists for each of several programming languages. In the second edition, FORTRAN (both 77 and 90), C, and C++ are supported.4

10.1 The Numerical Recipes Directory Tree

The hundreds of files that make up the Numerical Recipes package are stored in a directory tree whose head is $\$NRHEAD$.5 As illustrated in Fig. 10.1, the full tree contains three subdirectories named \texttt{recipes.f}, \texttt{recipes.c-ansi}, and \texttt{recipes.c-kr}, though not all of these subdirectories will be present at every site. Each of these subdirectories in turn contains several (sub)subdirectories, the most significant of which are named \texttt{recipes}, \texttt{demo}, and (for the C directories) \texttt{include}. Further, the directory \texttt{demo} contains several still lower level directories, including \texttt{data} and \texttt{src}. For each language,

- The directory $\$NRHEAD/\texttt{recipes_language/recipes}$ contains all of the recipes themselves.
 These recipes are described in detail in the main source books.

1The Numerical Recipes package is a commercial product marketed by Numerical Recipes Software, Cambridge, MA, 02238, and by Cambridge University Press. (See Appendix Z for full contact information.) Its use at any particular site is subject to the provisions of whatever license that site has negotiated with Numerical Recipes Software. The terms of that license are explained in the \textit{Local Guide}.

2The names and calling sequences of the recipes are copyrighted by Numerical Recipes Software and are used in this book with permission of Numerical Recipes Software.

3These reference works are published by Cambridge University Press; the authors are William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

4Other languages, including Pascal, LISP, Modula2, and some versions of BASIC, are still available in the first edition. The third edition, which is not described in this chapter, is the current edition—even though it supports only C++.

5See the \textit{Local Guide} for the translation of this symbol at your site.
The directory $NRHEAD/recipes$ contains many demonstration programs, which illustrate how to construct driving programs to use nearly every recipe in the recipes subdirectories. These programs can be used as they stand, or they can be used as a starting point for the writing of customized driving programs. They are described in the example source books.

- The directory $NRHEAD/recipes/demo/data$ contains the data files needed by a few of the demonstration programs.

- The directories $NRHEAD/recipes/include$ in the C libraries contain header and include files that are needed by some of the C recipes.

When use of a numerical recipe is appropriate, we should first peruse the main source book for a recipe accomplishing the desired task. Then, to develop a "feel" for how the recipe is used, we should examine the listing of the corresponding demonstration program. Finally, we should compile and run that demonstration program in its library form. Only then are we ready to adapt the demonstration program (and perhaps the recipe itself) to our specific purposes. In the remainder of this chapter, we illustrate the process by which the library form of a particular recipe and its associated demonstration program can be compiled and run. Later chapters illustrate how to use one or another recipe for more specific numerical analysis.

10.2 Using FORTRAN Recipes

In FORTRAN, the files in the FORTRAN-77 subdirectory recipes.f/recipes have names with filetype .f (or .for for some operating systems) and those in the FORTRAN-90 subdirectory recipes.f-90/recipes have names with filetype .f90. The name of the demonstration program in the subdirectory demo/src is obtained from the name of the associated recipe by prefixing an x (presumably derived from the ‘x’ in ‘example’). Thus, for example, the first recipe found in the main source books—a recipe that calculates the dates of occurrence of the phases of the moon—is called flmoon and is stored in a file named flmoon.f (or, possibly, flmoon.for). The associated demonstration file is named xflmoon.f (or, possibly, xflmoon.for). To use the demonstration program,
10.2. USING FORTRAN RECIPES

1. We copy the program xflmoon.f into our default directory with the statement
 \[\text{cp $NRHEAD/recipes_f/demo/src/xflmoon.f .} \]

2. We copy the associated recipe flmoon.f into our default directory with the statement
 \[\text{cp $NRHEAD/recipes_f/recipes/flmoon.f .} \]

3. We determine whether the program invokes recipes beyond the primary one. One way to make this determination entails compiling and loading the program with the statement
 \[\text{f77 -o xflmoon.xf xflmoon.f flmoon.f} \]
 If this statement generates no error messages, then no further recipes are needed. More likely, others will be needed. They will be identified in the error messages as “unresolved text symbols”. In the present case, the symbols julday and caldat will be identified, so we need the statements
 \[\text{cp $NRHEAD/recipes_f/recipes/caldat.f .} \]
 \[\text{cp $NRHEAD/recipes_f/recipes/julday.f .} \]
 to copy these two additional files into our default directory.

 A more gentle way to identify needed additional files entails examining the listings of the program xflmoon.f and the recipe flmoon.f, noting the statements that invoke subroutines flmoon and caldat and function julday. Strictly, we should then examine the listings of any subroutines so identified to see if they in turn invoke still other subroutines.

4. We compile and load the program with the statement
 \[\text{f77 -o xflmoon.xf xflmoon.f flmoon.f caldat.f julday.f} \]
 The order of the filenames in this statement is irrelevant. Note, incidentally, that the command f77 will leave a succession of object files (filetype .o) in our directory. These files may be deleted once the executable program has been created.

5. We run the program with the statement
 \[./xflmoon.xf \]
 The program asks for a date (and prescribes the format in which the date is to be entered) and then prints out the dates of the next several occurrences of each of the phases of the moon.

This discussion is, of course, purely exemplary of the procedure we will have to invoke to use a particular numerical recipe in its library form. More often, we will need to use the demonstration program as a template for creating a driving program better suited to our specific purposes. Occasionally, we may have to edit the recipes themselves. Illustrations of these operations will be found in Sections 11.14.2, 13.13.2, and 14.14.2.

6To be specific, both here and throughout this section, we illustrate these steps with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. Details will be found in the Local Guide.

7Throughout this book, we shall assume that we are using the FORTRAN-77 routines. Presumably, the FORTRAN-90 and FORTRAN-95 routines are used in much the same way, though the compile command in UNIX will be f90 and f95, respectively.

8The routine xflmoon.f invokes the FORTRAN pause statement, which apparently has been discontinued in more recent FORTRAN compilers. A warning will be generated, though it will not prevent compilation of the program if all other requirements are met.

9Again, we are using UNIX-style statements. In some operating systems, the characters ./ preceding the name of the program to be executed may not be necessary.
10.3 Using C Recipes

In C, the files in the subdirectory recipes have names with filetype .c. The name of the demonstration program in the subdirectory demo/src is obtained from the name of the associated recipe by prefixing an x (presumably derived from the ‘x’ in ‘example’). Thus, for example, the first recipe found in the main source books—a recipe that calculates the dates of occurrence of the phases of the moon—is called flmoon and is stored in a file named flmoon.c. The associated demonstration file is named xflmoon.c. To use the demonstration program,

1. We copy the program xflmoon.c into our default directory with the statement\(^\text{10,11}\)
 \[
 \text{cp $NRHEAD/recipes_c-ansi/demo/src/xflmoon.c .}
 \]

2. We copy the associated recipe flmoon.c into our default directory with the statement
 \[
 \text{cp $NRHEAD/recipes_c-ansi/recipes/flmoon.c .}
 \]

3. We determine whether the program invokes recipes beyond the primary one. One way to make this determination entails compiling and loading the program with the statement
 \[
 \text{cc -o xflmoon.xc xflmoon.c flmoon.c}
 \]

 If this statement generates no error messages, then no further recipes are needed. More likely, others will be needed; if so, they will be identified in the error messages. In the present case, the file nr.h, which is a special header file, is not found. Thus, you must copy it from its location in the public directory structure with the statement
 \[
 \text{cp $NRHEAD/recipes_c-ansi/include/nr.h .}
 \]

 Then, a repeat compilation with the statement
 \[
 \text{cc -o xflmoon.xc xflmoon.c flmoon.c}
 \]

 reveals a number of additional “unresolved text symbols”, including julday, caldat, nrerror, sin, floor, and ceil. The first two of these are additional needed recipes, which can be copied with the statements
 \[
 \text{cp $NRHEAD/recipes_c-ansi/recipes/julday.c .}
 \]
 \[
 \text{cp $NRHEAD/recipes_c-ansi/recipes/caldat.c .}
 \]

 the third is a utility routine contained within a package named nrutil.c, which can be copied with the statement
 \[
 \text{cp $NRHEAD/recipes_c-ansi/recipes/nrutil.c .}
 \]

 while the remaining three are items from the standard C mathematics library m, which must therefore be explicitly included in the compile command with the option -lm.

\(^{10}\)To be specific, both here and throughout this section, we illustrate these steps with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. Details will be found in the Local Guide.

\(^{11}\)We also assume the ANSI version of C is in use. To use the KR version, simply replace the designation of the language directory with recipes_kr. Consult your Local Guide for the version available at your site.
A more gentle way to identify needed additional files entails examining the listings of the program `xflmoon.c` and the recipe `flmoon.c`, noting all non-standard include files and all non-standard procedure calls. In the present case, examining `xflmoon.c` reveals the inclusion of `nr.h` and calls to `julday` and `caldat` while examination of `flmoon.c` reveals invocation of `nrerror` (which is defined in `nrutil.c`), `sin`, `floor`, and `ceil`. Strictly, we should then examine the listings of any subroutines and other entities so identified to see if they in turn invoke still other subroutines. Together, these invocations identify the same spectrum of additional routines as those to which we were led in the first approach.

4. We compile and load the program with the statement\(^{12}\)

```
cc -o xflmoon.xc xflmoon.c flmoon.c julday.c caldat.c nrutil.c -lm
```

Except that the component `-lm` should occur last in this list, the order of the filenames is otherwise irrelevant. Note, incidentally, that the `cc` command will leave a succession of object files (filetype `.o`) in our directory. These files may be deleted once the executable program has been created.

5. We run the program with the statement\(^{13}\)

```
./xflmoon.xc
```

The program asks for a date (and prescribes the format in which the date is to be entered) and then prints out the dates of the next several occurrences of each of the four phases of the moon.

This discussion is, of course, purely exemplary of the procedure we will have to invoke to use a particular numerical recipe in its library form. More often, we will need to use the demonstration program as a template for creating a driving program better suited to our specific purposes. Occasionally, we may have to edit the recipes themselves. Illustrations of these operations will be found in Sections 11.15.2, 13.14.2, and 14.15.2.

10.4 Exercises

10.1. The recipe `julday.f` calculates and prints out the Julian day number corresponding to a date supplied to it by a suitable driving program. (a) Read what the main and example source books have to say about this recipe and its associated demonstration program. (b) Retrieve the demonstration program `xjulday.f`, the primary recipe `julday.f`, and any necessary additional files from the *Numerical Recipes* library, and examine the listing of the demonstration program. (c) Compile and run the library form of the program. (d) In particular, determine how old you are in days by determining the Julian day number of your birthday and of today. *Note:* The file `DATES.DAT` needed by the program can be copied from the directory `$NRHEAD/recipes_f/demo/results`.

10.2. The recipe `avevar.f` calculates the mean and variance of a data set supplied to it by a suitable driving program. (a) Read what the main and example source books have to say about this recipe and its associated demonstration program. (b) Retrieve the demonstration program `xavevar.f`, the primary recipe `avevar.f`, and any necessary additional files from the *Numerical Recipes* library, and examine the listing of the demonstration program. (c) Compile and run the library form of the program. (d) Finally, edit the driving program so that it supplies a different set of data of your choice to the recipe. Then compile and run your edited program.

\(^{12}\)This statement may generate a warning about conflicting data types for one or more variables. Warnings, however, do not prevent successful compilation.

\(^{13}\)Again, we are using UNIX-style statements. In some operating systems, the characters `./` preceding the name of the program to be executed may not be necessary.
10.3. The recipe `julday.c` calculates and prints out the Julian day number corresponding to a date supplied to it by a suitable driving program. (a) Read what the main and example source books have to say about this recipe and its associated demonstration program. (b) Retrieve the demonstration program `xjulday.c`, the primary recipe `julday.c`, and any necessary additional files from the *Numerical Recipes* library, and examine the listing of the demonstration program. (c) Compile and run the library form of the program. (d) In particular, determine how old you are in days by determining the Julian day number of your birthday and of today. *Note:* The file `dates1.dat` needed by the program can be copied from the directory `$NRHEAD/recipes_c-ansi/demo/data`.

10.4. The recipe `avevar.c` calculates the mean and variance of a data set supplied to it by a suitable driving program. (a) Read what the main and example source books have to say about this recipe and its associated demonstration program. (b) Retrieve the demonstration program `xavevar.c`, the primary recipe `avevar.c`, and any necessary additional files from the *Numerical Recipes* library, and examine the listing of the demonstration program. (c) Compile and run the library form of the program. (d) Finally, edit the driving program so that it supplies a different set of data of your choice to the recipe. Then compile and run your edited program.
Chapter 11

Solving Ordinary Differential Equations

Many fundamental laws of physics relate the rate at which the physical properties of a system change to the properties themselves. These physical laws lead inevitably to differential equations satisfied by the quantities describing the system. While some of these equations admit closed form, symbolic solutions, most can be solved only through numerical approximation. We begin this chapter by identifying several physical situations, the full addressing of which requires us to solve an ordinary differential equation (ODE) or a coupled set of such equations. Then we illustrate how to use symbolic algebra systems to approach those that can be solved analytically, describe a few of many available numerical algorithms (with attention to their accuracy), and—finally—describe ways to solve representative ODEs using a variety of numerical approaches and computational tools.

Differential equations fall into many, sometimes overlapping, categories. We limit ourselves in this chapter to ordinary differential equations, which involve only one independent variable. Most equations of interest in physics are first-order (containing no derivatives higher than the first) or second-order (containing no derivatives higher than the second), but occasionally higher order equations may arise. Whatever their order, these equations may be linear (each term depending on the dependent variable only through either its first power or the first power of one of its derivatives) or non-linear (at least one term violating the constraint in the previous parentheses). They may be homogeneous (no term free of the dependent variable) or inhomogeneous (at least one term free of the dependent variable). The coefficients may be constant or may depend on the independent variable. Most will contain parameters characterizing the system of interest, though recasting the original equations in dimensionless form may reduce the number of distinct parameters—or even eliminate them altogether. We may be confronted with a single equation (one dependent variable) or with a system of equations (two or more dependent variables), and the members of the system may be coupled (more than one of the dependent variables appearing in at least one of the equations) or decoupled (no member of the system containing more than one of the dependent variables).

For complete statement of a problem, the applicable ODEs must be supplemented with auxiliary conditions, the number of which equals the sum of the orders of the equations at hand. A single first-order equation requires one condition; stipulation of the value of the dependent variable at a specific value of the independent variable is sufficient to select a unique solution from the family of solutions defined by the differential equation alone. A single second-order equation requires two conditions but, in this case, we have some choices. We might, for example, stipulate the value of the dependent variable and the value of its first derivative at a single value of the independent variable, e.g., position and velocity at an initial time. In that case, we would be dealing with an initial value problem (IVP). Alternatively, we might stipulate the value of the dependent variable at each of two different values of the independent variable, e.g., displacement of a string at each of its two ends. In that case, we would be dealing with a boundary value problem (BVP).
The approach to solving a particular ODE or system of ODEs may well be dictated by the category into which the equation or equations fall. The approach will also be influenced by whether we are dealing with an IVP or a BVP. The examples chosen for this chapter illustrate several of these situations.

11.1 Sample Problems

In this section, we identify several physical contexts that lead to differential equations, and we determine the specific differential equation arising in each case. Solutions to the resulting equations by a variety of symbolic and numerical means will be explored in the remainder of this chapter.

In most cases the statement of the problem of interest will contain several constants or parameters. Some reside in the ODE itself while others reside in the initial or boundary conditions. The presence of such constants gives rise to two complications. First, a system of equations containing many constants is much more difficult to explore than a system containing only a few constants. Second, in some cases, the values of the constants will be either very large (e.g., planetary distances or masses) or very small (e.g., atomic distances or masses). In these cases, finding appropriate initial conditions can be difficult. Additionally, numbers of these magnitudes can potentially cause floating point overflow or underflow. Frequently, both of these complications can be made less severe by casting the differential equation(s) and associated initial or boundary conditions in dimensionless form. To accomplish that objective, we begin by choosing judicious, non-standard units in terms of which to express the independent and dependent variables. Then, we rescale these variables to express them in the chosen units. Sometimes, all parameters in the equations and the initial or boundary conditions will disappear; more often, a small number of (dimensionless) combinations of parameters will remain. In any case, the recast problem is almost certain to be simpler than the original problem, partly because the solution depends on fewer “real” parameters and partly because the significant values of all quantities are likely to have order of magnitude one. Anticipating that dimensionless presentations will facilitate some of our subsequent solutions, we shall conclude several of the subsections in this section by illustrating how the strategy described in this paragraph would be implemented for the equations in those subsections.

11.1.1 Projectile in a Viscous Medium

The projectile shown in Fig. 11.1 moves in a viscous medium near the surface of the earth. It experiences two forces, the gravitational attraction of the earth\(^1\) \(-mg \mathbf{k}\) and the viscous force \(\mathbf{F}_v\), from the medium in which it moves. The former is directed downward and the latter is directed

\(^1\)We choose a coordinate system in which positive \(z\) is directed upward, and we take \(m\) and \(g\) to be positive.
opposite to the velocity \mathbf{v}. Usually, the *magnitude* of the viscous force is a function of the *speed* with which the projectile moves, symbolically $|\mathbf{F}_v| = f(|\mathbf{v}|)$. In general, if the projectile has mass m, Newton's second law yields the equation of motion

$$m\frac{d^2\mathbf{r}}{dt^2} = -mg \hat{k} + \mathbf{F}_v(|\mathbf{v}|) = -mg \hat{k} - f(|\mathbf{v}|) \frac{\mathbf{v}}{|\mathbf{v}|}$$ \hspace{1cm} (11.1)

which we are to solve subject to the general initial conditions,

$$\mathbf{r}(0) = \mathbf{r}_0 = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \hat{k} \quad ; \quad \mathbf{v}(0) = \mathbf{v}_0 = v_{x_0} \mathbf{i} + v_{y_0} \mathbf{j} + v_{z_0} \hat{k}$$ \hspace{1cm} (11.2)

Of course, we also need to know the precise dependence of the function $f(|\mathbf{v}|)$ on the speed of the projectile. In the simplest case (when the speed of the projectile is small enough), f is simply linearly proportional to that speed, $f(|\mathbf{v}|) = b|\mathbf{v}|$ (b a positive constant), and the equation of motion reduces to

$$m\frac{d^2\mathbf{r}}{dt^2} = -mg \hat{k} - b\mathbf{v} = -mg \hat{k} - b \frac{d\mathbf{r}}{dt}$$ \hspace{1cm} (11.3)

or, in component form, to

$$m\frac{d^2x}{dt^2} = -b\frac{dx}{dt} \quad ; \quad m\frac{d^2y}{dt^2} = -b\frac{dy}{dt} \quad ; \quad m\frac{d^2z}{dt^2} = -mg - b\frac{dz}{dt}$$ \hspace{1cm} (11.4)

This system of equations is uncoupled, since each of the three independent variables x, y, and z satisfies its own private equation that does not involve either of the other variables. They are second-order and linear, and the coefficients are constant. The first two are homogeneous and, because of the term $-mg$, the third is inhomogeneous. The equations involve the parameters m, b, and g, and their solutions will depend on these parameters and on the six initial values in Eq. (11.2).

When the speed is too large for a linear approximation to the viscous damping, we can sometimes take the viscous force to be proportional instead to the *square* of the speed, $f = b|\mathbf{v}|^2$ (b a positive constant, though not the same constant as in the previous paragraph). This time, the equation of motion reduces to

$$m\frac{d^2\mathbf{r}}{dt^2} = -mg \hat{k} - b|\mathbf{v}| \mathbf{v} = -mg \hat{k} - b \frac{d\mathbf{r}}{dt} \left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2$$ \hspace{1cm} (11.5)

or, in component form, to

$$m \begin{bmatrix} \frac{d^2x}{dt^2} \quad \frac{d^2y}{dt^2} \quad \frac{d^2z}{dt^2} \end{bmatrix} = \begin{bmatrix} 0 \quad 0 \quad -mg \end{bmatrix} - b \begin{bmatrix} \frac{dx}{dt} \quad \frac{dy}{dt} \quad \frac{dz}{dt} \end{bmatrix} \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2}$$ \hspace{1cm} (11.6)

This system of equations is second-order and distinctly non-linear, and its members are coupled because each of the equations involves all three of the dependent variables. Even if the motion occurs in only the vertical dimension (projectile tossed straight up or, simply, released from rest and allowed to drop), the equation, which then is

$$m\frac{d^2z}{dt^2} = -mg - b\frac{dz}{dt} \left| \frac{dz}{dt} \right|$$ \hspace{1cm} (11.7)

is complicated by the absolute value in the viscous term. These equations involve the parameters m, b, and g, and their solutions will depend on these parameters and on the six initial values in Eq. (11.2).

To cast these equations in a dimensionless form, we would start by choosing a unit of length, say a—which might be chosen arbitrarily, chosen to be one of the initial positions, or merely symbolized initially and chosen later to simplify the equations as we converge on their dimensionless form. Then, dividing by m and rescaling the dimensional coordinates by introducing the dimensionless
coordinates \(\hat{x} = x/a, \hat{y} = y/a, \) and \(\hat{z} = z/a \) (i.e., \(\hat{r} = r/a \)), we find that Eqs. (11.3) and (11.5) become
\[
\frac{d^2 \hat{r}}{dt^2} = -\frac{g}{a} \hat{k} - \frac{b}{m} \frac{d\hat{r}}{dt}
\]
(11.8) and
\[
\frac{d^2 \hat{r}}{dt^2} = -\frac{g}{a} \hat{k} - \frac{ba}{m} \frac{d\hat{r}}{dt} \sqrt{\left(\frac{d\hat{x}}{dt} \right)^2 + \left(\frac{d\hat{y}}{dt} \right)^2 + \left(\frac{d\hat{z}}{dt} \right)^2}
\]
(11.9) respectively. Next, we recognize that \(\sqrt{g/a} \) is dimensionally a frequency.\(^2\) Hence, the variable \(\hat{t} = t \sqrt{g/a} \) provides a suitable rescaling of the independent variable. In terms of \(\hat{t} \), Eqs. (11.8) and (11.9) become
\[
\frac{d^2 \hat{r}}{d\hat{t}^2} = -\hat{k} - \frac{b}{m} \frac{d\hat{r}}{d\hat{t}}
\]
(11.10) and
\[
\frac{d^2 \hat{r}}{d\hat{t}^2} = -\hat{k} - \frac{ba}{m} \frac{d\hat{r}}{d\hat{t}} \sqrt{\left(\frac{d\hat{x}}{d\hat{t}} \right)^2 + \left(\frac{d\hat{y}}{d\hat{t}} \right)^2 + \left(\frac{d\hat{z}}{d\hat{t}} \right)^2}
\]
(11.11)
Finally, we introduce the symbol \(\beta \) for the dimensionless quantity \(b \sqrt{a/g}/m \) in the first of these equations and for the dimensionless quantity \(ba/m \) in the second.\(^3\) In the end, the equations in dimensionless form are
\[
\frac{d^2 \hat{r}}{d\hat{t}^2} = -\hat{k} - \beta \frac{d\hat{r}}{d\hat{t}}
\]
(11.12) and
\[
\frac{d^2 \hat{r}}{d\hat{t}^2} = -\hat{k} - \beta \frac{d\hat{r}}{d\hat{t}} \sqrt{\left(\frac{d\hat{x}}{d\hat{t}} \right)^2 + \left(\frac{d\hat{y}}{d\hat{t}} \right)^2 + \left(\frac{d\hat{z}}{d\hat{t}} \right)^2}
\]
(11.13)
These equations are, of course, to be solved subject to the dimensionless initial conditions
\[
\hat{r}(0) = \frac{r_0}{a} \quad ; \quad \hat{v}(0) = \frac{d\hat{r}}{d\hat{t}}(0) = \frac{d(r/a)}{d(t\sqrt{g/a})}(0) = \frac{v_0}{\sqrt{ga}}
\]
(11.14)
from which we conclude that dimensionless velocities are measured in units of \(\sqrt{g/a} \).

In truth, however, these particular equations are not really second-order equations. They can be reduced to first-order equations by focusing attention on the components \([v_x, v_y, v_z] \) of the velocity as the dependent variables. In those terms, the three members of Eq. (11.4) become
\[
m \frac{dv_x}{dt} = -bv_x \quad ; \quad m \frac{dv_y}{dt} = -bv_y \quad ; \quad m \frac{dv_z}{dt} = -mg - bv_z
\]
(11.15) the three members of Eq. (11.6) become
\[
m \left[\frac{dv_x}{dt}, \frac{dv_y}{dt}, \frac{dv_z}{dt} \right] = [0, 0, -mg] - b [v_x, v_y, v_z] \sqrt{v_x^2 + v_y^2 + v_z^2}
\]
(11.16) and Eq. (11.7) becomes
\[
m \frac{dv_z}{dt} = -mg - bv_z |v_z|
\]
(11.17) Once these first-order equations have been solved, the components of the position vector can then be found by solving the differential equations
\[
\frac{dx}{dt} = v_x \quad ; \quad \frac{dy}{dt} = v_y \quad ; \quad \frac{dz}{dt} = v_z
\]
(11.18)
\(^2\)Using \([\ldots]\) to indicate “the dimensions of \(\ldots\)”, we argue \([g] = \text{length/time}^2, [a] = \text{length} \implies [g/a] = \text{time}^{-2} \implies [\sqrt{g/a}] = \text{time}^{-1} \).

\(^3\)Remember that \(b\) is not the same in the two instances.

\(^4\)Here (and in all subsequent cases where a chosen unit is identified but not checked), you should take a moment to verify that the identified unit has the proper dimensions.
11.1. SAMPLE PROBLEMS

Figure 11.2: A three-nucleus radioactive decay.

\[\begin{array}{ccc}
A & \xrightarrow{k_A} & B \\
& \xrightarrow{k_B} & C \\
\end{array} \]

By the time we have reached this point, however, we will have explicit knowledge of \(v_x, v_y, \) and \(v_z \) as functions of \(t \), so solving Eq. (11.18) is equivalent to straight-forward evaluation of an integral. (See Chapter 13.) Recasting the equations of this paragraph in dimensionless form is left as an exercise.

11.1.2 Radioactive Decay

A wholly different context in which systems of ODEs arise lies in radioactive decay. The fundamental law asserts that a sample of a particular radioisotope decays at a rate proportional to the quantity of (undecayed) material present in the sample. Thus, for the decay chain shown in Fig. 11.2, we would write the system of three differential equations

\[
\begin{align*}
\frac{dA}{dt} &= -k_A A \\
\frac{dB}{dt} &= k_A A - k_B B \\
\frac{dC}{dt} &= k_B B
\end{align*}
\]

(11.19)

where \(k_A \) and \(k_B \) are decay constants (parameters); \(A(t), B(t), \) and \(C(t) \) are the number of nuclei of each species present; and nucleus \(C \) is assumed to be stable. These equations are linear, first-order, and homogeneous, and they have constant coefficients. They are, however, coupled, since each of the second and third of them involves two of the dependent variables. They also support a conservation law: adding the three equations yields that

\[
\frac{d}{dt}(A + B + C) = 0 \quad \Rightarrow \quad A + B + C = \text{constant}
\]

(11.20)

As always we, of course, need initial values, e.g., \(A(0) = A_0, B(0) = 0, \) and \(C(0) = 0, \) before the differential equations have a unique solution, and that solution will depend on the parameters \(k_A \) and \(k_B \) and on the three initial values.

To cast these equations in a dimensionless form, we choose a reference amount—here, conveniently, \(A_0, \) the initial amount of \(A \)—as the unit for measuring the quantities of \(A, B, \) and \(C. \) Then, we rescale the values for these quantities by introducing the dimensionless variables \(\bar{A} = A/A_0, \) \(\bar{B} = B/A_0, \) and \(\bar{C} = C/A_0. \) Next, dividing the equations by \(k_A A_0 \) and introducing the dimensionless quantities \(\bar{t} = k_A t \) and \(\bar{k} = k_B/k_A, \) we conclude that

\[
\begin{align*}
\frac{d\bar{A}}{d\bar{t}} &= -\bar{A} \\
\frac{d\bar{B}}{d\bar{t}} &= \bar{A} - \bar{k} \bar{B} \\
\frac{d\bar{C}}{d\bar{t}} &= \bar{k} \bar{B}
\end{align*}
\]

(11.21)

with the initial conditions \(\bar{A}(0) = 1, \bar{B}(0) = 0, \) and \(\bar{C}(0) = 0, \) where we now regard the dependent variables as functions of the dimensionless time \(\bar{t}. \) In short, we discover that this problem possesses only one “real” parameter \(\bar{k}. \) Only the ratio of the rate constants conveys any significant distinction among different realizations of this decay. Everything else is simply a matter of scaling, either on the time variable or on the dependent variables as a group. The essential physics is both easier to explore and easier to comprehend when the problem is viewed from a dimensionless perspective.

\[^5 \text{We shall later see that conservation laws can sometimes prove valuable in assessing the accuracy of solutions.} \]
11.1.3 Exponential and Logistic Growth

An important illustration of a non-linear first-order equation occurs in population biology, where—in the absence of predation—the population of a species grows at a rate proportional to that population until the population becomes so large that individual organisms compete significantly with one another for space and/or food. In a simple model, the effects of competition are proportional to the likelihood that one organism will encounter another—a likelihood that is proportional to the square of the population. Thus, a population subject to both effects will evolve in accordance with the first-order, non-linear equation

$$\frac{dN}{dt} = kN \left(1 - \frac{N}{N_c}\right)$$ \hspace{1cm} (11.22)

where $N(t)$ is the population, k is the growth rate, and N_c, which is the value of N at which its rate of growth becomes zero, is the carrying capacity of the environment. If, in particular, $N(t)$ ever equals N_c, then $dN/dt = 0$ and N ceases to change; the population will attain an equilibrium, which it maintains forever after. We must, of course, know the initial population $N(0) = N_0$ before a complete solution to this equation can be found, and that solution will depend on the parameters k and N_c and on the initial value N_0.

Two different terms are used to label the solutions to Eq. (11.22). If N_c is infinite (or, more realistically, $N(t) \ll N_c$), then the second term in the parentheses on the right is negligible and the resulting growth is said to be exponential, though the growth will actually be a decay if $k < 0$. If, on the other hand, $N(t)$ is not small compared to N_c, both terms are important, the exponential growth of the first case reaches a ceiling, and the growth is said to be logistic.\footnote{Logistic growth is also sometimes said to follow a sigmoid curve because of the stylized ‘S’ shape that solutions exhibit when the initial population is much smaller than the carrying capacity. Graphs of this shape will be found in subsequent sections of this chapter.}

The dimensionless version of this equation is quickly found. We choose N_c as the reference population, introduce the dimensionless population $\bar{N} = N/N_c$ and the dimensionless time $\bar{t} = kt$, and find that the equation and initial condition reduce to

$$\frac{d\bar{N}}{d\bar{t}} = \bar{N}(1 - \bar{N}) \hspace{1cm} ; \hspace{1cm} \bar{N}(0) = \frac{N_0}{N_c}$$ \hspace{1cm} (11.23)

All parameters disappear from the differential equation but the initial population—now measured in units of the carrying capacity—remains as a single parameter in the problem.

11.1.4 Forced, Driven, Damped Harmonic Oscillation

A particularly important, second-order differential equation arises in several contexts. Suppose, for example, as shown in Fig. 11.3, an object of mass m moves on a horizontal, frictionless surface under the action of forces applied by a Hooke’s law spring of constant k, a viscous shock absorber of damping constant b, and an externally applied time-dependent force $F(t)$. Newton’s second law leads us to write the linear, second-order, constant coefficient equation of motion governing this system as

$$m \frac{d^2x}{dt^2} = -kx - b \frac{dx}{dt} + F(t)$$ \hspace{1cm} (11.24)

Here, x is measured from the position of the object when the spring is neither stretched nor compressed. This equation is inhomogeneous if $F \neq 0$ and homogeneous if $F = 0$. As always, we require initial conditions, which will have the general form

$$x(0) = x_0 \hspace{1cm} ; \hspace{1cm} v(0) = v_0$$ \hspace{1cm} (11.25)

before the problem is fully stated.
To cast this equation in dimensionless form, we introduce a unit of length, say ℓ, rescale position with the expression $x = x/\ell$, introduce a unit of time, say τ, rescale the physical time with the expressions $t = t/\tau$, and thereby transform Eq. (11.24) to

$$\frac{d^2\bar{x}}{d\bar{t}^2} = -\frac{\tau^2 k}{m}\bar{x} - \frac{\tau b}{m} \frac{d\bar{x}}{d\bar{t}} + \frac{\tau^2 F(\tau t)}{m\ell}$$

(11.26)

The term on the left in this equation is now dimensionless. Thus, all terms on the right must be dimensionless as well. In particular, the combination $\tau^2 k/m$ must be dimensionless. Remember, however, that τ is at the moment merely a symbol; we have not yet made a well defined choice for the unit of time, and we are free to choose τ any way we like. Clearly, the choice $\tau^2 k/m = 1$ or $\tau = \sqrt{m/k}$ is judicious. With this choice, the equation of motion becomes

$$\frac{d^2\bar{x}}{d\bar{t}^2} = -\bar{x} - \frac{b}{\sqrt{mk}} \frac{d\bar{x}}{d\bar{t}} + \bar{F}(\bar{t})$$

(11.27)

where, in the final form, we have set $\beta = b/\sqrt{mk}$ and $\bar{F}(\bar{t}) = F(\tau t)/k\ell$. The single, dimensionless parameter β contains the essential influence of the three parameters m, b, and k once differences attributable to scaling have been removed. The dimensionless force \bar{F} expresses the physical force in units of $k\ell$, which—note—is the force that the spring would exert if extended by the chosen unit of length!

We must, of course, also translate the initial conditions of Eq. (11.25) into dimensionless form, finding that

$$\bar{x}(0) = \frac{x_0}{\ell} \quad ; \quad \bar{v}(0) = \frac{d\bar{x}}{d\bar{t}}(0) = \frac{d(x/\ell)}{d(t/\tau)} = \frac{v_0}{\ell/\tau}$$

(11.28)

and we conclude that dimensionless velocities will be measured in units of ℓ/τ, which is the speed of an object that moves the reference distance ℓ in the reference time τ.

Alternatively (and, in some approaches to solution, necessarily), we would recast this single second-order differential equation as a pair of first-order equations, either

$$\frac{dx}{dt} = v \quad ; \quad m\frac{dv}{dt} = -kx - bv + F(t)$$

(11.29)

in the original dimensional form, or

$$\frac{d\bar{x}}{d\bar{t}} = \bar{v} \quad ; \quad \frac{d\bar{v}}{d\bar{t}} = -\bar{x} - \beta \bar{v} + \bar{F}(\bar{t})$$

(11.30)

in dimensionless form. All dimensionless quantities are those introduced earlier in this section.
11.1.5 An LRC Resonant Circuit

An equation mathematically identical in form to Eqs. (11.29) and (11.30) arises in the description of a series RLC circuit excited by a signal generator, as shown in Fig. 11.4. If we take positive current \(i(t)\) to flow clockwise and understand that \(q(t)\) represents the charge on the left plate of the capacitor, then Kirchhoff’s loop equation and the properties of the several components lead to the equation

\[
V(t) - L \frac{di}{dt} - \frac{q}{C} - iR = 0 \implies L \frac{di}{dt} + iR + \frac{q}{C} = V(t) \tag{11.31}
\]

As it stands, this equation looks to be first order but it involves two variables \(i(t)\) and \(q(t)\). We can complete the statement of a problem having a unique solution by recognizing the relationship

\[
i = \frac{dq}{dt} \tag{11.32}
\]

between \(i\) and \(q\) and supplementing what is now a pair of coupled first-order, linear, constant coefficient, inhomogeneous equations with the general initial conditions

\[
q(0) = q_0; \quad \frac{dq}{dt}(0) = i(0) = i_0 \tag{11.33}
\]

Alternatively, we could substitute Eq. (11.32) into Eq. (11.31) to find the equivalent, single, second-order, linear, constant coefficient, inhomogeneous equation

\[
L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C} = V(t) \tag{11.34}
\]

The recasting of these equations in dimensionless form is left as an exercise.

Adopting the correspondences, \(q \leftrightarrow x, L \leftrightarrow m, R \leftrightarrow b, 1/C \leftrightarrow k, V(t) \leftrightarrow F(t), \) and \(t \leftrightarrow t\), we can turn Eq. (11.34) into Eq. (11.24). Thus, mathematically, the driven, damped mechanical oscillator and the RLC circuit exhibit exactly analogous behavior, and the behavior of the RLC circuit simulates the behavior of the mechanical oscillator.\(^7\)

11.1.6 Coupled Oscillators

Consider next the system shown in Fig. 11.5 consisting of two objects of equal mass \(m\) connected along a line, each to a fixed wall by springs of constant \(k\) and each to the other by a coupling spring

\(^7\)Years ago, when digital computers were not as fast as they have come to be and smooth graphical output from a digital computer was unheard of, correspondences such as this one were the basis of the analog computer, whereon we could easily set up electronic circuits whose behavior simulated the behavior of more expensive mechanical systems. With an analog computer, we could learn about mechanical systems by observing the real-time variation of the voltages and currents at various points in an analogous electronic circuit.
11.1. SAMPLE PROBLEMS

Figure 11.5: A system of two coupled objects.

Figure 11.6: An object moving in a central force.

of constant k'. Let the (horizontal) surface on which these objects slide be frictionless, and let $x_1(t)$ and $x_2(t)$ be the displacement of each object from its equilibrium point. Then, Newton’s second law yields

$$m \frac{d^2 x_1}{dt^2} = -k x_1 + k'(x_2 - x_1) \quad ; \quad m \frac{d^2 x_2}{dt^2} = -k x_2 - k'(x_2 - x_1)$$

for the equations of motion. To reduce the number of parameters, however, we recast these equations in dimensionless form by selecting a unit of length a, dividing the equations by a, setting $x_i/a = \bar{x}_i$, introducing a dimensionless time variable $\bar{t} = \omega t$, where $\omega = \sqrt{k/m}$, and setting $\bar{\kappa} = k'/k$. The equations then become

$$\frac{d^2 \bar{x}_1}{d\bar{t}^2} = -\bar{x}_1 + \bar{\kappa} (\bar{x}_2 - \bar{x}_1) \quad ; \quad \frac{d^2 \bar{x}_2}{d\bar{t}^2} = -\bar{x}_2 - \bar{\kappa} (\bar{x}_2 - \bar{x}_1)$$

Initial conditions such as

$$\bar{x}_1(0) = \bar{x}_{10} \quad ; \quad \frac{d\bar{x}_1}{d\bar{t}}(0) = \bar{v}_{10} \quad ; \quad \bar{x}_2(0) = \bar{x}_{20} \quad ; \quad \frac{d\bar{x}_2}{d\bar{t}}(0) = \bar{v}_{20}$$

complete the statement of the problem—a problem that involves a pair of coupled, linear, second-order, constant coefficient, homogeneous differential equations containing one internal parameter $\bar{\kappa}$.

11.1.7 Motion under Central Forces

Consider next an object of mass m moving in the xy plane under the action of a central force\(^8\) F, as shown in Fig. 11.6. According to Newton’s second law, the position vector r of this object satisfies

\(^8\)A central force is one whose direction is always away from or towards a fixed point—the force center—and whose magnitude depends only on the distance from that point.
the differential equation

\[m \frac{d^2 \mathbf{r}}{dt^2} = \mathbf{F} = f(r) \mathbf{r} \]

(11.38)

where \(f(r) > 0 \) corresponds to a repulsive force and \(f(r) < 0 \) corresponds to an attractive force. Two articulations of this equation are in order. A more specific expression in polar coordinates is treated in an exercise. Here, we extract its components in Cartesian coordinates \((x, y)\). Since \(r^2 = x^2 + y^2 \), \(r = x \hat{i} + y \hat{j} \), and

\[\mathbf{r} = \frac{x \hat{i} + y \hat{j}}{\sqrt{x^2 + y^2}} \]

(11.39)

the Cartesian components of Eq. (11.38) are

\[m \frac{d^2 x}{dt^2} = f \left(\sqrt{x^2 + y^2} \right) \frac{x}{\sqrt{x^2 + y^2}} ; \quad m \frac{d^2 y}{dt^2} = f \left(\sqrt{x^2 + y^2} \right) \frac{y}{\sqrt{x^2 + y^2}} \]

(11.40)

We have arrived at a pair of second-order, non-linear, coupled differential equations to be solved subject to general initial conditions of the form

\[x(0) = x_0 ; \quad \frac{dx}{dt}(0) = v_x(0) = v_{x0} ; \quad y(0) = y_0 ; \quad \frac{dy}{dt}(0) = v_y(0) = v_{y0} \]

(11.41)

Everything discussed so far in this subsection applies to all central forces regardless of the specific form or sign of \(f(r) \). To set a more specific problem, let us narrow our purview to the planetary problem, \(^9\) in which a planet of mass \(m \) orbits a central sun of mass \(M \). When \(M \gg m \), as is often the case, the sun does not move appreciably under the action of the gravitational force exerted on it by the planet. Thus, we can treat the gravitational force on the planet as originating in a fixed force center, in which case

\[f(r) = -G \frac{mM}{r^2} = -G \frac{mM}{x^2 + y^2} \]

(11.42)

where \(G \) is the universal gravitational constant. With this specific force, the members of Eq. (11.40) become

\[\frac{d^2 x}{dt^2} = -GM \frac{x}{(x^2 + y^2)^{3/2}} ; \quad \frac{d^2 y}{dt^2} = -GM \frac{y}{(x^2 + y^2)^{3/2}} \]

(11.43)

Particularly in the context of this problem, casting the fundamental equations in dimensionless form is prudent. We begin by choosing a reference length, symbolized by \(\ell \). Then, we express all distances in the equations as multiples of this chosen reference by introducing the variables

\[\mathbf{x} = \frac{x}{\ell} ; \quad \mathbf{y} = \frac{y}{\ell} ; \quad \mathbf{r} = \frac{r}{\ell} \]

(11.44)

With this change, Eq. (11.43) becomes

\[\frac{d^2 \mathbf{x}}{dt^2} = -GM \ell^3 \frac{\mathbf{x}}{(\mathbf{x}^2 + \mathbf{y}^2)^{3/2}} ; \quad \frac{d^2 \mathbf{y}}{dt^2} = -GM \ell^3 \frac{\mathbf{y}}{(\mathbf{x}^2 + \mathbf{y}^2)^{3/2}} \]

(11.45)

Finally, we introduce the dimensionless time variable \(\mathbf{t} = t \sqrt{\frac{GM}{\ell^3}} \) to find that

\[\frac{d^2 \mathbf{x}}{dt^2} = -\frac{\mathbf{x}}{(\mathbf{x}^2 + \mathbf{y}^2)^{3/2}} ; \quad \frac{d^2 \mathbf{y}}{dt^2} = -\frac{\mathbf{y}}{(\mathbf{x}^2 + \mathbf{y}^2)^{3/2}} \]

(11.46)

Interestingly, in Cartesian coordinates, all parameters have disappeared from the equations.

\(^9\)Remember, too, that the problem of a charged particle moving in the field of another charged particle is mathematically identical to the planetary problem. (See exercises.)
Translation of the initial conditions into dimensionless form is easier than translation of the differential equations. The positions, of course, become
\[x(0) = \frac{x_0}{\ell}; \quad y(0) = \frac{y_0}{\ell}. \]

To translate the velocities, we argue that
\[
\frac{d\xi}{dt}(0) = \frac{d(x/\ell)}{d(t\sqrt{GM/\ell^3})}(0) = \frac{v_x0}{\sqrt{GM/\ell}}; \quad \frac{d\eta}{dt}(0) = \frac{d(y/\ell)}{d(t\sqrt{GM/\ell^3})}(0) = \frac{v_y0}{\sqrt{GM/\ell}}.
\]

We conclude that dimensionless velocities in the present context are measured in units of \(\sqrt{GM/\ell} \).

Before leaving this important problem, we note two additional features. First, if the planet happens to be moving at a distance \(r_{\text{circ}} \) from the sun with a velocity of magnitude \(v_{\text{circ}} \) directed perpendicular to the radius line, then the planet will move in a circular orbit if its speed and radius are related so that the centripetal force \(mv_{\text{circ}}^2/r_{\text{circ}} \) needed for circular motion is exactly provided by the gravitational attraction \(GMm/r_{\text{circ}}^2 \) of the sun. That is, the orbit will be circular if
\[\frac{mv_{\text{circ}}^2}{r_{\text{circ}}} = \frac{GMm}{r_{\text{circ}}^2} \Rightarrow v_{\text{circ}}^2 = \frac{GM}{r_{\text{circ}}}. \]

Translated into dimensionless form, this special relationship becomes
\[\left(\sqrt{\frac{GM}{\ell}} v_{\text{circ}} \right)^2 = \frac{GM}{r_{\text{circ}}} \Rightarrow v_{\text{circ}}^2 = \frac{1}{r_{\text{circ}}}. \]

In the dimensionless units we have chosen, the relationship between speed and radius for a circular orbit involves no dimensional constants. This simple case provides us with a specific known motion against which we can later test numerical solutions for the planetary problem.

Second, the planetary problem admits two conservation laws, each of which may be valuable in assessing the accuracy of numerically generated solutions. In a dimensional presentation, conservation of energy yields that
\[E = \frac{1}{2} m (v_x^2 + v_y^2) - \frac{GMm}{\sqrt{x^2 + y^2}} = \text{constant}, \]
though the mass \(m \) can be omitted from the expression if only the constancy of \(E \) (and not its actual value) is to be examined. Similarly, in a dimensional presentation, conservation of angular momentum yields that
\[L = m (xv_y - yv_x) = \text{constant}, \]
where, again, \(m \) can be omitted if only the constancy of \(L \) is to be assessed. Recasting these expressions in dimensionless form (and omitting overall multiplying constants), we find alternatively that
\[\frac{1}{2} (\xi_x^2 + \xi_y^2) - \frac{1}{\sqrt{\xi^2 + \eta^2}} = \text{constant}; \quad \xi \eta_y - \eta \xi_x = \text{constant}. \]

11.1.8 Standing Waves in a String

When a wave propagates in a flexible string, the (transverse) displacement \(u(x,t) \) at time \(t \) of the element of the string nominally at coordinate \(x \) satisfies the wave equation
\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}. \]
where \(c \) is the speed of propagation of the wave along the string. In the special case that the motion of each element is sinusoidal with frequency \(\omega \), we can write

\[
 u(x, t) = f(x) \cos(\omega t)
\]

and find, on substitution into the wave equation, that \(f(x) \), which gives the amplitude of the sinusoidal motion of the element nominally at \(x \), satisfies

\[
 \frac{d^2 f}{dx^2} + k^2 f = 0
\]

where \(k^2 = \omega^2/c^2 \). If, finally, the string is firmly tied down at two points, say \(x = 0 \) and \(x = \ell \), then this second-order, homogeneous, constant-coefficient, differential equation must be solved subject to the boundary conditions

\[
 f(0) = 0 \quad ; \quad f(\ell) = 0
\]

and we conclude that waves in a string fixed at two points are described by a boundary value problem. Ultimately, we shall be able to find acceptable solutions only for a discrete set of special values of \(k \).

11.1.9 The Schrödinger Equation in One Dimension

A quantum mechanical particle of mass \(m \) having definite energy \(E \) and confined in one dimension \(x \) by a potential energy \(V(x) \) is described by a wave function \(\psi(x) \) that satisfies the one-dimensional time-independent Schrödinger equation

\[
 -\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V(x) \psi = E \psi \quad \Rightarrow \quad \frac{d^2 \psi}{dx^2} + \frac{2m}{\hbar^2} \left(E - V(x) \right) \psi = 0
\]

where \(\hbar \) is Planck’s constant divided by \(2\pi \). We anticipate subsequent exploration of two specific cases. Suppose, for example, that the potential energy is infinite except in the interval \(-\ell \leq x \leq +\ell\), in which interval it is zero, i.e., suppose the particle is confined in an infinitely deep potential well that extends over the specified interval. Then, the wave function describing this particle must satisfy the Schrödinger equation with \(V = 0 \) inside this interval, and it must go to zero at each end of the interval. We seek solutions to the boundary value problem

\[
 \frac{d^2 \psi}{dx^2} + \frac{2mE}{\hbar^2} \psi = 0 \quad ; \quad \psi(0) = \psi(\ell) = 0
\]

Especially if we substitute the shorthand \(k^2 = 2mE/\hbar^2 \) (or \(E = \hbar^2 k^2/2m \)), we recognize that this quantum mechanical problem is mathematically identical to the classical standing wave problem described in Section 11.1.8. This problem admits solutions only for a discrete set of special values for \(k \), i.e., only for special energies.

Suppose, alternatively, that we take the potential energy to be \(V(x) = \frac{1}{2}kx^2 \), which describes the quantum analog to the classical harmonic oscillator with spring constant \(k \). In this case, the time-independent Schrödinger equation becomes

\[
 \frac{d^2 \psi}{dx^2} + \frac{2m}{\hbar^2} \left(E - \frac{1}{2}kx^2 \right) \psi = 0
\]

or, in dimensionless form,

\[
 \frac{d^2 \psi}{d\tau^2} + (2\epsilon - \tau^2) \psi = 0
\]

where \(\omega = \sqrt{k/m} \), \(\epsilon = E/\hbar \omega \) and \(\tau = x \sqrt{\hbar/m \omega} \). In contrast to the infinitely deep well, the domain for the quantum oscillator extends over the interval \(-\infty < x < +\infty\), and we must require that \(\psi(x) \) approach zero as \(x \) approaches either end of this interval. Numerically, infinite domains
are complicated. Note, however, that the equation in this case is quadratic in \(x \). Thus, the solutions to the equation can be divided into two sets, one of which contains functions that are even in \(x \) (even parity) and the other of which contains functions that are odd in \(x \) (odd parity). Even functions, however, necessarily have zero derivative and non-zero value at \(x = 0 \) while odd functions, in contrast, have non-zero derivative and zero value at \(x = 0 \). These properties mean that we can replace the original boundary value problem involving Eq. (11.60) over an infinite interval with an initial value problem for the solution over half of the infinite interval. When we come later to address the actual solution of this problem, we will therefore focus on two sub-problems, one defined by the equation and initial values

\[
\frac{d^2\psi}{dx^2} + (2\epsilon - x^2) \psi = 0 \quad \psi(0) = 1.0 \quad \frac{d\psi}{dx}(0) = 0 \quad \lim_{x \to \infty} \psi(x) = 0 \tag{11.62}
\]

and yielding even solutions and the other defined by the equation and initial values

\[
\frac{d^2\psi}{dx^2} + (2\epsilon - x^2) \psi = 0 \quad \psi(0) = 0 \quad \frac{d\psi}{dx}(0) = 1 \quad \lim_{x \to \infty} \psi(x) = 0 \tag{11.63}
\]

and yielding odd solutions. The interesting aspect of these problems is that we will be able to find solutions satisfying the boundary requirement at \(x = +\infty \) only for very special values of \(\epsilon \) in the equation, i.e., only for special values of the energy.

11.2 Laplace Transforms

One tool used behind the scenes by symbolic solvers of ODEs is called the Laplace transform, which we defined and illustrated in Section 1.5.2. We return to the topic here, not because we are likely to make much use of it directly but because knowing its properties and capabilities may sometimes be valuable as we try to guide a symbolic manipulator that uses the technique. As we laid out in the referenced section, the Laplace transform is defined for a function \(f(t) \) by the integral

\[
\mathcal{L}(f(t)) = \tilde{f}(s) = \int_0^\infty e^{-st} f(t) \, dt \tag{11.64}
\]

We can best illustrate the value of the Laplace transform in solving a linear, ordinary differential equation with constant coefficients by presenting a short example. We would—and symbolic manipulators may well—apply this technique to the third member of Eq. (11.4) as follows. First we use Eqs. (1.16) and (1.17) and entries in Table 1.2 to evaluate its Laplace transform, finding that

\[
m[s^2 \tilde{z}(s) - sz_0 - vz_0] = -\frac{mg}{s} - b[s\tilde{z}(s) - z_0] \tag{11.65}
\]

Then we solve this algebraic equation\(^{12}\) for \(\tilde{z}(s) \), finding that

\[
\tilde{z}(s) = \frac{z_0}{s} + \frac{vz_0 s - g}{s^2(s + b/m)} \tag{11.66}
\]

Finally, we invert this Laplace transform to find the solution itself. Unfortunately, inverting Laplace transforms is rarely easy.\(^ {13}\) We can, of course, read a table of transforms such as Table 1.2 backwards,

\(^{10}\)It involves only second derivatives and the potential energy involves only \(x^2 \).

\(^{11}\)Reducing infinity to half of infinity may not seem like much of a simplification. The primary value of the change is that the starting point for tracking a solution has now been moved into an accessible region.

\(^{12}\)The immense simplification coming from using the Laplace transform is precisely the conversion of a differential equation (of the right sort) into an algebraic equation for the transform of the solution.

\(^{13}\)Murphy's law, in the version that says that transforms may move difficulties around but may not eliminate them altogether, applies. The price we pay for the conversion to an algebraic equation is that we now have to invert the transform we found so easily.
but that strategy will work only if the entry we need is in fact included in the table. In the present case, however, we can recast the result we have obtained by using the technique of partial fractions to find the equivalent expression

\[
\tilde{z}(s) = \frac{z_0}{s} - \frac{mg/b}{s^2} + \frac{m}{b} \left(v_{z0} + \frac{mg}{b} \right) \left(\frac{1}{s} - \frac{1}{s+b/m} \right) \quad (11.67)
\]

All of the pieces in this form of the transform now are in even the tiny table we have available. Since the inverse of a sum of terms is the sum of the inverses of each term separately, we conclude that

\[
z(t) = z_0 - \frac{mg}{b} t + \frac{m}{b} \left(v_{z0} + \frac{mg}{b} \right) \left(1 - e^{-bt/m} \right) \quad (11.68)
\]

Note that, in this approach, the initial conditions imposed on the solution are incorporated \textit{ab initio}, not imposed \textit{after} a general solution with arbitrary, unknown constants has been obtained.

11.4 Solving ODEs Symbolically with MAPLE

Fundamentally, solving an ordinary differential equation involves specifying the equation, finding a solution containing the appropriate number of arbitrary constants, and imposing the appropriate initial or boundary conditions. A few features of the command \texttt{dsolve}, which is the primary ODE-solving command in MAPLE, were discussed briefly in Section 7.8.9. In that section, we used \texttt{dsolve} only for solving a single ODE, and we learned that—to that end—the command has two forms. In the first form,

\[
\texttt{dsolve(ODE, DVar(IVar))}
\]

the command returns the solution of the single ordinary differential equation \texttt{ODE} for the dependent variable \texttt{DVar} as a function of the single independent variable \texttt{IVar}. In this form, \texttt{dsolve} does not impose initial conditions—they haven’t even been specified. Instead, it uses the symbols _C1, _C2, \ldots (however many are needed) for the integration constants. These constants must then be determined by subsequent imposition of appropriate initial conditions.\(^{14}\)

In the second form, the command \texttt{dsolve} accepts as its first argument a set which contains both the differential equation to be solved and an appropriate number of initial conditions. The form of the statement would then be

\[
\texttt{dsolve(\{ ODE, IC1, IC2, \ldots \}, DVar(IVar))}
\]

This form returns a solution on which the initial conditions \texttt{IC1, IC2, \ldots} have been imposed and which therefore contains no undetermined constants. If, for example, the function to be found is \texttt{y(t)}, then an initial condition on the function itself would have the form \texttt{y(0)=y0} while an initial condition on its first derivative would have the form \texttt{y'(y)(0)=v0}, where \texttt{y0} and \texttt{v0} are the desired values—and may be symbolic or explicitly numeric.

The command \texttt{dsolve} is also capable of solving (some) systems of ordinary differential equations. In this case, the first argument will be a set containing all of the differential equations as well as the initial conditions to be imposed, and the second argument will be a set containing the several dependent variables. In brief, the statement invoking \texttt{dsolve} will have the form

\[
\texttt{dsolve(\{ ODE1, ODE2, \ldots, IC1, IC2, \ldots \}, \{ DVar1(IVar), DVar2(IVar), \ldots \})}
\]

\(^{14}\)When only one function in the given ODE is differentiated, MAPLE can determine that function for itself and the second argument can be omitted.
In some cases, arguments to \texttt{dsolve} beyond those described above can be used to exert explicit control over the specific methods tried, the form of the output produced, or other behaviors of the basic command. Details on these embellishments are described in the help message accessed with the command \texttt{?dsolve} and, for options more specific to particular contexts, with the commands \texttt{?dsolve,ICs}, \texttt{?dsolve,systems}, \texttt{?dsolve,series}, \texttt{?dsolve,numer}, and \texttt{?dsolve,integral-transforms}.

As we learned in Section 7.8.9, we can request MAPLE to tell us a bit about what it is doing by setting a particular infolevel away from its default value to the value 3 with the statement

\begin{verbatim}
infolevel[dsolve] := 3;
\end{verbatim}

Once this value has been established, MAPLE will provide a running report of what it is doing as it seeks a solution to an ODE with \texttt{dsolve}.\footnote{Note that, since newer versions of MAPLE may invoke improved approaches, the reports produced by different versions of MAPLE may not be identical.}

Finally, you are urged to look at the additional MAPLE commands contained in the packages \texttt{DEtools} and \texttt{PDEtools}. These packages contain tools for plotting solutions (including Poincare sections), changing variables, finding indicial equations, finding integrating factors, and performing numerous other tasks. In particular, should you desire information before attempting a solution, you could invoke the command \texttt{odeadvisor},\footnote{See the on-line message produced by the command \texttt{?odeadvisor}.} which in essence analyzes the ODE submitted as its argument and provides hints/suggestions for pursuing its solution. This command is a component of the package \texttt{DEtools}, and will be available only after the statement \texttt{with(DEtools)} has been executed.\footnote{See Section 7.9.}

11.4.1 Projectile in a Viscous Medium

For the sake of a comparison with the result obtained in Section 11.2, we begin by using MAPLE to solve the third member of Eq. (11.4). The necessary commands are\footnote{As in Chapter 7, we abbreviate the presentation of MAPLE dialogs by making liberal use of terminating colons to suppress intermediate output. You are urged to duplicate the dialog in an actual session with MAPLE, replacing all terminating colons with semi-colons.}\footnote{See Section 7.8.9 for a discussion of the use of the inert command \texttt{Diff} in the present context.}

\begin{verbatim}
> infolevel[dsolve] := 3:
> eq := m*Diff(z(t),t$2)=-m*g-b*Diff(z(t),t):
> soln := dsolve(eq, z(t));
\end{verbatim}

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE diff(_b(_a) _a) = -(m*g+b*_b(_a))/m _b(_a)

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order linear fully integrable successful

\begin{verbatim}
soln := z(t) = -C1 me^{-bt/m} - gmt b + C2
\end{verbatim}
Note that MAPLE has here assumed that $b \neq 0$. More careful treatment would be required if $b = 0$, i.e., in the case of no damping.

To complete the solution, we must of course impose appropriate initial conditions. Thus, we continue with the statements

```maple
> z := rhs( soln ):  # Find position as an expression.
> vz := diff( z, t ):  # Find velocity as an expression.
> eq1 := eval( z, t=0 ) = z0:  # Impose initial condition on position.
> eq2 := eval( vz, t=0 ) = vz0:  # Impose initial condition on velocity.
> tmp := solve( {eq1,eq2}, {_C1,_C2} ):  # Solve for integration constants.
> z := eval( z, tmp ):  # Substitute constants into solution.
> z := collect( z, z0 );  # Recast result in a slightly better form.
```

```maple
z := z0 - \frac{me^{-bt/m}(mg + vz0b)}{b^2} - \frac{mgt}{b} + \frac{m^2g + mvz0b}{b^2}
```

```maple
vz := \frac{e^{-bt/m}(mg + vz0b)}{b} - \frac{mg}{b}
```

The clearly equivalent forms

\[z(t) = z0 - \frac{mg}{b} t + \frac{m}{b} \left(vz0 + \frac{mg}{b} \right) \left(1 - e^{-bt/m} \right) \]

(11.69)

and

\[vz(t) = -\frac{mg}{b} + \left(vz0 + \frac{mg}{b} \right) e^{-bt/m} \]

(11.70)

for the position and velocity are even better.\(^{20}\) This result for $z(t)$ agrees fully with the result obtained in Eq. (11.68).

Wisdom suggests that we should whenever possible actually verify any solution that MAPLE generates. To this end, we substitute the solution into the original equation, evaluate the derivatives explicitly, and simplify the result with the statements

```maple
> value( eval(eq, z(t)=z) ):  # Evaluate velocity again.
> tmp := simplify( % );
```

\[tmp := -(mg + vz0b) e^{-bt/m} = -(mg + vz0b) e^{-bt/m} \]

The left and right sides of this result are clearly equal, though we could make that more explicit either by using the statement

```maple
> lhs(tmp) - rhs(tmp);
0
```

or by invoking the test

```maple
> is( tmp );
true
```

where, with `tmp` having the form $a = b$, the command `is` simply returns `true` or `false` depending on whether the specified expression is, in fact, true or false. To complete the verification, we check satisfaction of the initial conditions with the statement

\(^{20}\)Try to find a way to persuade MAPLE to recast the immediate output into these forms.
11.4. SOLVING ODES SYMBOLICALLY WITH MAPLE

> simplify(eval([z, vz], t=0));

\[
[z_0, v_{z0}]
\]

All is indeed well.

One further check on this solution involves examining its limit as \(b \)—the viscous damping—becomes small. For the coordinate and velocity, we find respectively that \(^{21,22}\)

\[
\begin{align*}
\text{series}(z, b=0, 4); \\
& z_0 + v_{z0} t - \frac{1}{2} gt^2 - \frac{bt^2}{2m} \left(v_{z0} - \frac{1}{3} gt \right) + O(b^2) \\
\text{series}(vz, b=0, 3); \\
& v_{z0} - gt - \frac{bt}{m} \left(v_{z0} - \frac{1}{2} gt \right) + O(b^2)
\end{align*}
\]

The terms free of \(b \) (i.e., terms in \(b^0 = 1 \)) clearly agree with the known results for free fall in the absence of viscous resistance.

The solution of this problem when motion occurs in two or three of the coordinate directions is explored in one of the exercises.

We have, of course, taken a bit longer route than necessary so as to illustrate the use of MAPLE to find the undetermined constants in the general solution to an ODE. We could combine the first several of our statements into an invocation of \texttt{dsolve} that includes the incorporation of the initial conditions with the statements

\[
\begin{align*}
& \text{restart:} \quad \text{Clear MAPLE’s workspace.} \\
& \text{Define the equation again.} \\
& \text{Solve equation for } N \text{ as function of } t, \text{ imposing the general initial conditions } N(0) = N_0.
\end{align*}
\]

These statements lead us in rather fewer steps to the result already presented in Eq. (11.69) though not immediately in the form there presented.

11.4.2 Logistic Growth

Consider next Eq. (11.22) governing the logistic growth of a population \(N \) in an environment with carrying capacity \(N_c \). We seek the solution with the MAPLE statements

\[
\begin{align*}
& \text{Enter equation.} \\
& \text{Solve equation for } N \text{ as function of } t, \text{ imposing the general initial condition } N(0) = N_0.
\end{align*}
\]

We can apply several tests of validity to this result with the statements

\(^{21}\)Here, we must use the command \texttt{series} rather than the command \texttt{taylor} because—at least superficially—the series in \(b \) appears to have terms with negative powers of \(b \).

\(^{22}\)Again, we have taken the liberty to rearrange the terms in MAPLE’s output to facilitate recognition of the limits. We shall continue to take this liberty.
> simplify(eval(soln, t=0)); Verify satisfaction of initial condition.
 \[N(0) = N_0 \]

> value(eval(eq, N(t) = rhs(soln))); Verify satisfaction of ODE.
> is(%);
 true

> assume(k > 0);
> limit(soln, t=infinity); Examine limit as \(t \to \infty \). As expected, the solution approaches the carrying capacity, regardless of the initial population.
 \[\lim_{t \to \infty} N(t) = N_c \]

> k := 'k'; Remove assumptions from \(k \).

The solution passes all three tests.

Let us conclude the discussion of this example by displaying the evolution of the population in a graph. We begin by casting the expression to be plotted in a dimensionless form, choosing \(N_c \) as the unit in terms of which to express the population.\(^{23}\) We extract the function to be plotted and recast it with the statements

> N := rhs(soln)/Nc;
 \[N :\]

Recast to measure population \(N \) in units of \(N_c \).

> N := simplify(subs(N0=alpha*Nc, %)); Recast to measure initial population in units of \(N_c \).
 \[N = \]

Were we doing this calculation by hand, we might swallow the minus sign out front by changing the sign of each term in the denominator, divide numerator and denominator by \(\alpha \), and then collect the terms in the denominator involving \(e^{-kt} \) to yield the result

\[N(t) = \frac{1}{1 + e^{-kt}(1 - \alpha)/\alpha} \] (11.71)

We can achieve that recasting with the statements

> top := numer(N);
 Extract numerator of \(N \).
 \[top :\]

> bot := denom(N);
 Extract denominator of \(N \).
 \[bot :\]

> N := 1/collect(bot/top, exp(-k*t)); Recompute \(N \).
 \[N = \frac{1}{1 + e^{-kt(1 - \alpha)/\alpha}} \]

Finally, we make one further recasting to measure time in units of \(1/k \) with the statement

> N := subs(t=tau/k, N);
 \[N = \frac{1}{1 + e^{-\tau(1 - \alpha)/\alpha}} \]

With these rescalings, we have but one parameter [physically (biologically?) the initial population measured in units of the carrying capacity]. We produce the graph in Fig. 11.7 with the statements

> N1 := eval(N, alpha=0.25);
> N2 := eval(N, alpha=0.5);

\(^{23}\)Since different versions of MAPLE present results in equivalent but distinct arrangements, you may need different statements than here illustrated to arrive at the desired end result.
Figure 11.7: Logistic growth or decay of a population when, starting with the highest graph, the initial population is 4.0, 2.0, 1.0, 0.5, and 0.25 times the carrying capacity of the environment.

Regardless of the initial population, all solutions converge monotonically on the carrying capacity (1.0 in the units we are using). Further, if we execute the statements

we generate the graph in Fig. 11.8, which shows the initial exponential growth when the population is well below the carrying capacity but then reveals the leveling off as the population approaches the carrying capacity.

11.4.3 Damped Harmonic Oscillator

A third example of the use of MAPLE to solve a single second-order, linear, constant-coefficient, homogeneous, ordinary differential equation was presented in Chapter 7. You are invited to review the discussion of the damped harmonic oscillator in Sections 7.8.9 and 11.1.4.
Figure 11.8: Logistic growth when the population is initially much smaller than the carrying capacity. This curve is called the sigmoid curve.

11.4.4 Chain Radioactive Decay

As a first example of the use of MAPLE to solve a system of linear equations, let us determine the behavior of the radioactive decay chain described by Eq. (11.19). For simplicity, we suppose the initial values \(A(0) = A_0 \) and \(B(0) = C(0) = 0 \), i.e., we start with some \(A \) and no \(B \) or \(C \). The temporal evolution of this system is found with the MAPLE statements

\[
\begin{align*}
> \text{eqA} & := \text{Diff}(A(t), t) = -k_A\cdot A(t); \\
> \text{eqB} & := \text{Diff}(B(t), t) = k_A\cdot A(t) - k_B\cdot B(t); \\
> \text{eqC} & := \text{Diff}(C(t), t) = k_B\cdot B(t); \\
> \text{soln} & := \text{simplify}(\text{dsolve}(\{ \text{eqA, eqB, eqC}, \\
A(0)=A_0, B(0)=0, C(0)=0 \} , \\
\{A(t), B(t), C(t)\})); \\
\end{align*}
\]

MAPLE displays the result:

\[
\begin{align*}
\text{soln} := & \left\{ A(t) = A_0 e^{-k_A t}, \quad B(t) = \frac{A_0 k_A (e^{-k_A t} - e^{-k_B t})}{k_A - k_B}, \\
& C(t) = \frac{A_0 (k_A - k_A e^{-k_B t} + k_B e^{-k_A t} - k_B)}{k_A - k_B} \right\}
\end{align*}
\]

Evidently, in this chain decay, we see a linear combination of two exponential decays, each with its own distinct half-life.

We conclude the discussion of this example by generating a quick graph of \(A(t) \), \(B(t) \), and \(C(t) \) for a specific set of values. We prepare for the graph with the statements

\[
\begin{align*}
> A & := \text{rhs(soln[1])}; \\
> B & := \text{limit(rhs(soln[2]), kA=kB)}; \\
> C & := \text{limit(rhs(soln[3]), kA=kB)}; \\
> A0 & := 1000; \text{kA:=0.1 : kB := 0.1}; \\
\end{align*}
\]

Then, we produce the graph with the single statement

\[\text{24We have rearranged MAPLE's actual output for clarity of expression.}\]
11.4. SOLVING ODES SYMBOLICALLY WITH MAPLE

Figure 11.9: Radioactive decay of A, B, and C. The graph starting at 1000 is A; the graph rising to 1000 at \(t = 50.0 \) is C; and the remaining graph is B.

```maple
> plot( {A,B,C},t=0.0..50.0, y=0.0..1000.0, color=black, thickness=3,
        linestyle=1, labels=["t","A,B,C"], labelfont=[TIMES,ROMAN,16],
        axesfont=[TIMES,ROMAN,14], labelfont=[HORIZONTAL,VERTICAL] );
```

The resulting graph is shown in Fig. 11.9.

11.4.5 Coupled Oscillators

Let us next solve for the motion of the coupled oscillators described in Section 11.1.6. We shall address the problem in the dimensionless form presented in Eq. (11.36), imposing the general initial conditions in Eq. (11.37). For simplicity, however, we will take the initial velocities both to be zero.\(^{25}\)

First, suppressing the display of MAPLE’s response, we enter the equations with the statements\(^{26}\)

```maple
> eq1 := Diff(x1(t),t$2) + x1(t) - kappa*(x2(t)-x1(t)) = 0:
> eq2 := Diff(x2(t),t$2) + x2(t) + kappa*(x2(t)-x1(t)) = 0:
```

Then we create a set containing the initial values with the statement

```maple
> ics := { x1(0)=x10, x2(0)=x20, D(x1)(0)=0, D(x2)(0)=0 }:
```

and, finally, we request the solution with the statement

```maple
> soln := dsolve( {eq1,eq2} union ics, {x1(t), x2(t)} );
```

\[\begin{align*}
 x_2(t) &= \frac{1}{2}(x_{10} + x_{20}) \cos(t) + \frac{1}{2}(-x_{10} + x_{20}) \cos(\sqrt{2\kappa+1} t), \\
 x_1(t) &= \frac{1}{2}(-x_{10} + x_{20}) \cos(\sqrt{2\kappa+1} t) + \frac{1}{2}(x_{10} + x_{20}) \cos(t)
\end{align*} \]

\(^{25}\)You are urged to explore other initial conditions.

\(^{26}\)In the derivation of the dimensionless equations, we used overbars to identify the dimensionless quantities. We here drop that refinement in the notation, omitting the overbars but understanding that the quantities represented are still dimensionless.
Clearly, the solution is a superposition of different sinusoidal oscillations, one at frequency 1 (in units of $\omega = \sqrt{k/m}$) and the other at frequency $\sqrt{2\kappa + 1}$ (again in units of ω). Clearly also, only the term at frequency 1 is present if $x_{20} = x_{10}$ (the lower-frequency normal mode, in which the two objects oscillate with equal amplitude and in phase), and only the term at frequency $\sqrt{2\kappa + 1}$ is present if $x_{20} = -x_{10}$ (the higher-frequency normal mode, in which the objects oscillate with equal amplitude but out of phase).

11.4.6 Standing Waves in a String

Boundary value problems need to be treated differently from initial value problems. To find the standing waves in a string that satisfy Eqs. (11.56) and (11.57), for example, we might (naively, as it turns out) try the statements

```maple
> eq := Diff( f(x), x$2 ) + k^2 * f(x) = 0:
> soln := dsolve( {eq,f(0)=0,f(l)=0}, f(x) );
```

MAPLE returns $f(x) = 0$, having concluded that only the trivial solution to the ODE can be made to satisfy both boundary conditions. In imposing the boundary conditions, MAPLE doesn’t recognize that we can find non-trivial solutions, but only if we are prepared to constrain k to a limited set of values.\(^{27}\)

Evidently, we must be more careful. To help MAPLE recognize that the problem is a bit more subtle, we simply solve the differential equation without specifying the boundary conditions, thereby generating a solution that includes two initially undetermined integration constants. Then, we impose the boundary conditions more deliberately. In steps, we solve the equation with the statement\(^ {28}\)

```maple
> soln := dsolve( eq, f(x) );
```

Next, we determine the consequences of the boundary conditions with the statements

```maple
> eq1 := eval( rhs(soln), x=0 ) = 0;  # Impose condition at x = 0.
> eq1 := _C2 = 0
> eq2 := eval( rhs(soln), x=l ) = 0;  # Impose condition at x = l.
> eq2 := _C1 sin(kl) + _C2 cos(kl) = 0
```

At this point, we recognize that we have a pair of equations to be solved simultaneously for $_C1$ and $_C2$. We also recognize, however, that these equations are homogeneous and will in fact have non-trivial solutions only if the determinant of the coefficient matrix happens to be zero. To complete the problem, then, we must extract that coefficient matrix, set its determinant to zero, and solve the resulting equation to find any values of k that may admit non-trivial solutions to the equations themselves. We accomplish that end with the statements\(^ {29}\)

\(^{27}\)Had we imposed different values on the solution at the two ends of the interval, a non-trivial solution would have emerged. Try it, say, with $f(0) = 0$ and $f(\ell) = x_1$.

\(^{28}\)Different implementations of MAPLE on different platforms may exchange the roles of $_C1$ and $_C2$.

\(^{29}\)Note that different versions of MAPLE may exchange the role of the special symbols $_C1$ and $_C2$.
\section*{11.4. SOLVING ODES SYMBOLICALLY WITH MAPLE}

Extract coefficient matrix.

\begin{verbatim}
> (M,b) := LinearAlgebra[GenerateMatrix]([eq1,eq2],[C1,C2]);

\begin{align*}
(M, b) &= \begin{bmatrix}
0 & 1 \\
\sin(k\ell) & \cos(k\ell)
\end{bmatrix}, \\
& \begin{bmatrix}
0 \\
-\sin(k\ell)
\end{bmatrix}
\end{align*}
\end{verbatim}

Evaluate determinant.

\begin{verbatim}
> LinearAlgebra[Determinant](M);

\end{verbatim}

Set environment variable so all solutions to the equation will be returned by solve.

\begin{verbatim}
>_EnvAllSolutions := 'true';
> rts := solve(%% = 0, k);

rts := \pi \text{Z}_1
\end{verbatim}

Here \text{Z}_1—a symbol MAPLE has introduced—stands for an arbitrary integer; we have discovered that, with appropriate setting of an environment variable, MAPLE’s command \texttt{solve} can even handle some equations involving trigonometric functions.

Having now found acceptable values of \(k \), we find the corresponding values of \(C_1 \) and \(C_2 \) by returning to equations \texttt{eq1} and \texttt{eq2}. For the allowed values of \(k \),

\begin{verbatim}
> eval(eq1, k=rts);

_2 = 0

> eval(eq2, k=rts);

_2(\text{-}1)^{\text{Z}_1} = 0
\end{verbatim}

The first of these equations tells us that we \textit{must} choose \(C_2 = 0 \)—a fact we really knew at the very beginning. Once we have done that, however, the second equation is automatically satisfied, and we learn \textit{nothing} about \(C_1 \), which evidently remains arbitrary insofar as the conditions of the problem are concerned.

In the end, we discover that we can find acceptable solutions to the original boundary value problem only when \(k \) has one of the values \(n\pi/\ell \) (for a cleaner appearance, we replace \text{Z}_1 with \(n \)) and \(_2 \) is set to zero. Within MAPLE, we find that

\begin{verbatim}
> eval(soln, {k=rts, eq1});

> subs(_2=n, %);

f(x) = _1 \sin \frac{n\pi x}{\ell}
\end{verbatim}

where \(n \) assumes any of the values 1, 2, 3, \ldots (but not the value 0—because the solution reduces to zero in that case—and not negative values—because they really change only the overall sign of the solution and could be seen as simply an alternative choice of \(C_1 \)). Further, since \(\omega = kc \), we would associate with this solution the frequency

\[\omega_n = kn c = \frac{\pi c}{\ell} = n \omega_1 \]
\[
\text{(11.72)}
\]

where \(\omega_1 \) is the fundamental frequency. We find, in particular, that all allowed frequencies are integer multiples of the fundamental frequency.

\section*{11.4.7 Infinite Depth Quantum Well}

As pointed out in Section 11.1.9, the quantum problem of a particle in an infinitely deep, one-dimensional, square potential well is mathematically identical to the problem we have just addressed. Since the allowed values of \(k \) have turned out to be \(n\pi/\ell \), we then conclude that the allowed energies in the quantum problem would be

\[E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{n^2 \hbar^2 \pi^2}{2m \ell^2} \]
\[
\text{(11.73)}
\]
Further, we would associate the (unnormalized) wave function
\[\psi_n(x) = N_n \sin \frac{n\pi x}{\ell} \]
(11.74)
with the energy \(E_n \). In the quantum problem, the allowed energies are not integer multiples of the lowest energy; rather, the allowed energies increase in proportion to the squares of the integers.

11.4.8 Finding Solutions by Series Methods

Particularly when analytic methods appear to be yielding little result, we are sometimes tempted to invoke the method of Frobenius, representing the solution to the ODE of interest as a power series
\[f(x) = \sum_{n=0}^{\infty} a_n x^{n+\gamma} \]
(11.75)
and seeking an indicial equation determining \(\gamma \) and recursion relationships determining \(a_n \) from a few of the early coefficients. In progressing through its succession of methods, MAPLE will in some cases automatically adopt this method as a last resort. If we know ahead of time that we want a solution generated with this method (or some other particular method), we can circumvent MAPLE’s trial of other methods and specify the desired method by stipulating an optional argument to the command `dsolve`. The statement

\[> \text{dsolve(\{ ODE, ICs\}, DVar(IVar), 'type=series')} \]

will cause `dsolve` to abort its normal search and jump directly to the specified method.30 The series is worked out to an order controlled by the MAPLE environment variable `Order`, whose default value is 6.

Details on the generation of series solutions with MAPLE can be found in the MAPLE manuals, and particularly in the message displayed in response to the command `?dsolve,series`. We illustrate with a simple example, specifically, solution of the equation
\[\frac{d^2x}{dt^2} + \omega^2 x(t) = 0 ; \quad x(0) = x_0 ; \quad \frac{dx}{dt}(0) = v_0 \]
(11.76)
We invoke the statements

\[> \text{Order := 8:} \]
\[> \text{eq := Diff(x(t), t2) + \omega^2*x(t) = 0;} \]
\[> \text{soln := dsolve(\{eq, x(0)=x0, D(x)(0)=v0\}, x(t), 'type=series')}; \]
\[> \text{soln := convert(soln, polynom);} \]
\[> \text{soln := collect(soln, [x0, v0]);} \]

\[\text{soln := } x(t) = \left(1 - \frac{1}{2} \omega^2 t^2 + \frac{1}{24} \omega^4 t^4 - \frac{1}{720} \omega^6 t^6 \right) x_0 + \left(t - \frac{1}{6} \omega^2 t^3 + \frac{1}{120} \omega^4 t^5 - \frac{1}{5040} \omega^6 t^7 \right) v_0 \]

The statements

\[> \text{convert(series(cos(\omega*t), t, 8), polynom);} \]
\[\left(1 - \frac{1}{2} \omega^2 t^2 + \frac{1}{24} \omega^4 t^4 - \frac{1}{720} \omega^6 t^6 \right) \]
\[> \text{convert(series(sin(\omega*t)/\omega, t, 8), polynom);} \]
\[\left(t - \frac{1}{6} \omega^2 t^3 + \frac{1}{120} \omega^4 t^5 - \frac{1}{5040} \omega^6 t^7 \right) \]

30Other possibilities for this method are listed in the MAPLE manuals, in particular in the message displayed in response to the command `?dsolve.`
provide evidence that the solution obtained as a series is, more generally

\[x(t) = x_0 \cos(\omega t) + \frac{v_0}{\omega} \sin(\omega t) \]

(11.77)

11.6 Algorithms for Solving ODEs Numerically

A numerical solution to an ordinary differential equation emerges from the application of a procedure—frequently called an algorithm—for calculating approximate values of the dependent variables at a succession of values of the independent variable. All numerical methods for solving ordinary differential equations exploit the fact that the differential equations determine the rates of change of the dependent variables from the independent variable themselves. Because solutions obtained numerically are approximate, we must give attention not only to the methods themselves but also to means by which we can assess the accuracy of the solutions obtained.

For the sake of a simple discussion, we shall, in laying out the essence of each of several algorithms, suppose that we are dealing with a single first-order ODE and an initial condition of the form

\[\frac{dx}{dt} = f(x,t) \ ; \ x(0) = x_0 \]

(11.78)

where \(f(x,t) \) and \(x_0 \) are known from the beginning. The relatively straightforward extension of the initial discussion to systems of first-order equations and to single equations of higher order will be illustrated in several specific examples but will not be explicitly discussed in general terms.

11.6.1 Euler’s Method

Euler’s method, which embodies the simplest numerical approach to ODEs, is based on the assumption that the rates of change of the dependent variables do not themselves change very quickly. Thus, given a short enough time interval \(\Delta t \), the rates of change throughout that interval may be regarded, at least approximately, as constant and equal to the rates of change at the beginning of the interval. For example, provided \(\Delta t \) is not too large,\(^3^1\) we can write the approximation

\[\frac{dx}{dt} = f(x,t) \implies \frac{x(t + \Delta t) - x(t)}{\Delta t} \approx f(x,t) \implies x(t + \Delta t) \approx x(t) + f(x,t) \Delta t \]

(11.79)

The value \(x(t + \Delta t) \) of the dependent variable at \(t + \Delta t \) is the value \(x(t) \) at time \(t \) plus the amount \(\Delta x \) by which \(x \) changes in the interval, where we estimate \(\Delta x \) by multiplying the rate of change of \(x \) given by \(f(x(t),t) \) at the beginning of the interval by the elapsed time \(\Delta t \), i.e., \(\Delta x = f(x(t),t) \Delta t \). In an alternative notation, if we think of \(t \) as the “old” time and \(t + \Delta t \) as the “new” time, we might express the basic stepping equations as

\[f_{\text{old}} = f(x_{\text{old}},t_{\text{old}}) \ ; \ x_{\text{new}} = x_{\text{old}} + f_{\text{old}} \Delta t \ ; \ t_{\text{new}} = t_{\text{old}} + \Delta t \]

(11.80)

Starting from the initial condition as the first \(x_{\text{old}} \) (and a choice of time step \(\Delta t \)—see later), we can then use these stepping equations repeatedly to move from knowledge of \(x(0) \) to knowledge of \(x(\Delta t) \) to knowledge of \(x(2 \Delta t) \) to ..., continuing as long as our patience endures. The basic strategy of Euler’s method would be summarized in the algorithm in Table 11.1.\(^3^2\) As this example shows, we can generate a complete—though approximate—solution from initial knowledge of only

\(^3^1\)The precise meaning of “too large” is difficult to define. In general terms, if \(T \) is a typical time during which the solution changes appreciably (say by 10–20%), then a value of \(\Delta t \) satisfying \(\Delta t \ll T \) will probably yield an adequate solution. Each case must be examined on its own terms; no general rules can be formulated.

\(^3^2\)In many cases, the ultimate and penultimate pairs of statements in the loop can be combined into a single pair of statements. We here refrain from that more compact expression so that the two distinct operations—calculating the new to complete the step and replacing the old with the new to prepare for the next step—will remain distinct.
Table 11.1: Simple Euler algorithm.

\[
\begin{align*}
dt &\leftarrow \Delta t \\
told &\leftarrow 0.0 \\
xold &\leftarrow x_0 \\
\text{loop} &\quad \text{Choose time step.} \\
\quad \text{fold} &\leftarrow f(\text{xold}, \text{told}) \\
\quad \text{print, told, xold, fold} &\quad \text{Initialize told.} \\
\quad \text{exit_loop when done} &\quad \text{Initialize xold.} \\
\quad \text{xnew} &\leftarrow \text{xold} + \text{fold} \cdot dt \\
\quad \text{tnew} &\leftarrow \text{told} + dt \\
\quad \text{xold} &\leftarrow \text{xnew} \\
\quad \text{told} &\leftarrow \text{tnew} \\
\text{end_loop} &\quad \text{Evaluate f_{old}.} \\
\quad \text{Display results.} \\
\quad \text{Calculate values at new time.} \\
\quad \text{Replace old values with new.}
\end{align*}
\]

1. The differential equation, which determines the rate of change of the dependent variable from the dependent and independent variables themselves,

2. The initial condition, which starts the process by providing the first row in a table containing \(t, x, \) and \(f \),

3. Specific values for any parameters—here there happen to be none—in the differential equation, and

4. A choice of time step \(\Delta t \).

With this information as input, each pass through the loop in the above algorithm generates a new row in the table containing \(t, x, \) and \(f \).

To be even more concrete (and to illustrate the simple extension to a system of ODEs), let us work out by hand the first few steps in the Euler solution of Eq. (11.19) describing a chain radioactive decay. Reflecting the differential equations, the stepping equations for this specific case are

\[
\begin{align*}
A(t + \Delta t) &= A(t) + \frac{dA}{dt}(t) \Delta t = A(t) - k_A A(t) \Delta t \quad (11.81) \\
B(t + \Delta t) &= B(t) + \left[k_A A(t) - k_B B(t) \right] \Delta t \quad (11.82) \\
C(t + \Delta t) &= C(t) + k_B B(t) \Delta t \quad (11.83)
\end{align*}
\]

For definiteness,33 we take \(A(0) = 1000.000, B(0) = C(0) = 0.000, \) and \(k_A = k_B = 0.100, \) and we select a time step of \(\Delta t = 0.250 \).34 Equations (11.81), (11.82), and (11.83) at \(t = 0.0 \) then become

\[
\begin{align*}
A(0.00 + 0.25) &= 1000.0 - 0.1 \cdot 1000.0 \cdot 0.25 = 975.000 = A(0.25) \\
B(0.00 + 0.25) &= 0.0 + \left[0.1 \cdot 1000.0 - 0.1 \cdot 0.0 \right] \cdot 0.25 = 25.000 = B(0.25) \\
C(0.00 + 0.25) &= 0.0 + 0.1 \cdot 0.0 \cdot 0.25 = 0.000 = C(0.25)
\end{align*}
\]

33One disadvantage of numerical approaches is that they are, indeed, numerical. We cannot find solutions containing symbols representing parameters. We must seek solutions for specific numerical values. If we need to know the dependence of the solution on a particular parameter, we will have to generate a separate solution for each desired value of the parameter.

34This choice at the moment is more for convenience than accuracy. The accuracy of the resulting solution is, of course, markedly influenced by the choice of \(\Delta t \). We shall return to assess the suitability of this choice in later sections.
Table 11.2: Evolution of three-species radioactive decay determined by Euler’s method with $\Delta t = 0.25$.

<table>
<thead>
<tr>
<th>t</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A + B + C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.00</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1000.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.000</td>
<td>25.000</td>
<td>0.0000</td>
<td>1000.000</td>
</tr>
<tr>
<td>0.50</td>
<td>950.625</td>
<td>48.750</td>
<td>0.6250</td>
<td>1000.000</td>
</tr>
<tr>
<td>0.75</td>
<td>926.859</td>
<td>71.297</td>
<td>1.8440</td>
<td>1000.000</td>
</tr>
</tbody>
</table>

Continuing the algorithm further by applying Eqs. (11.81), (11.82), and (11.83) for $t = 0.25$, we find

$$A(0.25 + 0.25) = 975.0 - 0.1 \cdot 975.0 \cdot 0.25 = 950.625 = A(0.50)$$

$$B(0.25 + 0.25) = 25.0 + \left[0.1 \cdot 975.0 - 0.1 \cdot 25.0 \right] \cdot 0.25 = 48.750 = B(0.50) \quad (11.85)$$

$$C(0.25 + 0.25) = 0.0 + 0.1 \cdot 25.0 \cdot 0.25 = 0.625 = C(0.50)$$

Going yet one more step, Eqs. (11.81), (11.82), and (11.83) for $t = 0.50$ yield that

$$A(0.50 + 0.25) = 950.625 - 0.1 \cdot 950.625 \cdot 0.25 = 926.859 = A(0.75)$$

$$B(0.50 + 0.25) = 48.75 + \left[0.1 \cdot 950.625 - 0.1 \cdot 48.75 \right] \cdot 0.25 = 71.267 = B(0.75) \quad (11.86)$$

$$C(0.50 + 0.25) = 0.625 + 0.1 \cdot 48.75 \cdot 0.25 = 1.844 = C(0.75)$$

The resulting values are compiled in Table 11.2, in which the first row is provided by the initial conditions and all subsequent rows are determined by the algorithm outlined in Eqs. (11.81), (11.82), and (11.83). Knowing that an exact solution will reflect the conservation of $A + B + C$ [see Eq. (11.20)], we have added a column containing the sum of the amounts of all three species present. Clearly, carried this far, anyway, the solution appears automatically to satisfy that requirement.\(^{35}\)

11.6.2 Improved Euler Method

While Euler’s method is simple to motivate, describe, and implement, it unfortunately yields only a coarse approximation. Typically it will require a very small time step (which translates into a large amount of computational time and the potential accumulation of computer round-off error) to achieve adequate accuracy. Considerable effort has been spent in devising alternative, more refined algorithms that converge more rapidly with a minimal amount of computational labor (and hence less internal round-off error). The improved Euler method, for example, takes the Euler result at each step to be only an estimate (prediction) of the solution for that step and uses that estimate to refine the solution before going on to the next step. Starting with the values x_{old} and t_{old} and a chosen time step Δt, we

1. calculate $f_{\text{old}},$

2. calculate the predicted values

$$x_{\text{pred}} = x_{\text{old}} + f_{\text{old}} \Delta t \quad ; \quad t_{\text{new}} = t_{\text{old}} + \Delta t \quad (11.87)$$

\(^{35}\)Actually, however, that the sum $A + B + C$ preserves its initial value is not really a check on the accuracy of the method in this example. If we simply add the three stepping equations we are using [Eqs. (11.81)–(11.83)], we find that $A(t + \Delta t) + B(t + \Delta t) + C(t + \Delta t) = A(t) + B(t) + C(t)$. Solutions generated by Euler’s method applied to this problem automatically satisfy the conservation law, regardless of Δt.\footnote{Actually, however, that the sum $A + B + C$ preserves its initial value is not really a check on the accuracy of the method in this example. If we simply add the three stepping equations we are using [Eqs. (11.81)–(11.83)], we find that $A(t + \Delta t) + B(t + \Delta t) + C(t + \Delta t) = A(t) + B(t) + C(t)$. Solutions generated by Euler’s method applied to this problem automatically satisfy the conservation law, regardless of Δt.}
TABLE 11.3: Improved Euler algorithm.

\[
\begin{align*}
\text{dt} & \leftarrow \Delta t \\
\text{told} & \leftarrow 0.0 \\
\text{xold} & \leftarrow x_0 \\
& \text{loop} \\
& \quad \text{fold} \leftarrow f(xold, told) \\
& \quad \text{print, told, xold, fold} \\
& \quad \text{exit loop when done} \\
& \quad \text{xpred} \leftarrow xold + fold \cdot dt \\
& \quad \text{tnew} \leftarrow told + dt \\
& \quad \text{fpred} \leftarrow f(xpred, tnew) \\
& \quad \text{xnew} \leftarrow xold + \frac{1}{2} (fold + fpred) \cdot dt \\
& \quad \text{xold} \leftarrow xnew \\
& \quad \text{told} \leftarrow tnew \\
& \text{end loop}
\end{align*}
\]

Choose time step.
Initialize \(told\).
Initialize \(xold\).
Evaluate \(f_{old}\).
Display results.
Calculate predicted value.
Evaluate \(f_{pred}\).
Calculate final (corrected) value.
Replace old values with new.

3. calculate \(f_{pred} = f(x_{pred}, t_{new})\), and
4. calculate the final (corrected) value

\[
x_{new} = x_{old} + \frac{1}{2} \left(f_{old} + f_{pred} \right) \Delta t
\] (11.88)

In this last step, we in effect estimate the average rate of change over the interval from \(t\) to \(t + \Delta t\) as the average of (a) its value \(f_{old}\) at the beginning of the interval and (b) the best estimate \(f_{pred}\) we have of its value at the end of the interval. In so doing, we admit that the rate of change may change in the interval. Intuitively, for a given \(\Delta t\), the improved Euler method will be more accurate than Euler’s method, which presumes that the average rate of change over the interval is adequately approximated by its value at the beginning of the interval.\(^{36}\)

A full laying out of this improved algorithm differs from the algorithm presented in the previous section in only a few lines, having the expression laid out in Table 11.3. As with Euler’s method, knowledge of the differential equation, the initial condition, and any parameters, together with a choice of a time step, starts a process that leads to (approximate) knowledge of the solution indefinitely into the future.

By way of example (but leaving the arithmetic to the reader), we present in Table 11.4 the results of applying the improved Euler method for the example treated in the previous section. Values in this table should be compared with those in Table 11.2.

11.6.3 Runge-Kutta Methods

A popular alternative viewpoint, which leads to the deduction of what are called Runge-Kutta stepping algorithms, requires at base that two different Taylor series expansions of the solution match to a chosen number of terms. On the one hand, we know that

\[
\begin{align*}
x(t + \Delta t) &= x(t) + \frac{dx(t)}{dt} \Delta t + \frac{1}{2} \frac{d^2x(t)}{dt^2} \Delta t^2 + O(\Delta t^3) \\
&= x(t) + f(x, t) \Delta t + \frac{1}{2} \frac{df(x(t), t)}{dt} \Delta t^2 + O(\Delta t^3)
\end{align*}
\]

\(^{36}\)Phrased as we have described it, the improved Euler method entails first calculating a predicted value at the end point of an interval and then uses that value to determine a corrected final value at that point before going on to the next point. Such methods are often called predictor-corrector methods.
11.6. Algorithms for Solving ODEs Numerically

Table 11.4: Evolution of three-species radioactive decay determined by the improved Euler method with $\Delta t = 0.25$.

<table>
<thead>
<tr>
<th>t</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A + B + C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1000.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.313</td>
<td>24.375</td>
<td>0.312</td>
<td>1000.000</td>
</tr>
<tr>
<td>0.50</td>
<td>951.234</td>
<td>47.547</td>
<td>1.219</td>
<td>1000.000</td>
</tr>
<tr>
<td>0.75</td>
<td>927.751</td>
<td>69.559</td>
<td>2.690</td>
<td>1000.000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
= \ x(t) + f(x, t)\Delta t + \frac{1}{2} \left(\frac{\partial f(x, t)}{\partial x} \frac{dx(t)}{dt} + \frac{\partial f(x, t)}{\partial t} \right) \Delta t^2 + O(\Delta t^3)
\]

\[
= \ x(t) + f(x, t)\Delta t + \frac{1}{2} \left(f(x, t) \frac{\partial f(x, t)}{\partial x} + \frac{\partial f(x, t)}{\partial t} \right) \Delta t^2 + O(\Delta t^3) \quad (11.89)
\]

Motivated by the improved Euler method on the other hand, we are tempted to suppose that we might build a stepping algorithm by

1. introducing a judicious time $t' = t + a \Delta t$, where a, constrained by $0 \leq a \leq 1$, is yet to be specified,

2. introducing a tentative solution $x' = x(t) + b \Delta t f(x(t), t)$, where b, constrained by $0 \leq b \leq 1$, is yet to be specified, and

3. taking $x(t + \Delta t) = x(t) + \left(w_1 f(x(t), t) + w_2 f(x', t') \right) \Delta t$, where the weights w_1 and w_2 are yet to be specified.

The essential idea of the Runge-Kutta approach is to expand the assumption of item 3 as a power series in Δt and require that its first few terms agree with those in the series expressed in Eq. (11.89). To deduce this second Taylor series, we first invoke the two-dimensional Taylor series to find that

\[
f(x', t') = f \left(x + b \Delta t f(x, t), t + a \Delta t \right)
\]

\[
= f(x, t) + \frac{\partial f(x, t)}{\partial x} b \Delta t f(x, t) + \frac{\partial f(x, t)}{\partial t} a \Delta t + O(\Delta t^2) \quad (11.90)
\]

where—noting at item 3 above that this term will ultimately be multiplied by Δt—we have included only terms through those first order in Δt. Then, we find that

\[
x(t + \Delta t) = x(t) + w_1 f(x(t), t) \Delta t
\]

\[
+ w_2 \left(f(x, t) + \frac{\partial f(x, t)}{\partial x} b \Delta t f(x, t) + \frac{\partial f(x, t)}{\partial t} a \Delta t + O(\Delta t^2) \right) \Delta t
\]

\[
= x(t) + (w_1 + w_2) f(x(t), t) \Delta t
\]

\[
+ \left(w_2 b f(x(t), t) + w_2 a \frac{\partial f(x(t), t)}{\partial t} \right) \Delta t^2 + O(\Delta t^3) \quad (11.91)
\]

Note that the steps laid out here reduce to the improved Euler method if we take $a = b = 1$ and $w_1 = w_2 = 1/2$.

\[37\] Note that the steps laid out here reduce to the improved Euler method if we take $a = b = 1$ and $w_1 = w_2 = 1/2$.

CHAPTER 11. SOLVING ORDINARY DIFFERENTIAL EQUATIONS

Table 11.5: A Runge-Kutta Method.

```plaintext
dt ←− ∆t

told ←− 0.0

xold ←− x_0

loop

fold ←− f(xold, told)

print, told, xold, fold

exit_loop when done

k1 ←− fold*dt

k2 ←− f(xold+k1, told+dt)*dt

tnew ←− told + dt

xnew ←− xold + (k1+k2)/2

xold ←− xnew

told ←− tnew

end_loop
```

Choose time step.
Initialize told.
Initialize xold.

Evaluate fold.
Display results.

Find change using rate at told.
Find change using rate at tnew.
Calculate tnew.
Calculate xnew.
Replace old values with new.

which will match Eq. (11.89) through terms of order \(O(\Delta t^2)\) if we choose

\[
\begin{align*}
w_1 + w_2 &= 1 \quad ; \quad aw_2 = bw_2 = \frac{1}{2} \quad \text{or} \quad w_1 + w_2 = 1 \quad ; \quad a = b \quad ; \quad w_2 = \frac{1}{2a}
\end{align*}
\]

(11.92)

We have discovered a multitude of Runge-Kutta schemes, one corresponding to each possible choice of \(a, b, w_1\), and \(w_2\)\footnote{Actually, we choose only \(a\). Then \(b = a, w_2 = 1/2a\), and \(w_1 = 1 - w_2\) are fixed.}. One common choice embodies the values in footnote 37—values that reveal that the improved Euler method is a member of this Runge-Kutta family. A second common choice takes \(w_1 = 0, w_2 = 1\), and \(a = b = \frac{1}{2}\), in which case the stepping equations become

\[
\begin{align*}
t' &= t + \frac{1}{2}\Delta t \quad ; \quad x' = x + \frac{1}{2}f(x, t)\Delta t \quad ; \quad x(t + \Delta t) = x(t) + f(x', t')\Delta t
\end{align*}
\]

(11.93)

With this scheme, we first step half way over the interval with Euler’s method, then we use that result to estimate the rate of change at the midpoint of the interval and, finally, we use the rate of change at the midpoint to project the solution at the end of the interval. Clearly, this route provides yet another means to estimate the average rate of change over the interval; it is called the midpoint method.

Even though the Runge-Kutta algorithm for \(w_1 = w_2 = \frac{1}{2}\) and \(a = b = 1\) coincides with the improved Euler method, it is usually presented in the form shown in Table 11.5. This form is more compatible with the most convenient expressions of other algorithms in the broad Runge-Kutta family.

The algorithm described in the previous two paragraphs is known as a second-order Runge-Kutta algorithm because its deduction entailed matching terms in two Taylor expansions through those of order \(\Delta t^2\). We could, of course, replace the expression in item 3 above with a more elaborate expression, expand it to include higher-order terms in \(\Delta t\), and insist on agreement with a higher-order Taylor expansion deduced from the differential equation. The calculational labor becomes increasingly complicated. Partly because of its popularity, we present without derivation the essence of a fourth-order Runge-Kutta algorithm, limiting ourselves only to the steps that would replace the ones calculating \(k1\), \(k2\), and \(xnew\) in the above algorithm:

\[
\begin{align*}
k1 &\leftarrow f(xold, told)*dt \\
k2 &\leftarrow f(xold+k1/2, told+dt/2)*dt \\
k3 &\leftarrow f(xold+k2/2, told+dt/2)*dt \\
k4 &\leftarrow f(xold+k3, told+dt)*dt \\
xnew &\leftarrow xold + (k1+2*k2+2*k3+k4)/6
\end{align*}
\]

Find change using rate at beginning.
Estimate change using rate at midpoint.
Estimate change using refined rate at midpoint.
Estimate change using rate at end.
Calculate final value.
This fourth-order algorithm emerges when the two Taylor series are matched through the terms involving Δt^4. A higher-order method, of course, is more accurate than a lower-order method for a given time step. Equivalently, a lower-order method requires a smaller time step to give the same degree of accuracy as a higher-order method.

11.6.4 Assessing Accuracy

Numerical evaluations, of course, only approximate the solution to ordinary differential equations. Thus, we cannot complete a solution without also assessing its accuracy. Furthermore, this task must be accomplished without knowledge of the exact solution. The importance of being aware that numerical methods are always approximate cannot be overstressed.

Two distinctly different sorts of errors can occur. Truncation errors arise because the solution has been based on a finite-difference approximation to the derivatives appearing in the equation; roundoff errors arise because computers do not store non-integers to 100% precision and, in an iterated calculation where each step depends on the previous step, the imprecision with which each component is represented within the computer can accumulate as the number of steps increases. Truncation errors become smaller as the step size is reduced. Roundoff errors, unfortunately, become more significant as step size is reduced (because, with smaller steps, more arithmetic must be done).

Usually, roundoff errors are negligible, the more so as the sophistication of the algorithm increases (and, hence, the amount of arithmetic decreases). Provided we do not strive for accuracy greater than about 1 part in 10^5 (with single precision floating point arithmetic), we can usually ignore roundoff errors. Thus, provided the solution we seek does not vary too rapidly on the time scale defined by the time step in use, the quickest way to obtain a reasonably reliable estimate of truncation error is to solve the equation with two different step sizes, the second being half of the first, and compare the two results. Presuming that roundoff error has not begun to be important, we can be confident that the second result is more accurate than the first. Thus, if the two agree to 1 part in 10^3, say, we can with reasonable confidence assume that the second value is good to one part in 10^3. Indeed, the second value is probably better than that, but assessing its accuracy by this method would entail obtaining a third value by using a step size half of that used to determine the second value. Indeed, one strategy for achieving a desired accuracy with reasonable certainty is to solve the ODE repeatedly by a particular method, halving the step size each time, and continuing until the new value received differs from its predecessor by less than the desired accuracy (though we must be careful not to push this approach so far that roundoff problems within the computer begin to become significant).

From a more sophisticated perspective, numerical analysts have deduced expressions for the error in various approaches to solving ODEs numerically. To assess the error in Euler’s method, for example, we begin by noting the Taylor theorem with remainder, which asserts that

$$x(t + \Delta t) = x(t) + \frac{dx}{dt}(t) \Delta t + \frac{1}{2} \frac{d^2 x}{dt^2}(\xi) \Delta t^2$$

where ξ is a value in the interval $t \leq \xi \leq t + \Delta t$. This expression is exact, though it is only somewhat useful because it tells us only the order of magnitude of the error; it gives no clue as to the actual value of ξ. Nonetheless, we can conclude that

$$x_{\text{exact}}(t + \Delta t) = x_{\text{Euler}}(t + \Delta t) + \frac{1}{2} \frac{d^2 x}{dt^2}(\xi) \Delta t^2$$

Footnotes:

39 which provides yet another motivation for casting problems in dimensionless form.

40 This assertion is refined in the next paragraphs.

41 Warning: This approach is not entirely secure if the procedure converges slowly as the time step is reduced. Remember that $\sum_{n=1}^{\infty} 1/n$ diverges even though the effect of the millionth term added to the partial sum starts in the sixth decimal place.
or that

\[\left| x_{\text{exact}}(t + \Delta t) - x_{\text{Euler}}(t + \Delta t) \right| \leq \text{Max} \left(\left| \frac{1}{2} \frac{d^2 x}{d t^2}(\xi) \right| \right) \Delta t^2 \]

(11.96)

Thus, we learn that, with Euler’s method, the (truncation) error per step varies as the square of the step size; halving the step size will reduce the error per step by a factor of four.

Statements similar to Eq. (11.95) can be deduced for all of the methods that we have described in this section. Without proof,\(^ {42} \) we present the properties

\[x_{\text{exact}}(t + \Delta t) = x_{\text{Euler}}(t + \Delta t) + O(\Delta t^2) \]

(11.97)

\[x_{\text{ImpEul}}(t + \Delta t) + O(\Delta t^3) \]

(11.98)

\[x_{\text{RK2}}(t + \Delta t) + O(\Delta t^3) \]

(11.99)

\[x_{\text{RK4}}(t + \Delta t) + O(\Delta t^5) \]

(11.100)

For these four common methods, halving the step size reduces the error per step by a factor of four, eight, eight, and thirty-two, respectively. Further, on the basis of these relationships, we characterize “Euler” as a first-order method, “ImpEul” and “RK2” as second-order methods, and “RK4” as a fourth-order method because their derivations involve matching Taylor series to include terms in \(\Delta t \), \(\Delta t^2 \), \(\Delta t^3 \), and \(\Delta t^4 \), respectively.

Unfortunately, the analysis described briefly in the previous paragraph is not the whole story. Each of the statements in that paragraph is correct, provided we assume that the step that arrives at the various estimates of \(x(t + \Delta t) \) starts with the exact solution at time \(t \). Except for the first step, which moves away from (exact) initial conditions, that assumption is invalid. Truncation errors per step compound as more and more steps are taken, and a full assessment of the error in a solution obtained by one or another numerical means must recognize this cumulation. Beyond the error per step, we must be aware of the global truncation error, which attempts to estimate how much error accumulates in the course of working out a solution over the entire desired range of the independent variable. The task of assessing global error is extremely difficult. Crudely, however, if we simply add up expressions like those in the previous paragraph for the \(N \) steps in an entire solution and suppose—without much justification—that each step contributes about the same amount, we would conclude that the global truncation error would be order \(N O(\Delta t^p) \) when the error per step is of order \(O(\Delta t^p) \). For a fixed interval, \(N \) is itself of order \(1/\Delta t \). Thus, we infer that the global truncation error is of order \(O(\Delta t^{p-1}) \). This result does not help us much in determining the global error. It does, however, support the conclusion that, for the four methods in the previous paragraph, halving the step size will reduce the global error by a factor of two, four, four, and sixteen, respectively. In particular, halving the step size with the fourth-order Runge-Kutta method will add at least one more decimal digit to the accuracy of the solution overall (and may well do much better).

We have already mentioned that conserved quantities like energy, linear momentum, and angular momentum can sometimes also be used as a check on the accuracy of an evolving solution. Whenever such a conserved quantity exists, its initial value must, of course, be preserved (within some limits). Failure of a particular solution to conform to that requirement signals a need for a smaller time step or a more sophisticated algorithm. Note, however, that some algorithms (e.g., the Euler algorithm for the three-species radioactive decay) automatically preserve one or more conserved quantities; preservation in such cases does not provide any information about the accuracy of the solution itself.

11.6.5 Adaptive Methods

In the previous subsections, we assumed that the user of a particular algorithm would actually view the values obtained for different time steps and decide personally when to stop by examining the

\(^ {42} \text{M. Abramowitz and I. A. Stegun, } \textit{Handbook of Mathematical Functions}, \textit{(United States) National Bureau of Standards Applied Mathematics Series, No. 55, June, 1964, pg. 896–897.} \)
11.6. ALGORITHMS FOR SOLVING ODES NUMERICALLY

changes that occur as the time step is successively halved. One can, of course, program a computer
to make those decisions. In essence, the program generates the solution with one time step, then
repeatedly generates it with a succession of ever smaller time steps, comparing each new solution
with its immediate predecessor and stopping when the absolute value of the difference is smaller than
a tolerance—either absolute or relative—prescribed in advance. As a guard against an infinite loop,
these algorithms should also stop if the desired tolerance has not been achieved in some maximum
number of refinements and should print a warning when the desired tolerance has not in its judgment
been achieved.

Another family of algorithms aims to minimize computational labor by estimating—though the
methods for doing so are often themselves approximate—the accuracy obtained at each step along
the way to a solution. A trial row in the table of data is generated, and the error is assessed. If the
error is within a user-specified tolerance, the program moves on to the next row in the data table. If
the error exceeds the desired tolerance, the program repeats the calculation with progressively smaller
time steps until the desired tolerance is achieved and only then is a new row added to the table.
The procedure also contains means by which the time step is increased when the estimated error is
less than the specified tolerance. Thus, the time step fluctuates as the solution unfolds, being small
when the solution is changing rapidly and large when the solution is changing slowly. Because of
this feature, the procedure is said to be adaptive. Without the overlay of an elaborate interpolation,
adaptive methods have the disadvantage of generating solutions at irregularly spaced times. That
disadvantage, however, is frequently outweighed by the substantial advantage of concentrating the
computational effort in regions where the solution changes rapidly.

11.6.6 Multistep Methods

All of the methods so far discussed have generated the solution at a particular point from knowledge
of the solution at a single earlier point, though many have interpolated solutions at several points
between the initially known point and the desired end point; such methods are called single-step
methods. Some of the solvers available in some software packages use multistep methods, which
reduce the need for the interpolative procedures by projecting the solution at the next point from
knowledge of the solution at several previous points. In seeking a solution to Eq. (11.78), for example,
we would choose a time step Δt and introduce the points $t_i = i \Delta t$ and the notation $x_i = x(t_i)$ and
$f_i = f(x_i, t_i)$. Then, supposing we already had in hand estimates of the solution at four (say) earlier
points, we might estimate the solution at t_{i+1} by the formula

$$x_{i+1} = x_i + \frac{\Delta t}{24} \left(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} \right)$$

(11.101)

(which represents a particular fourth-order member of a family of methods known as Adams-
Bashforth methods). In effect, we are estimating the average derivative over the interval
$t_{i+1} \leq t \leq t_i$ as a weighted average of the derivatives we can compute at the four points previ-
ous to the one at t_{i+1}, all of which we would—of course—have to have in hand at the time we took
this step.

Because they do not require interpolation within the interval over which we are stepping at any
moment, multistep methods can be computationally extremely efficient. Since we cannot use such a
method until we have in hand the solution at several—in the above example four—points, however,
these methods are not self starting. We must adopt some other method to obtain from the initial
values however many values are needed to support the multistep method. To start a solution based
on the stepping formula of Eq. (11.101), we might use a fourth-order Runge-Kutta method to obtain

43 Sometimes the assessment of accuracy will be based not on the generated solution itself but on some property,
e.g., the energy, computed from that solution.
44 In contrast, Euler’s method, for example, would require using throughout a time step small enough to generate
an accurate solution in regions where the solution varies most rapidly. Consequently, too much computational effort
would be focused in regions where the solution changes slowly enough that a larger time step would be acceptable.
We could, of course, simply take the result given by Eq. (11.101) as the solution at \(t_{i+1} \). For a more sophisticated solution, we could regard that result as a prediction and use it in a paired formula to “correct” the prediction. An appropriate fourth-order corrector formula is a member of the Adams-Moulton family, namely

\[
x_{i+1} = x_i + \frac{\Delta t}{24} \left(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2} \right)
\]

(11.102)

Once a sufficient number of values is in hand, we could at each step invoke Eq. (11.101) to predict the next solution and then Eq. (11.102) to refine it. We might call the resulting method the Adams-Bashforth-Moulton method.

11.10 Solving ODEs Numerically with PYTHON

Note: All PYTHON program (.py) files referred to in this chapter are available in the directory \$HEAD/python, where (as defined in the Local Guide) \$HEAD must be replaced by the appropriate path for your site. At some sites, this directory or some other directory containing these files may also have been placed in PYTHON’s default search path. If so, the files can be found by PYTHON without explicit specification of a path. Otherwise, you will have to use the full path to copy them into your default directory to access them.

ODEs can be solved numerically either by using PYTHON’s’s elementary commands or, more simply, by invoking one of PYTHON’s built-in routines scipy.integrate.odeint or scipy.integrate.ode. The module scipy must, of course, be installed for these features to be invoked.

11.10.1 Using Elementary Commands

To carry the process worked out by hand in Section 11.6.1 much beyond the first few steps is a job for a computer. Suppose, for example, we wanted to determine the Euler approximation to the solution of Eq. (11.19) for chain radioactive decay over the time interval \(0.0 \leq t \leq 50.0 \) with a time step of \(\Delta t = 0.25 \) and \(k_A = k_B = 0.1 \). We could exploit the capabilities of PYTHON as follows. We anticipate that values will be stored in arrays \(t, A, B, \) and \(C \). Ultimately these arrays will have 201 elements (time interval divided by time step = 50.0/0.25 = 200 steps, but we need an element also for the initial value). Initially, however, we set only the first element of each array and, of course, the parameters and the time step. Possible statements are

```python
import numpy as np

t=[0.0]; A=[1000.0]
B=[0.0]; C=[0.0]
kA = 0.1; kB = 0.1
dt = 0.25

for i in np.arange(1,201,1):
    B = np.append( B, [B[i-1] + kA*A[i-1]*dt - kB*B[i-1]*dt] )
    C = np.append( C, [C[i-1] + kB*B[i-1]*dt] )
    t = np.append( t, [t[i-1] + dt] )
```

The solution is then calculated, time instant by time instant, with the loop
Table 11.6: Solution to radioactive decay at \(t = 6.0 \) for the indicated time steps. These solutions were obtained via Euler’s method.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\Delta t)</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.000</td>
<td>2.0000</td>
<td>512.00</td>
<td>384.00</td>
<td>104.00</td>
</tr>
<tr>
<td>1.0000</td>
<td>531.44</td>
<td>354.29</td>
<td>114.26</td>
<td></td>
</tr>
<tr>
<td>0.5000</td>
<td>540.36</td>
<td>341.28</td>
<td>118.36</td>
<td></td>
</tr>
<tr>
<td>0.2500</td>
<td>544.64</td>
<td>335.16</td>
<td>120.19</td>
<td></td>
</tr>
<tr>
<td>0.1250</td>
<td>546.74</td>
<td>332.20</td>
<td>121.06</td>
<td></td>
</tr>
<tr>
<td>0.0625</td>
<td>547.78</td>
<td>330.73</td>
<td>121.49</td>
<td></td>
</tr>
</tbody>
</table>

which calculates each new \(A, B, \) and \(C \) using the stepping equations given in Eqs. (11.81), (11.82), and (11.83) and each new \(t \) simply by adding the time step \(dt \) to the previous \(t \). The simple statement

```python
for i in range(4):
    print('{0:10.2f}{1:10.3f}{2:10.3f}{3:10.3f}{4:10.3f}'.format(t[i],A[i],B[i],C[i],A[i]+B[i]+C[i]))
```

displays the resulting solution and the conserved quantity \(A + B + C \) for the first few time steps. Reassuringly, the values here agree with those in Table 11.2. The more interpretable graphical output of Fig. 11.10 is produced by the statements

```python
import matplotlib.pyplot as plt
plt.plot( t, A, color='black', linewidth=3 )
plt.plot( t, B, color='black', linewidth=3 )
plt.plot( t, C, color='black', linewidth=3 )
plt.title( 'Three-Species Decay Chain', fontsize=20 )
plt.xlabel( 'Time', fontsize=14 )
plt.ylabel( 'Number of Atoms Present', fontsize=14 )
plt.text( 2.5, 850.0, '$A$', fontsize=14 )
plt.text( 2.5, 300.0, '$B$', fontsize=16 )
plt.text(40.0, 800.0, '$C$', fontsize=16 )
plt.show()
```

To assess the accuracy achieved by Euler’s method more completely, we repeat the above calculation for several different time steps, finding the representative values shown in Table 11.6. The convergence of \(A(6.0), B(6.0), \) and \(C(6.0) \) as \(\Delta t \) is reduced by successive factors of two is apparent. Since, even at the end, the approximate solutions still seem to be changing in the units digit with each refinement, we would be off base to claim an accuracy much smaller than \(\pm 1.0 \) in these values. For some purposes, of course, that accuracy may well be adequate. In particular, to the resolution of the graph in Fig. 11.10, for example, a variation of \(\pm 1.0 \) in a particular vertical coordinate would hardly show. At the same time, we must remember that these differences may accumulate and may

\[\text{46For simplicity, we have calculated each new time by adding the time step to the previous time. If we were more concerned about minimizing round-off error, we would be better off replacing the last statement in the loop with the statement } t[i] = (i-1) \times dt, \text{ though doing so would increase the execution time. (Multiplication takes more time than addition.)} \]
Figure 11.10: Solution of chain radioactive decay via Euler’s method with $\Delta t = 0.25$. The solid, dotted, and dashed lines show $A(t)$, $B(t)$, and $C(t)$, respectively.

Table 11.7: Solution to radioactive decay at $t = 6.0$ for indicated time steps. These solutions were obtained via the improved Euler method.

<table>
<thead>
<tr>
<th>t</th>
<th>Δt</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0000</td>
<td>2.0000</td>
<td>551.368</td>
<td>322.752</td>
<td>125.880</td>
</tr>
<tr>
<td>1.0000</td>
<td>549.404</td>
<td>327.821</td>
<td>122.776</td>
<td></td>
</tr>
<tr>
<td>0.5000</td>
<td>548.954</td>
<td>328.940</td>
<td>122.106</td>
<td></td>
</tr>
<tr>
<td>0.2500</td>
<td>548.847</td>
<td>329.202</td>
<td>121.951</td>
<td></td>
</tr>
<tr>
<td>0.1250</td>
<td>548.820</td>
<td>329.266</td>
<td>121.904</td>
<td></td>
</tr>
<tr>
<td>0.0625</td>
<td>548.814</td>
<td>329.282</td>
<td>121.904</td>
<td></td>
</tr>
</tbody>
</table>

well be larger at $t = 50.0$, for example, than they are at $t = 6.0$. To assess that possibility, we generate the entire solution via Euler’s method for three time steps ($\Delta t = 2.0$, 0.5, and 0.0625), plotting those solutions in Fig. 11.11. The comparison of the resulting graphs is described in the caption to the figure.

A similar demonstration using the improved Euler method is left to an exercise. In particular, the values presented in Table 11.7 reflect the result of that exercise when the procedures leading to Table 11.6 are repeated with the improved Euler method. Clearly, the results in Table 11.7 are converging more quickly on stable values to more decimal places than we observed in Table 11.6. Remember that, with Euler’s method, halving Δt reduces the global truncation error by a factor of two while, with the improved Euler method, halving Δt reduces the global truncation error by a factor of four. Said another way, we would have to reduce Δt by a factor of ten to gain one decimal digit in a solution by Euler’s method; we would have to reduce Δt by only a factor of $\sqrt{10} = 3.2$ to gain a decimal digit in a solution by the improved Euler method. The values in these two tables reflect this difference.
Figure 11.11: Solution of chain radioactive decay via Euler’s method. The solid, dotted, and dashed lines show the solution for $\Delta t = 0.0625$, 0.5, and 2.0, respectively. While reducing Δt from 2.0 to 0.5 clearly makes a difference on the scale of the graph, the further reduction from 0.5 to 0.0625 is hardly noticeable over the entire range of the independent variable.

11.10.2 The PYTHON Command odeint

The simpler of PYTHON’s commands for solving ODEs is `scipy.integrate.odeint`, which is patterned after the lsoda component in a large FORTRAN solver (the Livermore Solver for Ordinary Differential Equations), written by Alan Hindmarsh and first appearing in 1980. The simplest statement invoking `odeint` has the general form:

```
soln = odeint( FunctionName, InitialConds, IndepVar )
```

where

- `soln`—any legal variable name will do—is the name of the (scalar or list) variable in which the solution is returned.
- `FunctionName` is the name of the function defining the equations to be solved; see Section 11.10.3 for the structure of this definition.
- `InitialConds` is the name of the (scalar or list) variable that provides the initial value of each dependent variable. Alternatively, the scalar or list value itself may be provided as this argument to `odeint`.
- `IndepVar` is the name of the list variable that provides the values of the independent variable at which solutions are to be calculated. Alternatively, the list itself may be provided as this argument to `odeint`.

47 The commands `scipy.integrate.ode` and `scipy.integrate.solve_ivp` are a bit more versatile. See Section 11.10.11 for details on these alternate integrators.

48 We assume that the statement from `scipy.integrate import odeint` has previously been executed.
CHAPTER 11. SOLVING ORDINARY DIFFERENTIAL EQUATIONS

The procedure is adaptive, which means that, in generating the solution, odeint varies the step size dynamically as it discovers how rapidly the solution changes in various regions within the full range of the independent variable. As output, the procedure generates solutions at the user-specified values—usually equally spaced—in IndVar; but, behind the scenes, odeint will be taking steps of various sizes depending on how rapidly the solution changes and the tolerances—default or otherwise—specified when odeint is invoked. Because the varying step sizes may not generate solutions at the user-specified values of the independent variable, odeint will interpolate when necessary to yield solutions at the requested values of the independent variable.

To speed the actual illustration of the use of odeint, we postpone discussing two remaining issues. Sometimes, we will be interested in the dependence of the solution on one or more parameters embedded in the differential equations. Conveniently, odeint admits the keyword args that provides for setting parameters that odeint, when called, will pass though to the function that it calls to determine derivatives. This feature will be introduced towards the end of Section 11.10.4.

Second, the detailed behavior of odeint—tolerances imposed, maximum and minimum step sizes, . . .—is controlled by a number of options, each of which has a (judiciously chosen) default value but each of which can also be changed should change be warranted in a particular circumstance. For a while, we will simply accept all default values. Discussion of the value of those defaults and the ways to change them is postponed to Section 11.10.9.49

11.10.3 Defining ODEs for odeint

Before using the routines PYTHON supplies for solving a system of first-order differential equations numerically, we must create a py-file50 defining a function whose execution by PYTHON returns the derivatives of the dependent variables as defined by the differential equations we seek to solve. Fortunately, all routines use the same structure for this py-file. In broad outline, this file will have the form51

\[
def FunctionName(DepVars, IndVar):
 ...
 Intermediate statements.
 ...
 return [DerivOfFirstVar, DerivOfSecondVar, ...]
\]

In this structure,

- The first executable line in the function definition must begin with the keyword def.
- The variables must be given in the order shown.
- DepVars is a one dimensional array or list that, on input, supplies the values of the dependent variables for which the derivatives are to be computed.
- IndVar is a scalar that, on input, supplies the value of the independent variable at which the derivatives are to be computed.
- Don’t fail to notice the colon at the end of the first line.
- All lines within the body of the definition must be properly indented.
- For convenience, we shall store this function definition in a file having the same name as we assign to the function. For example, if we choose to call the function for the radioactive decay chain, decay, then the file storing the function will be named decay.py.

Explicit py-files for several examples will be presented in the subsequent subsections.

49The URL docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html links to a very detailed discussion of odeint.
50See Section 5.6.1.
51Remember that comments can be introduced either with # or %. See item 6 in Section 5.1.
11.10. Chain Radioactive Decay

As a first example of the use of \texttt{odeint}, consider the equations describing chain radioactive decay, Eq. (11.19). Before we can construct the proper \texttt{py-file} to communicate the differential equations to PYTHON’s routine, we must establish a correspondence between the elements of a list—name it \texttt{n}—and the dependent variables. Since we have three dependent variables (the number of atoms of species \textit{A}, \textit{B}, and \textit{C}), \texttt{n} will have three elements, which PYTHON refers to as \texttt{n[0]}, \texttt{n[1]}, and \texttt{n[2]}. If we assign the number of atoms of species \textit{A} to the first element, the number of atoms of species \textit{B} to the second element, and the number of atoms of species \textit{C} to the third element, we have the associations \textit{A} \mapsto \texttt{n[0]}, \textit{B} \mapsto \texttt{n[1]}, and \textit{C} \mapsto \texttt{n[2]}. Rewriting the differential equations Eq. (11.19) in terms of the elements of \texttt{n}, we have the system of equations

\begin{equation}
\frac{d}{dt} n[0] = -k_A n[0] ; \quad \frac{d}{dt} n[1] = k_A n[0] - k_B n[1] ; \quad \frac{d}{dt} n[2] = k_B n[1] \tag{11.103}
\end{equation}

Now we are ready to construct the function \texttt{py-file} describing this system of differential equations. Respecting the general structure described in Section 11.10.3, we would compose the definition

```python
def decay( n, t ):
    # DECAY: Returns derivatives for chain radioactive decay.
    # The function DECAY defines the rate equations for a three
    # species radioactive decay sequence such as
    #
    # n[0] --kA--> n[1] --kB--> n[2]

    kA = 0.1; kB = 0.1
    derivs = [ -kA*n[0], kA*n[0]-kB*n[1], kB*n[1] ]
    return derivs
```

Here, the first line names the function \texttt{decay}, stipulates that the values of the dependent variables will be supplied in the \texttt{list n}, and stipulates that the value of the the independent variable will be supplied in the \texttt{scalar t}.52 Respectively, the two executable lines define the values of the two parameters and assign to the value of the function a \texttt{list}—commas separating entries—whose elements are the derivatives of the dependent variables as determined by the right hand sides of Eqs. (11.103).

With the function of the previous paragraph stored in the file \texttt{decay.py} in the default directory or in a directory in PYTHON’s search path,53 we would produce a solution for the differential equations it defines with the statements

```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
execfile( 'decay.py' )
```

or

```python
exec(open( 'decay.py' ).read() )
```

```python
t = np.linspace(0.0, 50.0, 401)
ic = [1000.0, 0.0, 0.0 ]
n = odeint( decay, ic, t )
```

The solutions will be generated at the times in \texttt{t} with the solution at each time placed in the corresponding row of \texttt{n}. We have accepted the default tolerances. (See Section 11.10.9.)

Once the solution is in hand in \texttt{n} and \texttt{t}, we could plot the solution with the simple statement

```python
plt.plot( t, n )
```

52For this first example, we hard code the values of the parameters \texttt{kA} and \texttt{kB} in the function definition. Later in this section we will explain how to set these parameters in other ways.

53See Sections 5.16.1 and 5.16.2 for information about the default directory and the search path.
Figure 11.12: Solution of chain radioactive decay via `odeint` with a tolerance of about 10^{-8} absolute, 10^{-8} relative (see Section 11.10.9). The solid, dotted and dashed lines show $A(t)$, $B(t)$, and $C(t)$, respectively.

```
plt.plot( t, n[:,0], '-k', linewidth=3 )
plt.plot( t, n[:,1], ':k', linewidth=3 )
plt.plot( t, n[:,2], '--k', linewidth=3 )
plt.title( 'Three-Species Chain Decay', fontsize=16 )
plt.xlabel( 'Time', fontsize=14 )
plt.ylabel( 'Number of Atoms Present', fontsize=14,)
plt.tick_params(labelsize=12)
plt.show()
```

Almost always, we will want to explore the dependence of the solution on the values of any parameters, e.g., k_A and k_B in the example of this section. Such explorations would be much easier if the parameters could be set before `odeint` is called and be known inside the function that `odeint` calls to determine the derivatives. Conveniently, `odeint` provides the keyword `args` for just this purpose.\footnote{We could also exploit global variables (see Section 5.7.3), but the route here described avoids inadvertent conflict of variable names with variables elsewhere in, particularly, a long program.} To modify the above example, we would start by editing the function `decay` to be
def decaymod(n, t, kA, kB):
 # DECAY: Returns derivatives for chain radioactive decay.
 # The function DECAY defines the rate equations for a three
 # species radioactive decay sequence such as
 #
 # n[0] --kA--> n[1] --kB--> n[2]
 derivs = [-kA*n[0], kA*n[0]-kB*n[1], kB*n[1]]
 return derivs

Specifically, we have added the two parameters as additional arguments to the function. Invocation
of odeint by the main program then is modified from the above as follows:

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
execfile('decaymod.py')
or exec(open('decaymod.py').read())
t = np.linspace(0.0, 50.0, 401)
ic = [1000.0, 0.0, 0.0]
kA = 0.1; kB = 0.1;
n = odeint(decaymod, ic, t, args=(kA,kB))

We have invoked the keyword args—a tuple—to odeint to provide the parameters that odeint
simply passes on to the function it calls (here, decaymod.py). To explore other values for the
parameters, we simply reset the value of kA and kB and re-execute the following statements in the
sequence immediately above.

Take a few minutes to explore the effects of different decay constants by trying several different
values of kA and kB. Take a few minutes also to compare the graph in Fig. 11.10 with the graph
in Fig. 11.12. The first of these figures was produced with Euler’s method with a time step of 0.25
and required 201 points in the solution; the second was produced with odeint with the (default)
tolerance of \(\approx 10^{-8} \) (see Section 11.10.9). To the resolution of the graphs, the two solutions appear
to be pretty much the same. Evidently, the choice of the time step in our application of Euler’s
method was adequate to yield a solution accurate to the resolution of the graph, which is the most
restrictive statement the evidence we have quoted supports. We might alternatively have inferred
the likely appropriateness of the time step \(\Delta t = 0.25 \) in Euler’s method by noting from the graphs
that the solution varies appreciably over a time period on the order of seconds. For example, the
initial value of \(A \) drops by 20% from 1000 to 800 in about 2 or 3 time units. Since the time step
\(\Delta t \) is small compared to that characteristic time, we would be justified in anticipating a reasonably
accurate solution.

11.10.5 Damped Harmonic Oscillator

Consider next the damped harmonic oscillator described in dimensionless form as a pair of first-order
equations by Eq. (11.30), though we shall for simplicity remove the driving force by setting \(f(t) \) to
zero. In writing the py-file for this system, we first realize that we have two first-order differential
equations. Thus, the array, which we name \(y \), will have two columns and we make the assignments
\(\pi \rightarrow y[0] \) and \(\pi' \rightarrow y[1] \). In these terms, the differential equations become
\[
\frac{d}{dt} y[0] = y[1] ; \quad \frac{d}{dt} y[1] = -y[0] - \beta y[1]
\]

Then, using the symbol \(\beta \), we create the py-file
def damposc(y, t, bb):
 # DAMPOSC: returns derivatives for damped 1D harmonic oscillator
 # The function DAMPOSC describes the nondimensionalized equations of
 # motion for a damped, one dimensional harmonic oscillator. bb is a
 # dimensionless parameter and has a value of bb=b/sqrt(m*k), where b
 # is the damping, m is the mass and k is the spring constant.
 # bb will be passed to damposc through odeint with the keyword args.
 derivs = [y[1], -y[0] - bb*y[1]];
 return derivs

defining the differential equations. Storing this file in the default directory with the name

damposc.py, we explore the system for two different damping constants with the statements:

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
execfile('damposc.py')
or exec(open('damposc.py').read())
t1 = np.linspace(0.0, 30.0, 151)
ic = [1.0, 0.0]
bb=0.0;
y1 = odeint(damposc, ic, t1, args=(bb,))

bb=0.25
y2 = odeint(damposc, ic, t1, args=(bb,))

Finally, we produce graphs showing the position and velocity as functions of time and also the
trajectory in the phase plane (v versus x) for each value of the damping constant with the statements

fig, ((ax1,ax2), (ax3,ax4)) = plt.subplots(2,2)
fig.subplots_adjust(wspace=0.4, hspace=0.4)

ax1.plot(t1, y1[:,0], 'k-', linewidth=2)
ax1.plot(t1, y1[:,1], 'k--', linewidth=2)
ax1.set_title('Undamped Harmonic Oscillator')
ax1.set_xlabel('Time')

ax2.plot(t1, y2[:,0], 'k-', linewidth=2)
ax2.plot(t1, y2[:,1], 'k--', linewidth=2)
ax2.set_title('Damped Harmonic Oscillator')
ax2.set_xlabel('Time')

ax3.plot(y1[:,0], y1[:,1], 'k-', linewidth=2)
ax3.set_xlabel('Position'); ax3.set_ylabel('Velocity')

ax4.plot(y2[:,0], y2[:,1], 'k-', linewidth=2)
ax4.set_xlabel('Position'); ax3.set_ylabel('Velocity')

plt.show()

Remember that a tuple with a single component requires a comma following that component.
Figure 11.13: Damped and undamped harmonic oscillators. The upper two graphs show position (solid line) and velocity (dashed line) as functions of time; the lower two graphs show the phase plane plot. Notice the difference between the phase plane orbits.

The resulting graphs are shown in Fig. 11.13.

11.10.6 Planetary Orbits

Expressed in dimensionless form in Cartesian coordinates, the equations of motion for a planet of mass m orbiting a sun of mass M were presented in Eq. (11.46). We must, however, recast the system of two second-order equations as a quartet of first-order equations. Thus, we view the equations as the system

$$
\frac{dx}{dt} = v_x ; \quad \frac{dv_x}{dt} = -\frac{\pi}{(x^2 + y^2)^b} ; \quad \frac{dy}{dt} = v_y ; \quad \frac{dv_y}{dt} = -\frac{\pi}{(x^2 + y^2)^b} \quad (11.105)
$$

Here, for the sake of generality, we have introduced the parameter b, which will allow us to explore forces other than the inverse square force. For the inverse square force, we simply set the parameter to the value 1.5.

To create the necessary py-file, we set π, v_x, v_y, and π_y into correspondence with the elements $x[0]$, $x[1]$, $x[2]$, and $x[3]$ of the four-element vector x. Then, one possibility for the py-file `planet.py` defining the above equations is listed in Table 11.8. Finally, to calibrate our sense of appropriate initial conditions, we remember from Eq. (11.50) that, in our dimensionless units, a circular orbit is achieved when the speed of the planet is the reciprocal of the square root of the radius of the planet’s orbit. For example, a circular orbit of radius 4.0 units requires a speed of $1/\sqrt{4.0} = 0.5$ units.
Table 11.8: The PYTHON function planet.py.

```python
def planet( x, t, b):
    # PLANET: returns the derivatives for planet in field of sun
    # The function PLANET describes the equations of motion for a
    # planet of mass m orbiting a sun of mass M. The parameter b allows
    # the user to explore forces that are not inverse-square. (For an
    # inverse square law, b=1.5.) Entries in the vector of dependent
    # variables are X-position, X-velocity, Y-position, Y-velocity.
    # The parameter b will be passed to planet through odeint with
    # the keyword args.
    temp = (x[0]**2 + x[2]**2)**b
    derivs = [x[1], -x[0]/temp, x[3], -x[2]/temp]
    return derivs
```

Now we have all the elements in place to invoke PYTHON and pursue solutions to the planetary problem. We use `odeint` again and accept its default tolerances (see Section 11.10.9), we solve the differential equations for an inverse square law force ($b=1.5$) twice, first for a circular orbit and then for an elliptical orbit, with the statements

```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

execfile( 'planet.py' ) or exec(open( 'planet.py' ).read())
b=1.5
t = np.linspace(0.0, 60.0, 241)
ic1 = [ 4.0, 0.0, 0.0, 0.5 ]
x1 = odeint( planet, ic1, t, args=(b,))
ic2 = [ 4.0, 0.0, 0.0, 0.3 ]
x2 = odeint( planet, ic2, t, args=(b,))
```

Figure 11.14 shows the variety of ways the results of this calculation can be displayed. That the first case indeed yields a circular orbit provides some evidence supporting the conclusion that we have generated the solution with adequate accuracy. For brevity, we have chosen to omit the statements creating these graphs but note the need to invoke

- `plt.axis('square')` or `plt.axes().set_aspect('equal')` in the graphs of y versus x so both axes will be scaled the same way,
- `plt.tick_params(labelsize=14)` to enlarge the tick labels on each axis, and
- the keyword `fontsize` to enlarge the labels on all axes.

Except for these embellishments, the statements generating Fig. 11.14 should be constructed with little difficulty.

With this example, assessing accuracy by checking the conservation of energy [given by the first member of Eq. (11.53)] and angular momentum [given by the second member of Eq. (11.53)] is worthwhile. The statements
Figure 11.14: Circular and elliptical orbits for a planet orbiting a sun. The orbits are shown in the xy plane and in two different phase planes.

$$E_1 = 0.5(x_1[::,1]**2 + x_1[::,3]**2) - 1.0/\text{np.sqrt}(x_1[::,0]**2 + x_1[::,2]**2)$$

$$L_1 = x_1[::,0]*x_1[::,3] - x_1[::,2]*x_1[::,1]$$

$$E_2 = 0.5(x_2[::,1]**2 + x_2[::,3]**2) - 1.0/\text{np.sqrt}(x_2[::,0]**2 + x_2[::,2]**2)$$

$$L_2 = x_2[::,0]*x_2[::,3] - x_2[::,2]*x_2[::,1]$$

will calculate these quantities. Then, statements like

```python
print(E1); print(L1); print(E2); print(L2)
```
will display the resulting values. We find—see your own output—that, rounded to five digits after the decimal point, $E_1 = -0.12500$, $L_1 = 2.00000$, $E_2 = -0.20500$, and $L_2 = 1.20000$ at every point throughout the entire solutions. These results give us no concern at all about the adequacy of the solutions, at least insofar as their respect for known conserved quantities is concerned.

Open orbits, in which a satellite with positive energy moves in the gravitational field of a sun, are also possible. We utilize PYTHON’s `for` loop to produce a variety of open orbits for a planet started in different initial positions by executing the statements

```python
b=1.5
y0 = [-4.0, -3.0, -2.0, -1.0, 1.0, 2.0, 3.0, 4.0]
plt.xlim(-4.0,4.0); plt.ylim(-4.0,4.0)
plt.xlabel( 'X-Position', fontsize=16 )
plt.ylabel( 'Y-Position', fontsize=16 )
plt.title( 'Open Orbits', fontsize=20 )
t = np.linspace(0.0 , 60.0, 241)
for i in np.arange(0,8):
    ic=[-4.0, 1.0, y0[i], 0.0]
    x = odeint( planet, ic, t, args=(b,) )
    plt.plot( x[:,0], x[:,2], linewidth=2.0, color='black' )
plt.plot( [-4.0, 0.0], [0.0, 0.0], linewidth=2.0, color='black' )
plt.grid(color='black')
plt.show()
```

Note that, for an orbit that heads directly towards the (attractive) force center ($y_0 = 0$), the numerical solution encounters a divergence, the planet collides with the force center, and (presumably) disappears. That one “orbit” has been omitted from the loop but added with the first statement after the loop. Figure 11.15 shows the resulting output.

11.10.7 Standing Waves in a String

To address a boundary value problem, we must be clever, since the methods available for solving ODEs all suppose that we are dealing with an initial value problem. One strategy (sometimes called a `shooting method`) involves accepting the boundary value at one end of the interval, `guessing` a derivative at that same end, assuming values for any parameters in the equation, solving the resulting initial value problem, assessing the extent to which the solution so generated respects the boundary value at the other end of the interval, and repeating the process while tampering with the derivative or, more commonly, with the parameters until satisfactory agreement with both boundary values has been obtained. For standing waves in a string [Eqs. (11.56) and (11.57)] or the quantum particle in an infinitely deep square well [Eq. (11.59)], the expression of the relevant equations as a system of first-order equations is

\[
\frac{df}{dx} = g \quad ; \quad \frac{dg}{dx} = -k^2 f \quad ; \quad f(0) = 0 \quad ; \quad f(\ell) = 0 \quad (11.106)
\]

Thus, setting up the correspondences $f \mapsto f[0]$ and $g \mapsto f[1]$, we might define this system for PYTHON with the py-file
Figure 11.15: Open orbits of a satellite moving under the influence of a sun at the origin.

```
def stdwaves( f, x, k ):
    # STDWAVES: returns derivatives for standing waves in string
    # The function STDWAVES defines the basic equations for describing
    # standing waves in a string. The parameter k is passed via the
    # keyword args to odeint.

    derivs = [ f[1], -k**2*f[0] ]
    return derivs

which we store in the default directory with the name stdwaves.py.

Adopting the strategy described in the previous paragraph, we would then accept the requirement that \( f(0) = 0 \), assume a value—say \( 1.0 \)—for \( \frac{df(0)}{dx} = g(0) \) and a value for \( k \)—say \( 1.0 \), generate the solution over \( 0 \leq x \leq 1 \), and see whether it returns to the value \( f(1) = 0 \) (where— because we need numbers to effect a numerical solution—we have supposed \( \ell = 1 \), equivalent to recasting the equation in dimensionless form with \( \ell \) chosen as the unit of length). Using `odeint`, we would invoke the statements

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
execfile('stdwaves.py') or exec(open('stdwaves.py').read())
k = 1.0
ic = [0.0, 1.0]
x = np.linspace(0.0, 1.0, 51)
f = odeint(stdwaves, ic, x, args=(k,))
plt.plot(x, f[:,0], linewidth=2.0, color='black')
plt.ylim([-1.0, 1.0])
plt.tick_params(labelsize=12)
```
Figure 11.16: Shooting method to solve for standing waves in a string. The upper solid, dotted, dashed, and lower solid curves correspond to $k = 1.0, 2.0, 3.0,$ and $4.0$, respectively.

The result is the upper solid line in Fig. 11.16. We are accepting that the default tolerance (Section 11.10.9) is adequate for this and subsequent calculations.

Clearly, however, the solution we have obtained (and in which we now have reasonable confidence) fails utterly to return to the value zero at the upper end of the interval. Either the assumed derivative $[g(0) = 1.0]$ or the assumed value $k = 1.0$ is not appropriate. Because the equations are linear, however, changing $g(0)$ will merely influence the scale of the resulting solution; a different value of the derivative at the beginning will never cause the non-zero value at the end to become zero. We quickly conclude that efforts to bring $f(1)$ to the value zero stand a chance of succeeding only if we tamper with $k$. Thus, we explore other values of $k$ with the statements

```python
k = 2.0
f = odeint(stdwaves, ic, x, args=(k,))
plt.plot(x, f[:,0], linewidth=2.0, color='black', linestyle=':')
k = 3.0
f = odeint(stdwaves, ic, x, args=(k,))
plt.plot(x, f[:,0], linewidth=2.0, color='black', linestyle='--')
k = 4.0
f = odeint(stdwaves, ic, x, args=(k,))
plt.plot(x, f[:,0], linewidth=2.0, color='black')
plt.grid()
```

All four tentative solutions are displayed in Fig. 11.16. Evidently, somewhere between $k = 3.0$ and $k = 4.0$, the solution will assume the proper value at $x = 1$, and we are now in a position via manual trial and error to seek more refined estimates of that specific value of $k$.

Having now concluded that we should be adjusting $k$ as we seek acceptable solutions and having recognized that the value of the solution at $x = 1$ is critical, we imagine that a graph showing $f(1)$
as a function of \( k \) might help us in deciding where we should look in an effort to find additional solutions. Suppose we were to seek solutions for values of \( k \) ranging from 0 to 20 (say) in steps of 0.2. We might then solve the problem for each \( k \) but save only the value \( f(1) \) for each solution. To generate that information, we would have to create a loop that migrated through the values of \( k \), calculated the solution at each value, and saved the value \( f(1) \). We might use the statements

\[
\begin{align*}
  k &= \text{np.linspace}(0.0, 20.0, 101) \\
  ic &= [0.0, 1.0] \\
  x &= \text{np.linspace}(0.0, 1.0, 51) \\
  \text{soln} &= []
  \\
  \text{for } i \text{ in np.arange(0,101):} \\
    f &= \text{odeint}(\text{stdwaves}, ic, x, \text{args}=(k[i],)) \\
    \text{soln} &= \text{np.append} (\text{soln}, f[50,0])
  \\
  \text{plt.plot}(k, \text{soln}, \text{linewidth}=2.0, \text{color}='\text{black}')
  \\
  \text{plt.xlabel}('k', \text{fontsize}=14)
  \\
  \text{plt.ylabel}('f(1)', \text{fontsize}=14)
  \\
  \text{plt.tick_params} (\text{labelsize}=12)
  \\
  \text{plt.grid}()
\end{align*}
\]

Here, we

- Establish in \( k \) values that will be passed to \( k \), one at a time.
- Set the initial conditions.
- Set the desired \( x \) coordinates.
- Initialize a variable for the solution.
- Execute a loop that (a) invokes \texttt{odeint} to solve the equations for a value of \( k \) and (b) stores in \texttt{soln[i]} the solution at \( x = 1 \) for the current value of \( k \).
- Plot the resulting values.

Note that the loop requests a fair bit of computation and may take awhile to execute.

The resulting graph is shown in Fig. 11.17. Each of the zeroes of the function shown in this graph corresponds to a value of \( k \) at which an acceptable solution to the boundary value problem can be found. Further, an approximation to each solution can be read from this graph and taken as input for a more sophisticated search procedure (which, however, we shall not develop here; see Chapter 14). Even more, we might infer from the oscillatory nature of this graph that the problem actually has a very large number of distinct solutions, only the first six of which are identifiable in the range 0 ≤ \( k \) ≤ 20. The first six, however, suggest (correctly) that the solutions are equally spaced in \( k \).

11.10.8 The Quantum Harmonic Oscillator

The quantum harmonic oscillator described by Eqs. (11.60) and (11.61) provides a second example of a boundary value problem. This one, however, involves an infinite domain. As we suggested earlier, we can generate a more tractable approach by recognizing that the character of the equation compels solutions to have either even or odd parity. Thus, we can focus attention on only the interval\(^{\text{56}}\) 0 ≤ \( y \) < \( \infty \). To set up the problem, we must first regard the second-order equation as

\(^{\text{56}}\)We here use the symbol \( y \) for what we earlier called \( \pi \).
a pair of first-order equations in which we associate \( \psi[0] \) with \( \psi \) and \( \psi[1] \) with \( d\psi/dy \). The equations we must solve then become

\[
\frac{d}{dy} \psi[0] = \psi[1] ; \quad \frac{d}{dy} \psi[1] = -(2\epsilon - y^2)\psi[0]
\] (11.107)

and a suitable py-file `qmshm.py` defining these equations for PYTHON’s solvers is listed in Table 11.9. With this file stored in the default directory with the name `qmshm.py`, we are ready to seek its solutions.

We seek first solutions of even parity, i.e., solutions for which \( \psi(0) \neq 0 \) and \( d\psi(0)/dy = 0 \). With those values, we can address this boundary value problem as if it were an initial value problem—except that we must reject solutions that do not go to zero as \( y \to \infty \). Only \( \psi(0) \) and \( \epsilon \) are adjustable as we seek to impose the boundary condition at infinity. Since the ODE we are solving is linear, however, we recognize right away that tampering with \( \psi(0) \) will merely affect the scaling of the solution and has no power to convert a solution that doesn’t go to zero at infinity into one that does go to zero. The only parameter we need bother adjusting is \( \epsilon \). Let us, therefore, standardize by setting \( \psi(0) = 1.0 \) and explore the dependence of the solution on \( \epsilon \). At the outset, we do not know what to expect. We do, however, believe that, in a dimensionless casting, important quantities are likely to have values on the order of one. Thus, we begin a search for acceptable solutions by setting \( \epsilon = 1.0 \) and examining the solution in the interval \( 0.0 \leq y \leq 2.0 \). The statements

```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
execfile('qmshm.py') or exec(open('qmshm.py').read())
ic = [1.0, 0.0]; ee = 1.0
y = np.linspace(0.0, 4.0, 41)
psi = odeint(qmshm, ic, y, args=(ee,))
plt.plot(y, psi[:,0])
```

Table 11.9: The PYTHON function qmshm.py.

```python
def qmshm(psi, y, ee):
 # QMSHM: returns the derivatives for the quantum harmonic oscillator
 # QMSHM defines the dimensionless Schroedinger equation for the quantum
 # simple harmonic oscillator, which is
 # \[\frac{2}{dy} \frac{d psi}{dy} \] + \(2 ee - y^2 \) psi = 0

 derivs = [psi[1], -(2*ee-y**2)*psi[0]]
 return derivs
```

generate that solution and produce a graph which—see your own output—starts off sensibly by
decaying from \( \psi(0) = 1.0 \) towards \( \psi(y) = 0.0 \) as \( y \) increases, but then crosses the value \( \psi(y) = 0.0 \)
at about \( y = 1.2 \) and gives every indication of heading off towards \( -\infty \). With \( \epsilon = 1.2 \), the divergence
happens more quickly but with \( \epsilon = 0.8 \), the solution takes longer to diverge. Evidently, lowering \( \epsilon \) from 1.0 moves in the right direction. With this background, we are tempted to examine the
behavior with several values of \( \epsilon \) by executing the statements

```python
e = [0.3, 0.4, 0.5, 0.6, 0.7,]

for ee in e:
 psi = odeint(qmshm, ic, y, args=(ee,))
 plt.plot(y, psi[:,0], linewidth=2.0, color='black')
```

which step \( \epsilon \) through the indicated values, plot the solution at each step, add a horizontal line at
\( \psi = 0.0 \), and label each graph. From the resulting display, which is shown in Fig. 11.18, we conclude
Figure 11.18: The solution to the Schrödinger equation for an even state of the quantum harmonic oscillator when $\epsilon$ has the indicated values. This state is the ground state (or state of lowest energy).

that $\epsilon = 0.5$ yields a solution that goes to zero at infinity and we therefore argue that one allowed energy corresponds to the value $\epsilon = 0.5$.

If we now allow $\epsilon$ to increase beyond the value 0.7, we find the solution diverges more and more rapidly for a time, but then begins to turn back towards the axis. Identically the same coding as illustrated above, but with the starting line

$e = [ 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 ]$

to set the values of $\epsilon$ and the lines

```python
plt.text(2.1, -1.2, '1.0', fontsize=16)
plt.text(1.7, -1.7, '1.5', fontsize=16)
plt.text(2.7, -1.8, '2.0', fontsize=16)
plt.text(3.5, -0.3, '2.5', fontsize=16)
plt.text(2.7, -1.8, '2.0', fontsize=16)
plt.text(3.0, 1.2, '3.0', fontsize=16)
plt.text(2.5, 1.7, '3.5', fontsize=16)
```

to place the labels appropriately, produces the graph shown in Fig. 11.19. From this graph, we conclude that $\epsilon = 2.5$ yields another solution that goes to zero at infinity, and we argue that another allowed energy corresponds to the value $\epsilon = 2.5$. We might even be tempted to speculate—correctly as it turns out—that additional allowed energies for even states will correspond to the values $\epsilon = 4.5, 6.5, 8.5, \ldots$

We turn next to the odd states, for which we set $\psi(0) = 0.0$ and $d\psi(0)/dy = 1.0$ before exploring solutions for various values of $\epsilon$. Indeed, the previous paragraphs suggest that we might expect to find the lowest odd state corresponding to $\epsilon = 1.5$. To test that expectation, we set the initial conditions and energies with the statements

```python
e = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5]
```
Figure 11.19: The solution to the Schrödinger equation for an even state of the quantum harmonic oscillator when $\epsilon$ has the indicated values. As we shall confirm in the next figure, this state is actually the second excited state of the harmonic oscillator.

```python
ic = [0.0, 1.0]
e = [1.3, 1.4, 1.5, 1.6, 1.7]

Then we execute the statements

```python
for ee in e:
    psi = odeint( qmshm, ic, y, args=(ee,) )
    plt.plot( y, psi[:,0], linewidth=2.0, color='black' )
```  

to generate the graph in Fig. 11.20 and the statements

```python
plt.xlim( [0.0, 4.0] ); plt.ylim( [-2.0, 2.0 ] )
plt.text( 2.7, 1.7, '1.3', fontsize=16 );
plt.text( 3.5, 1.5, '1.4', fontsize=16 );
plt.text( 3.5, 0.1, '1.5', fontsize=16 );
plt.text( 3.4, -1.0, '1.6', fontsize=16 );
plt.text( 2.8, -1.5, '1.7', fontsize=16 );
plt.xlabel( '$y$', fontsize=16 )
plt.ylabel( '$\psi(y)$', fontsize=16 )
plt.tick_params(labelsize=12)
plt.grid()
```

to label the individual curves in that graph. That the graph for $\epsilon = 1.5$ behaves properly at infinity confirms our suspicion that the first odd state occurs at that value of the energy. We further suspect that additional odd states will be found at $\epsilon = 3.5, 5.5, 7.5, \ldots$.

Finally, in broad terms, we conclude that the ground state of the quantum harmonic oscillator has even parity; that acceptable solutions occur when $\epsilon = n + 1/2$ with $n = 0, 1, 2, 3, \ldots$; and that odd and even states occur alternately as n increases, i.e., that the parity of the n-th state is $(-1)^n$. Finally, remembering that the physical energy E and the dimensionless energy ϵ are related by $E = \epsilon \hbar \omega$, we infer that the energies of the quantum harmonic oscillator are given by

$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega$$

though we have direct evidence for this (correct) conclusion only for the lowest three states.

11.10.9 Keywords that Modify odeint

When the default values of the keywords that control the detailed action of `odeint` are not appropriate to the task at hand, these keywords can be given different values. The available keywords with the default values are

- `atol` and `rtol`, which specify the maximum absolute and relative errors, respectively, in the dependent variables. These keywords may be scalars, in which case the values apply to all dependent variables, or they may be a lists, in which case each component specifies the tolerances for the corresponding dependent variable. Both default to 1.49012×10^{-8}.

- `h0`, which specifies a starting value for the step size, which is then adjusted as the adaptive procedure works out the solution. The default is 0.0, which tells PYTHON to make its own choice.

- `hmin`, which specifies the minimum step size allowed in the adaptive process of finding the solution. The default is 0.0, which tells PYTHON to make its own choice.
11.10. SOLVING ODES NUMERICALLY WITH PYTHON

- **hmax**, which specifies the largest step size the solver is to use as the adaptive procedure works out the solution. The default is 0.0, which tells PYTHON to make its own choice.

- **mxstep**, which specifies the maximum number of steps allowed for each integration point in the solution. The default is 0.0, which tells PYTHON to make its own choice.

The two tolerances are both taken into account as PYTHON assesses convergence. Specifically, PYTHON seeks to keep the absolute value of the local error \(e \) in each dependent variable such that \(e/\text{ewt} \leq 1.0 \) in each of the returned values of the dependent variables, where

\[
|\text{ewt}| = \text{rtol} \cdot |y| + \text{atol}
\]

Here, \(y \) is the returned value of the solution at every step along the way. Typically, when the solution is close to zero, the absolute tolerance provides the controlling criterion while, when the solution is well away from zero, the relative tolerance may dominate over the absolute tolerance. Either (but certainly not both) of these tolerances can be set to zero, in which case the other provides the controlling criterion throughout the solution. Be warned, however: if the absolute tolerance is set to zero, convergence may be difficult when the solution itself is close to zero (since a small fraction of zero—relative tolerance—may result in excessive computation).

To this point, we have accepted the default tolerances in each of the sample solutions. If, for example, in the solution of the problem in radioactive decay, we had wanted to change the absolute tolerance to 5.0 and the relative tolerance to 10.0%, we would have replaced statements like

\[
n = \text{odeint}(\text{decay}, \text{ic}, \text{t})
\]

with

\[
n = \text{odeint}(\text{decay}, \text{ic}, \text{t}, \text{atol}=5.0, \text{rtol}=0.1)
\]

Confirmation that the solution generated by this coding and the solution generated with the default tolerances differ by very little is left as an exercise for the reader.

Further detail about the options that affect the behavior of \texttt{odeint} can be found in the PYTHON manuals.57

11.10.10 py-files in the Public Library

The following py-files are found in the directory \$\texttt{HEAD/python} (and may also at some sites have been placed in a directory in PYTHON’s default search path) and can be used to explore the systems they describe. Further information about the file \texttt{decay.py}, for example, can be obtained either with the command58

\[
\text{print(open('decay.py').read())}
\]

to PYTHON or with whatever command to your operating system lists the file on the screen.59 The first of these commands instructs PYTHON to open the file \texttt{decay.py} and display the entire file, including any comments in the file; the second command, which must be executed in a command window to the operating system (not within PYTHON), will display the entire file on the screen. Many of the functions defined by these files involve parameters that must be supplied with the keyword \texttt{args} to \texttt{odeint}; examine the comments in the file itself to determine the proper specification of these variables.

57See the URL \texttt{docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html}.

58Specification of a full path will be necessary if the file is not in a directory in the default directory of PYTHON’s search path.

59In UNIX and windows, one possible command would be \texttt{more $\texttt{HEAD/python/decay.py}}; see the Local Guide.
• apollo.py: describes a satellite in the gravitational attraction of two fixed suns of equal mass.

• dampharm.py: describes the one-dimensional damped, unforced harmonic oscillator using dimensional variables.

• damposc.py: describes the one-dimensional, damped, unforced harmonic oscillator using dimensionless variables.

• decay.py: describes three-species radioactive decay.

• decaymod.py: describes three-species radioactive decay using global variables to communicate parameters to the function.

• drvnosc.py: describes the one-dimensional, damped, forced harmonic oscillator using dimensional variables.

• drvnpend.py: describes the forced, damped simple pendulum in dimensionless units.

• henon.py: describes the Hénon-Heiles oscillator.

• largamp.py: describes the undamped, unforced large amplitude pendulum in dimensionless units.

• lorenz.py: describes the Lorenz attractor.

• onedshm.py: describes the one-dimensional, undamped, unforced harmonic oscillator using dimensional variables.

• planet.py: describes the motion of a planet of mass m around a sun of mass M, using dimensionless units. An additional parameter allows for exploration of non-inverse square forces.

• qmshm.py: describes the dimensionless quantum harmonic oscillator.

• rossler.py: describes the Rössler attractor.

• stdwaves.py, which describes the behavior of standing waves in a string.

• twodshm.py: describes the two-dimensional, undamped, unforced harmonic oscillator using dimensionless variables.

• twooscil.py: describes a system of two equal masses between two walls, all connected by three springs. Dimensionless units are used.

• vandpol.py: describes the Van der Pol oscillator.

11.10.11 Other ODE Solvers in PYTHON

In addition to the solver odeint, the scipy.integrate module includes two other ODE solvers, specifically

• scipy.integrate.ode\(^{60}\), which is a bit more complicated to use than odeint. In particular,

 • The order of the first two arguments in the function defining the differential equation(s) is reversed ($IndVar$, $DepVars$) from the order ($DepVars$, $IndVar$) proper for odeint. Consequently functions used with odeint must be recast to work with ode.

\(^{60}\)See docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html for details.
11.12 Solving ODEs Numerically with MAPLE

MAPLE’s command \texttt{dsolve} can be forced into providing a means to solve ordinary differential equations numerically by specifying an optional argument that selects \texttt{numeric} as the desired \texttt{type} for the solution. With this keyword, a full statement will have the form

\begin{verbatim}
dsolve({ ODE1, ODE2, \ldots, IC1, IC2, \ldots}, { DVar1(IVar), DVar2(IVar), \ldots},
 type = numeric)
\end{verbatim}

where \textit{ODE} and \textit{IC} are the differential equations and initial conditions, \textit{DVar} represents the dependent variables, and \textit{IVar} represents the independent variable. In this case, both the differential equations and the initial conditions must be specified; MAPLE will not introduce undetermined integration constants. Further, all parameters in the equations must be given explicit numerical values before \texttt{dsolve} is executed. When invoked, \texttt{dsolve} returns not a solution but a procedure whose invocation will generate the numerical value of the solution (once a specific numerical value has been assigned to the independent variable).

Thus, for example, to address the problem of chain radioactive decay that we have already solved symbolically in Section 11.4.4, we would request MAPLE to generate a suitable procedure by invoking the statements

\begin{verbatim}
> eqA := Diff(A(t), t) = -kA*A(t):
> eqB := Diff(B(t), t) = kA*A(t)-kB*B(t):
> eqC := Diff(C(t), t) = kB*B(t):
> kA := 0.1: kB := 0.1:
> soln := dsolve({ eqA, eqB, eqC,
 A(0)=1000, B(0)=0, C(0)=0 },
 { A(t), B(t), C(t) }, type=numeric);
\end{verbatim}

Then, after the procedure has been created, parameters can be assigned and the solution at any particular value of the independent variable can be found with statements like

\begin{verbatim}
> soln(0.0);
[t = 0, A(t) = 1000., B(t) = 0., C(t) = 0.]
> soln(0.1);
[t = 0.1, A(t) = 990.0498337, B(t) = 9.0004983, C(t) = 0.0496679]
\end{verbatim}

\footnote{See \url{docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html} for details.
Note that the reported name of the procedure used may vary with the version of MAPLE.}
(The ellipses in the last statement stand for several additional digits returned by MAPLE.) Note the form of the solution, which is presented as a list of equations, the first of which conveys the applicable value of the independent variable and the rest of which convey the corresponding values of the several dependent variables.

Should we wish a graph of the solution over some range of the independent variables, we would invoke the command odeplot in the plots package—a command that is able to interpret the structure of the solution returned by the procedure created by dsolve. A graph similar to Fig. 11.9 for this decay would, for example, be displayed by the statement

\[
> \text{plots[odeplot]}(\text{soln}, [[t, A(t)], [t, B(t)], [t, C(t)]], 0..50, \\
\text{color=black, thickness=3 });
\]

Additional keywords similar to those available for the command plot can be exploited to add elements to the graph and/or override additional defaults.

The previous two paragraphs illustrate the essential strategy adopted by MAPLE to produce numerical solutions to ordinary differential equations. We here draw attention to a few additional capabilities, leaving an exhaustive enumeration and the details to the MAPLE manuals:

- By default, MAPLE generates a procedure that uses a fourth-fifth order Runge-Kutta-Fehlberg (RKF) method. Other methods can be selected by specifying the keyword method, e.g., method=choice (where choice has many options, including rkf45, bvp, lsode, and taylorseries) or method=classical[choice] (where choice has many options, including foreuler, rk2, rk4 and abmoulton). See the MAPLE manuals under dsolve/numeric and dsolve/numeric/classical for descriptions of these and other options.

- By default for the RKF method, the absolute tolerance per step is set to \(10^{-7}\) and the relative tolerance per step is set to \(10^{-6}\), but these values can be changed by using the keywords abserr, which establishes a limit on the absolute error per step, and relerr, which establishes a limit on the relative error per step.

- If we want solutions at a specific set of values of the independent variable, we could exploit the keyword output, whose value is set to an array that contains the values of the independent variable at which solutions are desired. The solution is then returned as a matrix with one column and two rows. The element in the first row is a row vector containing the names of the dependent and independent variables and the element in the second row is a matrix containing one row for each value of the independent variable. Each of those rows contains the value of the independent variable and the corresponding values of the dependent variables. Thus, for example, the statements

\[
> \text{kA} := 0.1: \text{kB} := 0.1: \\
> \text{soln1} := \text{dsolve}(\{ \text{eqA, eqB, eqC, A(0)=1000, B(0)=0, C(0)=0 } \}, \\
\{ \text{A(t), B(t), C(t)} \}, \text{type=numeric}, \\
\text{output=\text{array}}([0.0, 5.0, 10.0, 15.0, 20.0]));
\]

will produce the output

\[
soln1 := \left[\begin{array}{cccc}
0. & 1000. & 0. & 0. \\
5.0 & 606.5306579 & 303.2653385 & 90.20400350 \\
10.0 & 367.8794362 & 367.8794642 & 264.2410994 \\
15.0 & 223.1301494 & 334.6952874 & 442.1745631 \\
20.0 & 135.3352727 & 270.6706113 & 593.9941163 \\
\end{array} \right]
\]

This output can then be manipulated using any of MAPLE’s resources for manipulating arrays, but—except by explicit interpolation—it does not have the capacity to generate the solution at values of the independent variable not represented in the output.
11.14. SOLVING ODES NUMERICALLY WITH FORTRAN

To see the actual coding that MAPLE assembles for the procedure generated by `dsolve`, we must first set the interface variable `verboseproc` to 2 and then execute the command `eval`. For example, the statements

> interface(verboseproc = 2);
> eval(soln);

will generate several screens full of MAPLE coding embodying the procedure symbolized by the variable `soln`.

11.14 Solving ODEs Numerically with FORTRAN

Note: Except for files explicitly flagged as from the Numerical Recipes library, all FORTRAN programs (*.f) and all FORTRAN-created data files (*.f.dat) in this chapter can be copied from the directory `$HEAD/fortran`, where (as defined in the Local Guide) `$HEAD` must be replaced by the appropriate path for your site.

FORTRAN programs to solve ordinary differential equations numerically can be constructed in several ways. In this section, we describe how we can implement one or another algorithm directly in a program that we write from scratch—a task that is tedious and difficult except for the simplest of algorithms. In addition, we describe how we can make use of available standard subroutines—we here focus on those in the Numerical Recipes library—and devote our efforts solely to the easier task of writing a suitable driving program to invoke the features of whatever existing ODE solver we choose to use.

11.14.1 FORTRAN Programs from Scratch

More to illustrate the essence of an algorithm than to develop a truly useful solver, we begin by presenting a quick FORTRAN program to implement Euler’s method as expressed in Eqs. (11.81)–(11.83) for the three-species radioactive decay. The program contains three major sections, the first of which obtains controlling input (parameters, step size, and initial values) and initializes the time variable, and is expressed with the coding listed in Table 11.10. Then, we open a file to receive the output and write both a labeling first line and the initial values to that file with the coding

```fortran
OPEN( UNIT = 1, FILE = 'decay_f.dat', STATUS = 'NEW' )
WRITE( 1, 10 ) ! Head table
10 FORMAT( ' T A B C' ) ! Output initial values
WRITE( 1, 20 ) T, A, B, C
20 FORMAT( ' ', F6.2, 3F10.3 )
```

Finally, we execute a loop in which, for each pass, the derivatives at the current point are evaluated, the variables A, B, C, and T are advanced via the Euler algorithm to values appropriate to the next step, and those values are added to the growing file. The statements completing the calculation, including a closing of the file at the end, are listed in Table 11.11. A full listing of this program, which is named `decay.f`, will be found in Section 11.A.

63 Remember that, except within quoted strings, FORTRAN is insensitive to case. For the most part, we shall use lower-case letters within textual discussions but upper-case letters in presenting program statements, but we will probably not be entirely consistent.

64 Because we are using implicit data typing, we use ak and bk rather than ka and kb for the decay constants to avoid implying to FORTRAN that these quantities are to be treated as integers.
Table 11.10: First part of FORTRAN coding for decay.f.

```fortran
WRITE(*, '(1X,A)') 'Decay constant for A: ' ! Get parameters
READ(*,*) AK
WRITE(*, '(1X,A)') 'Decay constant for B: '
READ(*,*) BK
WRITE(*, '(1X,A)') 'Number of steps : '
READ(*,*) NSTEPS
WRITE(*, '(1X,A)') 'Time step : ' ! Get time step
READ(*,*) DT
WRITE(*, '(1X,A)') 'Initial A : ' ! Get initial values
READ(*,*) A
WRITE(*, '(1X,A)') 'Initial B : '
READ(*,*) B
WRITE(*, '(1X,A)') 'Initial C : '
READ(*,*) C
T = 0.0 ! Set initial time
```

Table 11.11: Last lines of FORTRAN coding for decay.f.

```fortran
DO I = 1, NSTEPS
  DADT = -AK*A ! Calculate current derivatives
  DBDT = AK*A - BK*B
  DCDT = BK*B
  A = A + DADT*DT ! Calculate new values
  B = B + DBDT*DT
  C = C + DCDT*DT
  T = T + DT
  WRITE( 1, 20 ) T, A, B, C ! Output new values
ENDDO
CLOSE( UNIT = 1 )
```

After storing the file containing this program in the default directory, we compile and run it to generate the solution with the statements
df77 -o decay.xf decay.f

```
f77 -o decay.xf decay.f
./decay.xf
Decay constant for A: 0.1
Decay constant for B: 0.1
Number of steps : 200
Time step : 0.25
Initial A : 1000.0
Initial B : 0.0
Initial C : 0.0
```

The output is written into the file decay.f.dat, whose first and last few lines will be

To be specific, both here and throughout this section, we illustrate these steps with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. In particular, preceding the program name with ./ is necessary in UNIX but may not be necessary with other operating systems. Details will be found in the Local Guide.
Reassuringly, the first few lines agree with the results in Table 11.2.

One of the exercises invites you to repeat—and expand—the discussion of this section by recasting decay.f to use the second-order Runge-Kutta algorithm.

11.14.2 Using Numerical Recipes

Numerical Recipes provides many interrelated subroutines for solving ODEs. At the bottom of the Numerical Recipe hierarchy are routines—called *algorithm* routines—which use one or another basic algorithm to advance the solution to a system of ODEs by one step of specified size. These routines are *not* adaptive, and they make no attempt to assess the accuracy of their output. In this category, we shall focus on the routine *rk4.f*, which advances the solution one step by the fourth-order Runge-Kutta method, and the routine *rkck.f*, which advances the solution one step by the fifth-order Cash-Karp Runge-Kutta method. Other routines in this category, including *mmid.f* (which implements a modified midpoint method), are used in the same way.

One rung up in the Numerical Recipe hierarchy are routines—called *stepper* routines—which use an algorithm routine to advance the solution by one step but do so adaptively. Each stepper routine calls an algorithm routine repeatedly with different step sizes until its assessment of the error (per step) satisfies a user-specified tolerance. The stepper routine that uses *rkck.f* is named *rkqs.f*; the stepper routine that uses *mmid.f* is *bsstep.f*.

We can, of course, use both algorithm and stepper routines directly, and we shall confine ourselves to illustrating those uses. To generate a full solution over some extended interval of the independent variable, therefore, we will have to construct our own loops to execute the routines repeatedly. In doing so, we will be constructing for ourselves versions of programs that constitute the top rung in the Numerical Recipe hierarchy. That is, we shall be constructing routines—called *driver* routines or, perhaps more accurately in our case, *driver programs*—which use a stepper algorithm to generate a solution over a given total interval.\(^66\)\(^,\)\(^67\)

To use an algorithm or stepper routine, we have two responsibilities. First, we must supply a FORTRAN subroutine that accepts the time (more generally, the independent variable) and a vector containing values of the dependent variables at that time and returns a vector containing the derivatives of the dependent variables at that time. In outline, this file is structured as a subroutine with three arguments, the first—a scalar—providing the current value of the independent variable, the second—a vector—providing the values of the dependent variable, and the third—also a vector—returning the derivatives of the dependent variables. Named common (Section 9.5.4) must be used if the problem contains parameters whose values must be communicated to the subroutine. For our standard three-species radioactive decay, for example, that required subroutine might be\(^68\).

\(^66\) Alternatively, we might exploit the driver routines *rkdumb.f* and *odeint.f* in the Numerical Recipes library.

\(^67\) Remember, too, that the Numerical Recipes library contains numerous example programs illustrating how to use particular routines. As a general rule, the sample programs are in the directory `$NRHEAD/recipes.f/demo/src`. The sample program corresponding to a particular routine is named by prefixing the character `x` to the routine name, e.g., `xrk4.f` for `rk4.f`.

\(^68\) Again, to avoid having FORTRAN interpret what should be floating point variables as integers, we name the vector for the dependent variables `an` and the parameters `ak` and `bk`.

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.50</td>
<td>950.625</td>
<td>48.750</td>
<td>0.625</td>
</tr>
<tr>
<td>0.75</td>
<td>926.859</td>
<td>71.297</td>
<td>1.844</td>
</tr>
<tr>
<td>49.50</td>
<td>6.651</td>
<td>33.769</td>
<td>959.580</td>
</tr>
<tr>
<td>49.75</td>
<td>6.485</td>
<td>33.091</td>
<td>960.424</td>
</tr>
<tr>
<td>50.00</td>
<td>6.323</td>
<td>32.426</td>
<td>961.252</td>
</tr>
</tbody>
</table>
SUBROUTINE DER(T, AN, DNDT)
DIMENSION AN(*), DNDT(*) ! Take dimensions set in main program
COMMON /PARAMS/ AK, BK ! Locate parameters

DNDT(1) = -AK*AN(1) ! Calculate dA/dt
DNDT(2) = AK*AN(1) - BK*AN(2) ! Calculate dB/dt
DNDT(3) = BK*AN(2) ! Calculate dC/dt
RETURN
END

Second, we must create a driving program that defines appropriate variables, assigns values to all necessary parameters, calls the solver—usually in a loop—to calculate the actual solution, and generates a file containing the results of that calculation. We illustrate first the use of \texttt{rk4.f}, which is called with a statement of the form

\begin{verbatim}
CALL RK4(YS, DYDT, NEQS, T, DT, YF, DRVS)
\end{verbatim}

Here \texttt{YS} and \texttt{DYDT} are vectors containing the values of the dependent variables and their derivatives at time \texttt{T}, \texttt{NEQS} is the number of equations in the system, \texttt{DT} is the amount by which the independent variable is to be advanced, \texttt{YF} is a vector that receives the values of the dependent variables at time \texttt{T+DT}, and \texttt{DRVS}, which is a string value that is \textit{not} enclosed in quotation marks, is the name of the subroutine that \texttt{rk4.f} is to invoke to calculate the derivatives—the subroutine structured as described in the last paragraph. \footnote{In this generic indication of a calling statement, we deliberately use the argument \texttt{DRVS} rather than \texttt{DER} to emphasize that the statement in this paragraph indeed \textit{is} generic. Experience has shown that using \texttt{DER} in the generic statement, especially right after using it for the name of a specific subroutine, frequently conveys the impression that the only possible name for this argument is \texttt{DER}—an impression that is decidedly incorrect.} Note (1) that \texttt{rk4.f} requires the current values of the derivatives as input, so an explicit call to the subroutine returning those derivatives will have to precede the call to \texttt{rk4.f}; (2) \texttt{YF} can be the same vector as \texttt{YS}, so the output produced by \texttt{rk4.f} can be stored on top its input; and (3) \texttt{rk4.f} does \textit{not} increment \texttt{T}, so an explicit incrementation will be necessary before a subsequent call to \texttt{rk4.f} in a loop.

A possible driving program to use subroutine \texttt{der} (which \textit{we} have written) and subroutine \texttt{rk4.f} (supplied in the \textit{Numerical Recipes} library) would have three major sections. First we dimension variables, assign values to the parameters, and initialize variables with the statements

\begin{verbatim}
DIMENSION AN(3), DNDT(3) ! Dimension vectors
COMMON /PARAMS/ AK, BK ! Locate parameters
AK = 0.1 ! Set parameters
BK = 0.1
DT = 0.25 ! Set time step
AN(1) = 1000.0 ! Initialize dependent variables
AN(2) = 0.0
AN(3) = 0.0
T = 0.0 ! Set initial time
\end{verbatim}

Then, we open a file to receive the output and write both a labeling first line and the initial values to that file with the statements

\begin{verbatim}
\end{verbatim}
Finally, we execute a loop in which, for each pass, the derivatives at the start of the current interval are evaluated, \(\text{rk4.f} \) is called to advance the solution (placing its output on top of its input to facilitate the next call), the time is incremented, and the new values are added to the growing file. The statements completing the calculation, including closing the file at the end, are

```fortran
DO I = 1, 200
   CALL DER( T, AN, DNDT )
   CALL RK4( AN, DNDT, 3, T, DT, AN, DER)
   T = T + DT
   WRITE( 1, 20 ) T, AN(1), AN(2), AN(3)
ENDDO
CLOSE( UNIT = 1 )
```

A full listing of this program, which is named \(\text{decayrk4.f} \), will be found in Section 11.B.

For the sake of an explicit example, we have chosen above to address three-species radioactive decay. Starting from scratch with the intention to use \(\text{rk4.f} \), we obtain the actual solution and store it in the file \(\text{decayrk4.dat} \) by

1. Creating the driving program \(\text{decayrk4.f} \) and the subroutine \(\text{der} \) using an available text editor (or copying the files from the directory \$HEAD/fortran\).
2. Copying the recipe \(\text{rk4.f} \) from the directory \$NRHEAD/recipes/recipes\) to the default directory.
3. Compiling and linking the executable module with the statement

   ```fortran
   f77 -o decayrk4.xf decayrk4.f rk4.f
   ```

4. Running the program with the statement \./decayrk4.xf\.

The first and last few lines in the file \text{decayrk4.dat} will be

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.310</td>
<td>24.383</td>
<td>0.307</td>
</tr>
<tr>
<td>0.50</td>
<td>951.229</td>
<td>47.561</td>
<td>1.209</td>
</tr>
<tr>
<td>0.75</td>
<td>927.743</td>
<td>69.581</td>
<td>2.676</td>
</tr>
<tr>
<td>49.50</td>
<td>7.083</td>
<td>35.063</td>
<td>957.854</td>
</tr>
<tr>
<td>49.75</td>
<td>6.909</td>
<td>34.370</td>
<td>958.722</td>
</tr>
<tr>
<td>50.00</td>
<td>6.738</td>
<td>33.690</td>
<td>959.572</td>
</tr>
</tbody>
</table>

We conclude this section by illustrating how to construct a driving program to use the stepper routine \(\text{rkqs} \). The derivatives will, of course, be supplied by the same subroutine that we used with \(\text{rk4} \). Invocation of \(\text{rkqs} \), however, requires a bit more preparation. To call \(\text{rkqs} \), we use a statement of the form
CHAPTER 11. SOLVING ORDINARY DIFFERENTIAL EQUATIONS

Table 11.12: First line of FORTRAN coding for decayrkqs.f.

| Dimension | AN(3), DNDT(3), ANS(3) ! Dimension vectors
| Location | /PARAMS/ AK, BK ! Locate parameters
| Set | AK = 0.1 ! Set parameters
| BK = 0.1 ! Set time step
| DTTRY = 0.25 ! Set time step
| AN(1) = 1000.0 ! Initialize dependent variables
| AN(2) = 0.0 ! Initialize dependent variables
| AN(3) = 0.0 ! Initialize dependent variables
| T = 0.0 ! Set initial time
| REL = 1.0E-6 ! Set desired relative error
| ANS(1) = 1000.0 ! Set scaling reference
| ANS(2) = 1000.0 ! Set scaling reference
| ANS(3) = 1000.0 ! Set scaling reference

CALL RKQS(Y, DYDT, NEQS, T, DTTRY, RTOL, YS, DTACT, DTNEXT, DRVS)

where y and dydt are vectors containing the values of the dependent variables and their derivatives at time t, neqs is the number of equations in the system, dttry is the amount by which the independent variable is to be advanced, rtol is the desired relative tolerance, ys is a vector containing the values relative to which the tolerance is to be assessed, dtact is the actual step size on which the adaptive process ultimately settled, dtnext is the recommended step size for the next step in the solution, and drvs is the name of the subroutine that is to be invoked to calculate the derivatives. Note (1) that rkqs.f requires the current values of the derivatives as input, so an explicit call to the subroutine returning those derivatives will have to precede the call to rkqs.f; and (2) in contrast to rk4.f, rkqs.f returns the new values in the variables y and t, which were used to supply the original values as input.

A driving program to exploit rkqs is similar to—but not identical to—decayrk4.f. Dimensioning variables, setting parameters, and initializing variables is accomplished with the statements listed in Table 11.12. Then, we open a file to receive the output and write both a labeling first line and the initial values to that file with the coding

```
OPEN( UNIT = 1, FILE = 'decayrkqs_f.dat', STATUS = 'NEW' )
WRITE( 1, 10 )
10 FORMAT(' T A B C' )
WRITE( 1, 20 ) T, AN(1), AN(2), AN(3)
20 FORMAT(' ', F6.2, 3F10.3 )
```

Finally, we execute a loop in which, for each pass, the derivatives at the start of the current interval are evaluated, rkqs.f is called to advance the solution (placing its output on top of its input to facilitate the next call), the time is incremented, and the new values are added to the growing file. The statements completing the calculation, including a closing of the file at the end, are
DO WHILE (T .LT. 50.0)
 CALL DER(T, AN, DNDT)
 CALL RKQS(AN, DNDT, 3, T, DTTRY, REL, ANS, DTACT, +
 DTNEXT, DER)
 WRITE(1, 20) T, AN(1), AN(2), AN(3)
 DTTRY = DTNEXT
ENDDO
CLOSE(UNIT = 1)

A full listing of this program, which is named decayrkqs.f, will be found in Section 11.C.

Starting from scratch with the intention to use rkqs.f, we obtain the actual solution and store
it in the file decayrkqs.f.dat by

1. Creating the driving program decayrkqs.f and the subroutine der using an available text
 editor (or copying the files from the directory $HEAD/fortran).

2. Copying the recipes rkqs.f and rkck.f (whose importance will be proclaimed if the next
 step is attempted without it) from the directory $NRHEAD/recipes.f/recipes to the default
directory.

3. Compiling and linking the executable module with the statement

 f77 -o decayrkqs.xf decayrkqs.f rkqs.f rkck.f

4. Running the program with the statement ./decayrkqs.xf.

The first and last few lines in the file decayrkqs.f.dat will be

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.310</td>
<td>24.383</td>
<td>0.307</td>
</tr>
<tr>
<td>1.19</td>
<td>887.575</td>
<td>105.854</td>
<td>6.571</td>
</tr>
<tr>
<td>3.27</td>
<td>720.761</td>
<td>236.012</td>
<td>43.228</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>41.28</td>
<td>16.117</td>
<td>66.528</td>
<td>917.356</td>
</tr>
<tr>
<td>46.69</td>
<td>9.386</td>
<td>43.818</td>
<td>946.796</td>
</tr>
<tr>
<td>52.99</td>
<td>4.995</td>
<td>26.469</td>
<td>968.537</td>
</tr>
</tbody>
</table>

Note, in particular, that—because the underlying algorithm is adaptive—this approach has generated
solutions at an irregularly spaced sequence of times.

If we deleted the statement DTTRY = DTNEXT from the loop in decayrkqs.f, the result would
be an adaptive incrementation by $\Delta t = 0.25$ with each step and we would have a (longer) table with
time values equally spaced. The first and last few lines of that table would be

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.310</td>
<td>24.383</td>
<td>0.307</td>
</tr>
<tr>
<td>0.50</td>
<td>951.229</td>
<td>47.561</td>
<td>1.209</td>
</tr>
<tr>
<td>0.75</td>
<td>927.743</td>
<td>69.581</td>
<td>2.676</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>49.50</td>
<td>7.083</td>
<td>35.063</td>
<td>957.854</td>
</tr>
<tr>
<td>49.75</td>
<td>6.909</td>
<td>34.370</td>
<td>958.722</td>
</tr>
<tr>
<td>50.00</td>
<td>6.738</td>
<td>33.690</td>
<td>959.572</td>
</tr>
</tbody>
</table>
CHAPTER 11. SOLVING ORDINARY DIFFERENTIAL EQUATIONS

which should be compared with similar tables generated by other methods and presented elsewhere in this chapter. If we believe the program has actually achieved the error tolerance specified with the variable \(\text{REL} = 10^{-6} \), we should be able to accept these values as accurate to \(\pm 0.001 \).

11.15 Solving ODEs Numerically with C

Note: Except for files explicitly flagged as from the Numerical Recipes library, all C programs (*.c) and all C-created data files (*.c.dat) in this chapter can be copied from the directory \$HEAD/cc, where (as defined in the Local Guide) \$HEAD must be replaced by the appropriate path for your site.

C programs to solve ordinary differential equations numerically can be constructed in several ways. In this section, we describe how we can implement one or another algorithm directly in a program that we write from scratch—a task that is tedious and difficult except for the simplest of algorithms. In addition, we describe how we can make use of available standard subroutines—we here focus on those in the Numerical Recipes library—and devote our efforts solely to the easier task of writing a suitable driving program to invoke the features of whatever existing ODE solver we choose to use.

11.15.1 C Programs from Scratch

More to illustrate the essence of an algorithm than to develop a truly useful solver, we begin by presenting a quick C program to implement Euler’s method as expressed in Eqs. (11.81)–(11.83) for the three-species radioactive decay. The program contains three major sections, the first of which obtains controlling input (parameters, step size, and initial values) and initializes the time variable, and is expressed with the coding:

```c
printf( "Decay constant for A: " ); scanf( "%f", &kA );
printf( "Decay constant for B: " ); scanf( "%f", &kB );
printf( "Number of steps : " ); scanf( "%d", &nsteps );
printf( "Time step : " ); scanf( "%f", &dt );
printf( "Initial A : " ); scanf( "%f", &A );
printf( "Initial B : " ); scanf( "%f", &B );
printf( "Initial C : " ); scanf( "%f", &C );
t = 0.0;
```

Then, we open a file to receive the output and write both a labeling first line and the initial values to that file with the coding:

```c
fptr = fopen( "decay_c.dat", "w" );
fprintf( fptr, " t A B C\n" );
fprintf( fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, A, B, C );
```

Finally, we execute a loop in which, for each pass, the derivatives at the current point are evaluated, the variables \(A, B, C \), and \(t \) are advanced via the Euler algorithm to values appropriate to the next step, and those values are added to the growing file. The statements completing the calculation, including a closing of the file at the end, are listed in Table 11.13. A full listing of this program, which is named decay.c and includes inclusion of necessary header files and variable declarations, will be found in Section 11.D.

70 Remember that C is case sensitive.
Table 11.13: Solution loop for decay.c.

```c
for( i=1; i<=nsteps; i++ )
{
    dAdt = -kA*A;  /* Calculate current derivatives */
    dBdt = kA*A - kB*B;
    dCdt = kB*B;
    A = A + dAdt*dt;  /* Calculate new values */
    B = B + dBdt*dt;
    C = C + dCdt*dt;
    t = t + dt;
    fprintf( fptr, "%6.2f %10.3f %10.3f %10.3f
"., t, A, B, C );
}
fclose( fptr );
```

After storing the file containing this program in the file decay.c, we compile and run it to generate the solution with the statements71

\texttt{cc -o decay.xc decay.c}
\texttt{./decay.xc}

Decay constant for A: 0.1
Decay constant for B: 0.1
Number of steps : 200
Time step : 0.25
Initial A : 1000.0
Initial B : 0.0
Initial C : 0.0

The output is written into the file decay.c.dat, whose first and last few lines will be

<table>
<thead>
<tr>
<th>t</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.50</td>
<td>950.625</td>
<td>48.750</td>
<td>0.625</td>
</tr>
<tr>
<td>0.75</td>
<td>926.859</td>
<td>71.297</td>
<td>1.844</td>
</tr>
<tr>
<td>49.50</td>
<td>6.651</td>
<td>33.769</td>
<td>959.580</td>
</tr>
<tr>
<td>49.75</td>
<td>6.485</td>
<td>33.091</td>
<td>960.424</td>
</tr>
<tr>
<td>50.00</td>
<td>6.323</td>
<td>32.426</td>
<td>961.252</td>
</tr>
</tbody>
</table>

Reassuringly, the first few lines agree with the results in Table 11.2.

One of the exercises invites you to repeat—and expand—the discussion of this section by recasting decay.c to use the second-order Runge-Kutta algorithm.

11.15.2 Using Numerical Recipes

\textit{Numerical Recipes} provides many interrelated subroutines for solving ODEs. At the bottom of the

71To be specific, both here and throughout this section, we illustrate these steps with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. In particular, preceding the program name with ./ is necessary in UNIX but may not be necessary with other operating systems. Details will be found in the Local Guide.
Numerical Recipe hierarchy are routines—called *algorithm* routines—which use one or another basic algorithm to advance the solution to a system of ODEs by *one* step of specified size. These routines are *not* adaptive, and they make no attempt to assess the accuracy of their output. In this category, we shall focus on the routine *rk4.c*, which advances the solution one step by the fourth-order Runge-Kutta method, and the routine *rkck.c*, which advances the solution one step by the fifth-order Cash-Karp Runge-Kutta method. Other routines in this category, including *mmid.c* (which implements a modified midpoint method), are used in the same way.

One rung up in the Numerical Recipe hierarchy are routines—called *stepper* routines—which use an algorithm routine to advance the solution by one step but do so adaptively. Each stepper routine calls an algorithm routine repeatedly with different step sizes until its assessment of the error (per step) satisfies a user-specified tolerance. The stepper routine that uses *rkck.c* is named *rkqs.c*; the stepper routine that uses *mmid.c* is *bsstep.c*.

We can, of course, use both algorithm and stepper routines directly, and we shall confine ourselves to illustrating those uses. To generate a full solution over some extended interval of the independent variable, therefore, we will have to construct our own loops to execute the routines repeatedly. In doing so, we will be constructing for ourselves versions of programs that constitute the top rung in the Numerical Recipe hierarchy. That is, we shall be constructing routines—called *driver* routines or, perhaps more accurately in our case, *driver programs*—which use a stepper algorithm to generate a solution over a given total interval.\(^2\)\(^3\)

To use an algorithm or stepper routine, we have two responsibilities. First, we must supply a C subroutine that accepts the time (more generally, the independent variable) and a vector containing values of the dependent variables at that time and returns a vector containing the derivatives of the dependent variables at that time. In outline, this file is structured as a subroutine with three arguments, the first—a scalar—providing the current value of the independent variable, the second—a vector—providing the values of the dependent variable, and the third—also a vector—returning the derivatives of the dependent variables. If it should happen that the ODEs to be solved contain parameters to which one wishes access outside the subroutine defining the derivatives, we must arrange for the main program to store the parameters in *global variables* (by declaring the variables to be used for the parameters ahead of and outside all other program blocks and then using the declared variable names both in the function and in the main program when values are assigned to the parameters).\(^3\)\(^5\) For our standard three-species radioactive decay, for example, we would have to define the two parameters \(k_A\) and \(k_B\) as global variables with the statement

```
float kA, kB;    /* For parameters */
```

placed *before* the definition of the subroutine defining the derivatives and *before* the statement `main()` that introduces the main program. Then, we might code the required subroutine—name it *der*—with the statements

```
void der( float t, float n[], float dndt[] )
{
    dndt[1] = -kA*n[1];    /* Calculate dA/dt */
    dndt[3] = kB*n[2];    /* Calculate dC/dt */
}
```

\(^2\)Alternatively, we might exploit the driver routines *rkdumb.c* and *odeint.c* in the Numerical Recipes library.

\(^3\)Remember, too, that the Numerical Recipes library contains numerous example programs illustrating how to use particular routines. As a general rule, the sample programs are in the directory `$NRHEAD/recipes.c-ansi/demo/src`\(^4\) The sample program corresponding to a particular routine is named by prefixing the character `x` to the routine name, e.g., *xrk4.c* for *rk4.c*.

\(^5\)Details on the use of global variables in C are discussed in Section 9.7.4.
Second, we must create a driving program that defines appropriate variables, assigns values to all necessary parameters, calls the solver—usually in a loop—to calculate the actual solution, and generates a file containing the results of that calculation. We illustrate first the use of rk4.c, which is called with a statement of the form

\[\text{rk4}(\text{ys}, \text{dydt}, \text{neqs}, \text{t}, \text{dt}, \text{yf}, \text{drvs}) \]

Here \text{ys} and \text{dydt} are vectors containing the values of the dependent variables and their derivatives at time \text{t}, \text{neqs} is the number of equations in the system, \text{dt} is the amount by which the independent variable is to be advanced, \text{yf} is a vector that receives the values of the dependent variables at time \text{t+dt}, and \text{drvs}, which is a string value that is not enclosed in quotation marks, is the name of the subroutine that \text{rk4}.c is to invoke to calculate the derivatives—the subroutine structured as described in the last paragraph.\footnote{In this generic indication of a calling statement, we deliberately use the argument \text{drvs} rather than \text{DER} to emphasize that the statement in this paragraph indeed is generic. Experience has shown that using \text{der} in the generic statement, especially right after using it for the name of a specific subroutine, frequently conveys the impression that the only possible name for this argument is \text{der}—an impression that is decidedly incorrect.}

Note (1) that \text{rk4}.c requires the current values of the derivatives as input, so an explicit call to the subroutine returning those derivatives will have to precede the call to \text{rk4}.c; (2) \text{yf} can be the same vector as \text{ys}, so the output produced by \text{rk4}.c can be stored on top of its input; and (3) \text{rk4}.c does not increment \text{t}, so an explicit incrementation will be necessary before a subsequent call to \text{rk4}.c in a loop.

A possible driving program to use subroutine \text{der} (which we have written) and subroutine \text{rk4}.c (supplied in the \textit{Numerical Recipes} library) would have three major sections. First we dimension variables, assign values to the parameters, and initialize variables with the statements\footnote{Since indices in C start at 0 and we wish to have, for example, \text{n}[1], \text{n}[2], and \text{n}[3] available, we must dimension \text{n} at 4 and then ignore the zeroth element \text{n}[0].}

\begin{verbatim}
float n[3+1], dndt[3+1]; /* For variables and derivatives */
float t, dt; /* For time, time step */
kA = 0.1; kB = 0.1; /* Set parameters */
dt = 0.25; /* Set time step */
n[1] = 1000.0; n[2] = 0.0; /* Initialize dependent variables */
n[3] = 0.0;
t = 0.0; /* Set initial time */
\end{verbatim}

Then, we open a file to receive the output and write both a labeling first line and the initial values to that file with the statements

\begin{verbatim}
fptr = fopen("decayrk4_c.dat", "w");
fprintf(fptr, " t A B C\n");
fprintf(fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3]);
\end{verbatim}

Finally, we execute a loop in which, for each pass, the derivatives at the start of the current interval are evaluated, \text{rk4}.c is called to advance the solution (placing its output on top of its input to facilitate the next call), the time is incremented, and the new values are added to the growing file. The statements completing the calculation, including closing the file at the end, are
int i; /* For loop index */
for(i=1; i<=200; i++)
{
 der(t, n, dndt);
 rk4(n, dndt, 3, t, dt, n, der);
 t = t + dt;
 fprintf(fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3]);
}
fclose(fptr);

A full listing of this program, which is named decayrk4.c and includes inclusion of necessary header files (both standard C and those specific to Numerical Recipes) and variable declarations, will be found in Section 11.E.

For the sake of an explicit example, we have chosen above to address three-species radioactive decay. Starting from scratch with the intention to use rk4.c, we obtain the actual solution and store it in the file decayrk4_c.dat by

1. Creating the driving program decayrk4.c and the subroutine der using an available text editor (or copying the files from the directory $HEAD/cc).
2. Copying the recipe rk4.c from the directory $NRHEAD/recipes_c-ansi/recipes to the default directory.
3. Copying the needed Numerical Recipes header files nr.h and nrutil.h from the directory $NRHEAD/recipes_c-ansi/include and the needed Numerical Recipes utility subroutine nrutil.c from the directory $NRHEAD/recipes_c-ansi/recipes to the default directory.
4. Compiling and linking the executable module with the statement
 cc -o decayrk4.xc decayrk4.c rk4.c nrutil.c
5. Running the program with the statement ./decayrk4.xc.

The first and last few lines in the file decayrk4_c.dat will be

<table>
<thead>
<tr>
<th>t</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1000.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.25</td>
<td>975.310</td>
<td>24.383</td>
<td>0.307</td>
</tr>
<tr>
<td>0.50</td>
<td>951.229</td>
<td>47.561</td>
<td>1.209</td>
</tr>
<tr>
<td>0.75</td>
<td>927.743</td>
<td>69.581</td>
<td>2.676</td>
</tr>
<tr>
<td>49.50</td>
<td>7.083</td>
<td>35.063</td>
<td>957.854</td>
</tr>
<tr>
<td>49.75</td>
<td>6.909</td>
<td>34.370</td>
<td>958.722</td>
</tr>
<tr>
<td>50.00</td>
<td>6.738</td>
<td>33.690</td>
<td>959.572</td>
</tr>
</tbody>
</table>

We conclude this section by illustrating how to construct a driving program to use the stepper routine rkqs.c. The derivatives will, of course, be supplied by the same subroutine that we used with rk4.c. Invocation of rkqs.c, however, requires a bit more preparation. To call rkqs, we use a statement of the form

rkqs(y, dydt, neqs, &t, dttry, rtol, ys, &dtact, &dtnext, drvs)

As illustrated, three of the arguments to rkqs.c must be flagged with a preceding ampersand & to be properly recognized by the routine.
Table 11.14: First statements for C Program decayrkqs.c.

```c
float n[3+1], dndt[3+1]; /* For variables and derivatives */
float rel; /* For error control */
float t, dttry; /* For time, time steps */
kA = 0.1; kB = 0.1; /* Set parameters */
dttry = 0.25; /* Set time step */
n[1] = 1000.0; n[2] = 0.0; /* Initialize dependent variables */
n[3] = 0.0;
t = 0.0; /* Set initial time */
rel = 1.0e-6; /* Set desired relative error */
ans[1] = 1000.0; /* Set scaling reference */
ans[2] = 1000.0;
ans[3] = 1000.0;
```

where \(y \) and \(\frac{dy}{dt} \) are vectors containing the values of the dependent variables and their derivatives at time \(t \), \(\text{neqs} \) is the number of equations in the system, \(\text{dttry} \) is the amount by which the independent variable is to be advanced, \(\text{rtol} \) is the desired relative tolerance, \(y_s \) is a vector containing the values relative to which the tolerance is to be assessed, \(\text{dtact} \) is the actual step size on which the adaptive process ultimately settled, \(\text{dtnext} \) is the recommended step size for the next step in the solution, and \(\text{drvs} \) is the name of the subroutine that is to be invoked to calculate the derivatives. Note (1) that \(\text{rkqs.c} \) requires the current values of the derivatives as input, so an explicit call to the subroutine returning those derivatives will have to precede the call to \(\text{rkqs.c} \); (2) in contrast to \(\text{rk4.c} \), \(\text{rkqs.c} \) returns the new values in the variables \(y \) and \(t \), which were used to supply the original values as input.

A driving program to exploit \(\text{rkqs} \) is similar to—but not identical to—\(\text{decayrk4.c} \). The variables storing the parameters must still be declared as global variables by proper positioning of the statement declaring them. Dimensioning variables, setting parameters, and initializing variables is accomplished with the statements listed in Table 11.14. Then, we open a file to receive the output and write both a labeling first line and the initial values to that file with the coding

```c
fptr = fopen( "decayrkqs_c.dat", "w" );
fprintf( fptr, " t A B C\n" ) ;
fprintf( fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3] ) ;
```

Finally, we execute a loop in which, for each pass, the derivatives at the start of the current interval are evaluated, \(\text{rkqs.c} \) is called to advance the solution (placing its output on top of its input to facilitate the next call), the time is incremented, and the new values are added to the growing file. The statements completing the calculation, including a closing of the file at the end, are

```c
float dtnext, dtact; /* For time steps */
float ans[3+1]; /* For error control */
while ( t <= 50.0 )
{
    der( t, n, dndt );
    rkqs( n, dndt, 3, &t, dttry, rel, ans, &dtact, &dtnext, der );
    fprintf( fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3] );
    dttry = dtnext;
}
fclose( fptr );
```
A full listing of this program, which is named \texttt{decayrkqs.c} and includes inclusion of necessary header files (both standard C and those specific to Numerical Recipes) and variable declarations, will be found in Section 11.F.

Starting from scratch with the intention to use \texttt{rkqs}, we obtain the actual solution and store it in the file \texttt{decayrkqs.c.dat} by

1. Creating the driving program \texttt{decayrkqs.c} and the subroutine \texttt{der} using an available text editor (or copying the files from the directory \texttt{$\text{HEAD/}cc$}).

2. Copying any necessary recipes to the default directory. In the present case, the header files \texttt{nr.h} and \texttt{nrutil.h}, and the utility subroutine \texttt{nrutil.c} presumably remain from the first example. The recipes \texttt{rkqs.c} and \texttt{rkck.c} (whose importance will be proclaimed if the next step is attempted without it) must also be copied from the directory \texttt{$\text{NRHEAD/recipes.c-ansi/recipes}$}.

3. Compiling and linking the executable module with the statement

\begin{verbatim}
cc -o decayrkqs.xc decayrkqs.c rkqs.c rkck.c nrutil.c -lm
\end{verbatim}

4. Running the program with the statement \texttt{./decayrkqs.xc}.

The first and last few lines in the file \texttt{decayrkqs.c.dat} will be

\begin{verbatim}

t	A	B	C
0.00 | 1000.000 | 0.000 | 0.000
0.25 | 975.310 | 24.383 | 0.307
1.35 | 873.693 | 117.971 | 8.336
3.49 | 705.048 | 246.407 | 48.545
41.79 | 15.313 | 63.993 | 920.694
47.27 | 8.851 | 41.841 | 949.307
53.69 | 4.658 | 25.009 | 970.333
\end{verbatim}

Note, in particular, that—because the underlying algorithm is adaptive—this approach has generated solutions at an irregularly spaced sequence of times.

If we deleted the statement \texttt{dttry = dtnext;} from the loop in \texttt{decayrkqs.c}, the result would be an adaptive incrementation by $\Delta t = 0.25$ with each step and we would have a (longer) table with time values equally spaced. The first and last few lines of \texttt{that} table would be

\begin{verbatim}

t	A	B	C
0.00 | 1000.000 | 0.000 | 0.000
0.25 | 975.310 | 24.383 | 0.307
0.50 | 951.229 | 47.561 | 1.209
0.75 | 927.743 | 69.581 | 2.676
49.75 | 6.909 | 34.370 | 958.722
50.00 | 6.738 | 33.690 | 959.572
50.25 | 6.572 | 33.022 | 960.406
\end{verbatim}

which should be compared with similar tables generated by other methods and presented elsewhere in this chapter. If we believe the program has actually achieved the error tolerance specified with the variable \texttt{rel} ($= 10^{-6}$), we should be able to accept \texttt{these} values as accurate to ± 0.001.
11.16 Exercises

11.16.1 ... using Symbolic Methods

11.1. Find the motion of a driven, damped oscillator satisfying the differential equation

\[
m \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + kx = mf \cos \omega t
\]

subject to the general initial conditions

\[
x(0) = x_0 ; \quad \frac{dx}{dt}(0) = v_0
\]

and then determine the particular initial values that might be imposed so that the transient part of the solution is wiped out from the beginning, i.e., so that the motion is identically the steady-state motion from the moment the oscillator is set into motion. Assume that the oscillator is underdamped. (Note that, so that \(m \) will ultimately appear only in conjunction with \(b \) and \(k \), we have chosen to define \(f \) as a force per unit mass rather than simply a force.)

11.2. Take away the walls and the two springs connecting the blocks to the walls in the system of Fig. 11.5, let the masses be different (\(m_1 \) and \(m_2 \), say) and denote the constant of the one spring by \(k \). Suppose the blocks are constrained to move along a straight line. Measuring from an arbitrarily selected origin on that line, let the coordinates of the particles be \(x_1 \) and \(x_2 \), respectively. The equations of motion for this system are

\[
m_1 \frac{d^2 x_1}{dt^2} = k(x_2 - x_1) ; \quad m_2 \frac{d^2 x_2}{dt^2} = -k(x_2 - x_1)
\]

Let the system be put into motion with arbitrary initial conditions

\[
x_1(0) = x_{10} ; \quad x_2(0) = x_{20} ; \quad \frac{dx_1}{dt}(0) = v_{10} ; \quad \frac{dx_2}{dt}(0) = v_{20}
\]

Solve this initial-value problem for \(x_1(t) \) and \(x_2(t) \) and then examine the behavior of the particular quantities

\[
X(t) = \frac{m_1 x_1(t) + m_2 x_2(t)}{m_1 + m_2} \quad \text{and} \quad Y(t) = x_2(t) - x_1(t)
\]

which are, respectively, the position of the center of mass of the system and the position of the second block relative to the first block.

11.3. Study the behavior of the system that results when the the system shown in Fig. 11.5 is extended to contain three objects coupled in a line. Take the four springs all to have the same spring constant but allow for the possibility that the middle object may have a mass different from that of the two outside objects. Your examination should include at least the following:

- Find both the natural frequencies of the normal modes of oscillation and the initial conditions that will excite the system exclusively in each of the normal modes, determining particularly the frequencies as a function of the ratio of the two masses. To display your results, draw a diagram something like a quantum energy level diagram that shows the way the three natural frequencies vary as the middle mass goes from being rather smaller than the two outer masses to being rather larger than the outer two masses. As initial conditions, it will be sufficient to release the objects from rest at individually arbitrary displacements. You are, however, quite likely to have to help with the inverse Laplace transforms, since your symbolic manipulator may be unable to deal with the inverse Laplace transform of an expression like

\[
\frac{As + Bs^3}{\alpha s^4 + \beta s^2 + \gamma} = s \left(\frac{A + Bs^2}{\alpha s^4 + \beta s^2 + \gamma} \right)
\]

The denominator looks quartic in \(s \) but is better seen as quadratic in \(s^2 \). If you introduce \(z = s^2 \) temporarily, factor the resulting denominator, and then do a partial fraction expansion,
you can end up with the alternative form
\[s \left(\frac{A + Bs^2}{\alpha s^4 + \beta s^2 + \gamma} \right) = s \left(\frac{Rs}{s^2 + R'} + \frac{Q}{s^2 + Q'} \right) = \frac{Rs}{s^2 + R'} + \frac{Qs}{s^2 + Q'} \]
whose inverse Laplace transform is easier to find. (Indeed, even Table 1.2 is adequate to the task.) Finding the constants \(R, A, R' \) and \(Q' \) is part of the exercise; the expressions are not pretty. **The lesson:** Symbolic manipulators frequently need help from someone who really knows where the calculation is going.

- With the three masses equal, find the solution for \(x_1(t), x_2(t), \) and \(x_3(t) \) when one of the outer masses is initially displaced, the other two are not, and all three are released from rest. Plot graphs of all three positions as functions of time over a long enough time interval to reveal the features of the motion.
- With the three masses equal, find the solution for \(x_1(t), x_2(t), \) and \(x_3(t) \) when the middle mass is initially displaced, the other two are not, and all three are released from rest. Plot graphs of all three positions as functions of time over a long enough time interval to reveal the features of the motion.

To help you get started and to facilitate focusing on the solution of the ODEs rather than on deriving them, note that, for three masses, the equations of motion will be
\[
m \frac{d^2x_1}{dt^2} = -kx_1 + k(x_2 - x_1)
\]
\[
m \frac{d^2x_2}{dt^2} = -k(x_2 - x_1) + k(x_3 - x_2)
\]
\[
m \frac{d^2x_3}{dt^2} = -k(x_3 - x_2) - kx_3
\]

11.4

The system called the double pendulum shown in Fig. 11.21 consists of a ball of mass \(m_1 \) hanging from a rigid and massless rod of length \(l_1 \) attached to the ceiling and a second ball of mass \(m_2 \) hanging from a rigid and massless rod of length \(l_2 \) attached to the first ball. The balls swing in a plane, and the configuration of the system is specified by giving two angles, the first of which, \(\theta \), gives the angle that the upper string makes with the vertical and the second of which, \(\phi \), gives the angle that the lower string makes with the vertical. The motion can be very complicated and at times will be chaotic. For small amplitudes, however, things are much more sedate. When the amplitudes of the motion of both balls are small and—to simplify a little bit—when the strings are both the same length (\(l_1 = l_2 \), which we will symbolize with the letter \(l \)), the equations of motion turn out to be
\[
\frac{d^2\theta}{dt^2} + \frac{m_2}{m_1 + m_2} \frac{d^2\phi}{dt^2} + \frac{g}{l} \theta = 0
\]
\[
\frac{d^2\phi}{dt^2} + \frac{g}{l} \phi = 0
\]
Find the normal modes of oscillation of this system and determine the initial conditions that will cause the system to oscillate exclusively in one or the other of these modes.
11.5. Solve the differential equation
\[m \frac{d^2 x}{dt^2} + b \frac{dx}{dt} + kx = mf \cos \omega t \]
for the driven, damped harmonic oscillator subject to the specific initial conditions
\[x(0) = x_0 ; \quad \frac{dx}{dt}(0) = 0 \]
by explicitly taking the Laplace transform of the equation, solving that result for the Laplace transform of the solution, and then inverting that transform to obtain the solution itself.

11.6. Among the simplest of differential equations is the equation
\[\frac{d^2 x}{dt^2} + \omega^2 x = 0 \]
that describes a simple harmonic oscillator. Generate a series solution to this equation and then verify that the solution thus generated agrees with the known solution
\[x(t) = A \cos \omega t + B \sin \omega t \]
where \(A \) and \(B \) are constants determined by the initial conditions.

11.7. Find a symbolic solution for all three components for the motion of a projectile in a linear, viscous medium, when the initial conditions are general, i.e., solve Eq. (11.4) subject to the initial conditions in Eq. (11.2). Since the equations are uncoupled, you can solve each individually. Alternatively, you can solve the three equations simultaneously as a system. Solve them both ways. Once you have the solutions in hand, verify that they satisfy the original equations and initial conditions. Finally, explore their limits for small \(b \).

11.8. Recast Eq. (11.34) for the LRC circuit in dimensionless form, measuring charge in units of \(q_0 \) and finding a suitable unit in terms of which to measure time.

11.9. Reflecting Coulomb’s law, the equation of motion for a particle carrying charge \(q \) moving in the (fixed) electrostatic field of a charge \(Q \) is
\[m \frac{d^2 r}{dt^2} = \frac{qQ}{4 \pi \varepsilon_0 r^3} \]
Here, the force center is assumed to be at the origin, \(r \) is the position vector of the particle, and the equation is written in mksa units. Write this equation of motion out in Cartesian coordinates, cast it in dimensionless form, and determine the correspondences that must be adopted to convert the equations for an orbit in an electrostatic field into those for the orbit in a gravitational field, i.e., into Eq. (11.46).

11.10. Recast the system of six first-order equations in the last paragraph of Section 11.1.1 in dimensionless form, both when the viscous term is linear in the velocity and when it is quadratic in the velocity. Appropriate units for this recasting can be inferred from the discussion earlier in that section.

11.11. Translate the entire discussion—both dimensional and dimensionless—of the planetary problem in Section 11.1.7 from Cartesian coordinates \((x, y) \) to polar coordinates \((r, \phi) \), where \(x = r \cos \phi \) and \(y = r \sin \phi \). That is
(a) Show that the polar components of the equations of motion in the first instance are
\[m \left[\frac{d^2 r}{dt^2} - r \left(\frac{d \phi}{dt} \right)^2 \right] = f(r) ; \quad m \left(\frac{d^2 \phi}{dt^2} + 2 \frac{d \phi}{dt} \frac{dr}{dt} \right) = 0 \]
(b) Recognizing that
\[\frac{d}{dt} \left(m r^2 \frac{d \phi}{dt} \right) = m \left(r^2 \frac{d^2 \phi}{dt^2} + 2 r \frac{dr}{dt} \frac{d \phi}{dt} \right) \]
show that
\[mr^2 \frac{d\phi}{dt} = \text{constant} = L \implies \frac{d\phi}{dt} = \frac{L}{mr^2} \]
and then that
\[m \frac{d^2 r}{dt^2} = f(r) + \frac{L^2}{mr^3} \]
Here, \(L = m(x_0v_{x0} - y_0v_{y0}) \) is the angular momentum of the object; \(L \) is constant throughout the motion. (In polar coordinates, we would first solve this single, second-order, non-linear, inhomogeneous equation for \(r(t) \). Then, with \(r(t) \) in hand, we integrate the equation \(\frac{d\phi}{dt} = \frac{L}{mr^2} \)—see Chapter 13—to find \(\phi(t) \).

(c) Translate the initial conditions to polar coordinates, finding that
\[
\begin{align*}
\rho(0) &= \sqrt{x_0^2 + y_0^2} \quad \frac{d\rho(0)}{dt} = \frac{x_0v_{x0} + y_0v_{y0}}{\sqrt{x_0^2 + y_0^2}} \\
\phi(0) &= \tan\frac{y_0}{x_0} \quad \frac{d\phi(0)}{dt} = \frac{x_0v_{y0} - y_0v_{x0}}{x_0^2 + y_0^2}
\end{align*}
\]

(d) Restrict the force to the inverse square gravitational force, finding that
\[
\frac{d^2 r}{dt^2} = -\frac{GM}{r^2} + \frac{L^2}{mr^3}
\]
(e) Recast the differential equations and initial conditions in dimensionless form, finding that
\[
\begin{align*}
\frac{d^2 \rho}{dt^2} &= -\frac{1}{\rho^2} + \frac{\beta}{\rho^3} \quad \frac{d\phi}{dt} = \pm \sqrt{\beta} \\
\rho(0) &= \frac{\rho_0}{l} = \frac{\sqrt{x_0^2 + y_0^2}}{l} \quad \phi(0) = \tan\frac{y_0}{x_0} \\
\frac{d\rho}{dt}(0) &= \frac{x_0v_{x0} + y_0v_{y0}}{\sqrt{x_0^2 + y_0^2} \sqrt{GM/l}} \quad \frac{d\phi}{dt} = \frac{x_0v_{y0} - y_0v_{x0}}{(x_0^2 + y_0^2) \sqrt{GM/l}}
\end{align*}
\]
where \(\beta = \frac{L^2}{GMm^2l} \) is a constant, and—in the second equation—the upper sign applies when \(L > 0 \) and the lower sign when \(L < 0 \). While all parameters disappeared from the equations in Cartesian coordinates, the parameter \(\beta \) remains in the equations in polar coordinates.

(f) Recast the Cartesian expressions in the last paragraph of Section 11.1.7 for both the dimensional and the dimensionless statements of conservation of energy and angular momentum in the planetary problem into polar coordinates.

Hint: Remember (or take as given if you haven’t met them yet) that the radial and azimuthal components of the acceleration of a particle in polar coordinates are given by \(a_r = \ddot{r} - r\dot{\phi}^2 \) and \(a_\phi = r\ddot{\phi} + 2\dot{r}\dot{\phi} \).

11.16.2 . . . using Numerical Methods

11.12. In an appropriate dimensionless presentation, standing waves in a string must satisfy the boundary value problem
\[
\frac{d^2 y}{dx^2} + k^2 y = 0 \quad y(0) = y(1) = 0
\]
Suppose that the interval \(0 \leq x \leq 1 \) is divided into \(n \) equal segments of length \(\Delta x = 1/n \), let \(x_i = i \Delta x \) (with \(i = 0, 1, 2, \ldots, n \)), and let \(y_i = y(x_i) \). Evaluate the ODE at \(x = x_i \), approximate the second derivative with the difference formula
\[
\frac{d^2 y}{dx^2} \bigg|_{x=x_i} \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} \quad i = 1, 2, 3, \ldots n - 1
\]
and note that \(y_0 = y_n = 0 \). Show that the values \(y_i \) for \(i = 0, 1, 2, \ldots, n \) satisfy a system of \(n + 1 \) linear algebraic equations of the form

\[MY = \alpha Y, \]

where \(Y \) is an \((n + 1)\)-component vector whose elements are the values of \(y_i \) and \(\alpha \) is determined from \(k^2 \) and \(\Delta x \). Then argue that the allowed values of \(k^2 \) can be determined from the eigenvalues of the matrix \(M \). That is, show that this transformation turns a boundary value problem involving a differential equation into an approximately equivalent matrix eigenvalue problem.

11.14. Some radioisotopes exhibit a branched decay sequence such as

\[\begin{align*}
A & \quad k_1 \quad B \\
& \quad k_2 \quad C \\
& \quad k_3 \quad k_4 \quad D
\end{align*} \]

Deduce appropriate differential equations, create an appropriate file to define the equations, and thoroughly explore the behavior of this system. Assume that \(D \) is stable and that, initially, only \(A \) is present.

11.15. Taking the initial conditions for the unforced, damped harmonic oscillator of Eq. (11.27) with \(F = 0 \) to be \(x(0) = 1 \) and \(v(0) = 0 \), produce graphs of \(x \) versus \(t \) for several values of \(\beta \) on the interval \(0 < \beta < 2 \). Then using the knowledge that \(\beta = b/m \omega = b/\sqrt{mk} \), and that \(\tau = \omega t \), infer from your graphs the effect of changing \(m \) or \(k \) on the physical motion.

11.16. Explore the unforced, damped harmonic oscillator of Eq. (11.27) with \(F = 0 \) for the cases of critical damping (\(\beta = 2 \)) and overdamping (\(\beta > 2 \)).

11.17. Explore the behavior of the Van der Pol oscillator described in dimensionless form by the equation

\[\frac{d^2 \pi}{dt^2} = \frac{d\pi}{dt}(1 - \pi^2) - \pi \]

obtaining graphs of position versus time, velocity versus time, and velocity versus position (the phase-plane trajectory), each for several different initial conditions. Convince yourself that the final, steady-state path in the phase plane is independent of the initial conditions.

11.18. The angular position \(\theta \) of a simple pendulum of length \(l \) satisfies the non-linear equation

\[\frac{d^2 \theta}{dt^2} + \frac{g}{l} \sin \theta = 0 \]

where \(\theta \) is measured in radians from the lowest point of the pendulum’s motion. Use numerical methods to study the motion of this pendulum when it is released from rest at each of several initial displacements, say 20°, 45°, 90°, 120°, 150°, 165°, and 178°. Look particularly at graphs of \(\theta \) versus \(t \), \(d\theta/dt \) versus \(t \), and \(d\theta/dt \) versus \(\theta \) (the phase plot). Obtain also a graph of period versus amplitude (initial displacement). Write several paragraphs describing your set up of the problem and presenting evidence for your discoveries. Optional: Try starting the pendulum at the bottom (0 initial angle) with several initial angular velocities. How large can the angular velocity be before the pendulum begins to swing over the top? Suggestion: Begin by introducing the dimensionless time \(\tau = \sqrt{g/l} t \) so that the equation becomes \(\frac{d^2 \theta}{dt^2} + \sin \theta = 0 \).

11.19. Suppose that the “gravitational” force were not inverse square but instead depended on some other (negative) power of the radial coordinate. The dimensionless equations of motion then would be

\[\frac{d^2 \pi}{dt^2} = -\frac{\pi}{(\pi^2 + \pi^2)^{b/2}}; \quad \frac{d^2 \gamma}{dt^2} = -\frac{\gamma}{(\pi^2 + \pi^2)^{b/2}} \]

[Compare Eq. (11.46).] Of course, the equations reduce to those for the inverse square force if we simply set \(b = 3/2 \). For the planetary problem, find conditions that will generate a distinctly elliptical orbit for an attractive inverse square force (\(b = 1.5 \)). Then explore the effect on that orbit of distorting the force by changing the exponent in the denominator of the equations making
CHAPTER 11. SOLVING ORDINARY DIFFERENTIAL EQUATIONS

11.20. Explore the scattering orbits that occur when an object moves under the action of a repulsive inverse square force, and compare your results with those for an attractive force.

11.21. Deduce the equations of motion for a space ship of mass \(m \) coasting freely in the \(xy \) plane under the gravitational influence of two suns, each of mass \(M \) and located respectively at \((R,0)\) and \((-R,0)\). Then express the equations in dimensionless form and, creating all necessary files, thoroughly explore the motion of this space ship. In particular, you might search for an orbit that loops like a figure-eight around the two suns and/or you might see if your approach predicts what you would expect intuitively if you start the spaceship from rest at a point on the perpendicular bisector of the line joining the two suns. Make sure your solutions are generated to an adequate accuracy.

11.22. Suppose a particle of charge \(q \) and mass \(m \) is injected into a region of space containing constant, crossed electric and magnetic fields \(\mathbf{E} = E_x \hat{i} \) and \(\mathbf{B} = B_y \hat{k} \). In vector form, the equation of motion for this particle is

\[
m \frac{d^2 \mathbf{r}}{dt^2} = q \mathbf{E} + q \frac{d\mathbf{r}}{dt} \times \mathbf{B}
\]

Verify the equations of motion

\[
m \frac{d^2 x}{dt^2} = qE_x + qB_z \frac{dy}{dt} \quad ; \quad m \frac{d^2 y}{dt^2} = -qB_x \frac{dx}{dt} \quad ; \quad m \frac{d^2 z}{dt^2} = 0
\]

for the specific fields of this exercise, express them in dimensionless form (note that \(\omega = qB_z/m \) is a frequency and \(E_x/B_z \) is a velocity), and thoroughly explore the behavior of the particle in this situation. Try to understand the motion intuitively.

Hint: You should find that, in terms of an arbitrarily selected unit of length \(\ell \), the equations involve a single parameter \(qE_x/(m\omega^2 \ell) \), which can alternatively be written as \((E_x/B_z)/(\omega \ell)\) — the ratio of the velocity \(E_x/B_z \) determined by the fields to the characteristic velocity implied by your choice of a length unit and the frequency \(\omega \). Note that this exercise actually has more than one parameter, since the initial components of the velocity—probably expressed in units of \(\omega \ell \)—also influence the solution.

11.23. A particle having mass \(m \) and carrying charge \(q \) moves in the \(xy \)-plane while experiencing an electric field given by \(\mathbf{E}(x,y) = -\alpha y \hat{j} \), where \(\alpha \) is a constant. Assume that \(\alpha \) and \(q \) are both positive. With \(\mathbf{r} = x \hat{i} + y \hat{j} \), the vector equation of motion for this particle then is

\[
m \frac{d^2 \mathbf{r}}{dt^2} = -q\alpha y \hat{j}
\]

(a) Show that, in component form, the equations of motion for this particle are

\[
\frac{d^2 x}{dt^2} = 0 \quad ; \quad \frac{d^2 y}{dt^2} = -\frac{\alpha q}{m} y = -by
\]

(b) With \(b \) a global parameter, create an appropriate file to define these equations for the ODE-solver in an available numerical/graphical tool. (c) Use that tool to obtain graphs of the trajectories in the \(xy \)-plane of several particles projected from the origin at different angles and with different speeds. (d) Speculate on a use for this field.

11.24. An important system in the early study of chaos is described by the Lorenz equations

\[
\begin{align*}
\frac{dx}{dt} &= a(y-x) \\
\frac{dy}{dt} &= -xz + bx - y \\
\frac{dz}{dt} &= xy - cz
\end{align*}
\]

Create an appropriate file defining these equations and then thoroughly explore the behavior of this system. Graphs of \(y \) versus \(x \), \(z \) versus \(x \), and \(z \) versus \(y \) when \(a = 10.0 \), \(b = 28.0 \) and \(c = 8.0/3.0 \)
under the initial conditions $x_0 = 1.0$, $y_0 = 0.0$, and $z_0 = 0.0$ are particularly interesting. While graphs of y versus x, z versus x, and z versus y are interesting, the true beauty of the trajectory is best seen using a three-dimensional space curve. Be sure to examine the path from several different vantage points in the space around the path, an objective most easily accomplished if the display of the path allows rotation of the path on the screen.

11.25. Recast the program decay.f so that it invokes (a) the improved Euler method and (b) the second-order Runge-Kutta method rather than Euler’s method to solve the problem of three-species decay. Then, compile and test your programs. Give particular attention to exploring the accuracy of the solution by using several different time steps. Further, compare the accuracy obtained for various time steps with that obtained for the same time steps using Euler’s method.

11.26. Recast the program decay.c so that it invokes (a) the improved Euler method and (b) the second-order Runge-Kutta method rather than Euler’s method to solve the problem of three-species decay. Then, compile and test your programs. Give particular attention to exploring the accuracy of the solution by using several different time steps. Further, compare the accuracy obtained for various time steps with that obtained for the same time steps using Euler’s method.

11.27. The dynamics of the chemical reaction

\[
A + B \rightleftharpoons C + D
\]

is governed by the equations

\[
\begin{align*}
\frac{dA}{dt} &= -k_f AB + k_r CD \\
\frac{dB}{dt} &= -k_f AB + k_r CD \\
\frac{dC}{dt} &= k_f AB - k_r CD \\
\frac{dD}{dt} &= k_f AB - k_r CD
\end{align*}
\]

where $A(t)$, $B(t)$, $C(t)$, and $D(t)$ are the concentrations of each molecule in the reaction vessel, and k_f and k_r are the forward and reverse rate constants, respectively. Suppose that the reaction is started with $A(0) = A_0$, $B(0) = B_0$, and $C(0) = D(0) = 0$. Cast the equations in dimensionless form, using A_0 as the unit of concentration and $k_f A_0 t$ as the dimensionless time. Then explore the behavior of the system as a function of the initial concentration of B, measured in units of A_0 and the reverse rate constant, measured in units of k_f. Look particularly at the dependence of the ultimate equilibrium on these parameters. Make sure your results are generated to adequate accuracy.

11.28. In classical ecology, the interaction between a predator and a prey, with populations $x(t)$ and $y(t)$, respectively, is modeled with the equations

\[
\begin{align*}
\frac{dx}{dt} &= -k_1 x + k_2 xy \\
\frac{dy}{dt} &= k_3 y - k_4 xy
\end{align*}
\]

where k_1 and k_2 are parameters describing the way each population would evolve in the absence of the other and k_3 and k_4 are parameters describing strength of the interaction between the two species, which we take to be proportional to the likelihood of an encounter between a member of one species and a member of the other species. Depending on the parameters and the initial populations $x(0) = x_0$, $y(0) = y_0$, the system may approach a stable equilibrium or, alternatively, one or the other of the populations may become extinct. Explore this system to determine conditions under which each of these circumstances occurs and write a paragraph or two describing your findings. Make sure your results are generated to an accuracy adequate to support your conclusions.

11.29. Examine the undamped, unforced harmonic oscillator carefully, using at least two different methods and several time steps. Monitor the accuracy of your solution by monitoring the constancy of the energy of the oscillator given (in dimensional form) by $E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$.
11.16.3 ... using Numerical Recipes

Note: Numerical recipes can, of course, also be used for any of the exercises in Section 11.16.2.

11.31. Read the book *Numerical Recipes* to discover how to use the routine `odeint` and then use it to study three-species radioactive decay.

11.32. Read the book *Numerical Recipes* to discover how to use the routine `mmid` and then use it to study three-species radioactive decay.

11.33. Use two different numerical recipes of your choice to study the logistic growth of a population.

11.34. Study the damped, unforced harmonic oscillator using (a) `rk4` and (b) `rkqs`. Consider under-damped, critical, and overdamped cases.

11.35. Use (a) `rk4` and (b) `rkqs` to study both bound and unbound orbits in the inverse square gravitational force.

11.36. Choose one of the exercises from Section 11.16.2 and address it using at least one numerical recipe.
11.A Listing of decay.f

PROGRAM DECAY

WRITE(*, '(1X,A)') 'Decay constant for A: ' ! Get parameters
READ(*,*) AK
WRITE(*, '(1X,A)') 'Decay constant for B: '
READ(*,*) BK
WRITE(*, '(1X,A)') 'Number of steps : '
READ(*,*) NSTEPS
WRITE(*, '(1X,A)') 'Time step : ' ! Get time step
READ(*,*) DT
WRITE(*, '(1X,A)') 'Initial A : ' ! Get initial values
READ(*,*) A
WRITE(*, '(1X,A)') 'Initial B : '
READ(*,*) B
WRITE(*, '(1X,A)') 'Initial C : '
READ(*,*) C
T = 0.0 ! Set initial time

OPEN(UNIT = 1, FILE = 'decay_f.dat', STATUS = 'NEW')

WRITE(1, 10) ! Head table
10 FORMAT(' T A B C')

WRITE(1, 20) T, A, B, C ! Output initial values
20 FORMAT(' ', F6.2, 3F10.3)

DO I = 1, NSTEPS
 DADT = -AK*A ! Calculate current derivatives
 DBDT = AK*A - BK*B
 DCDT = BK*B
 A = A + DADT*DT ! Calculate new values
 B = B + DBDT*DT
 C = C + DCDT*DT
 T = T + DT
 WRITE(1, 20) T, A, B, C ! Output new values
ENDDO

CLOSE(UNIT = 1)

END
11.B Listing of decayrk4.f

```fortran
PROGRAM DECAYRK4

EXTERNAL DER
DIMENSION AN(3), DNDT(3)  ! Dimension vectors
COMMON /PARAMS/ AK, BK    ! Locate parameters
AK = 0.1                  ! Set parameters
BK = 0.1                  ! Set time step
DT = 0.25

AN(1) = 1000.0            ! Initialize dependent variables
AN(2) = 0.0
AN(3) = 0.0
T = 0.0                   ! Set initial time

OPEN( UNIT = 1, FILE = 'decayrk4_f.dat', STATUS = 'NEW' )

WRITE( 1, 10 )
10 FORMAT(' T A B C' )
WRITE( 1, 20 ) T, AN(1), AN(2), AN(3)
20 FORMAT(' ', F6.2, 3F10.3 )

DO I = 1, 200
   CALL DER( T, AN, DNDT )
   CALL RK4( AN, DNDT, 3, T, DT, AN, DER)
   T = T + DT
   WRITE( 1, 20 ) T, AN(1), AN(2), AN(3)
ENDDO

CLOSE( UNIT = 1 )

STOP
END

SUBROUTINE DER( T, AN, DNDT )
DIMENSION AN(*), DNDT(*)  ! Establish sizes of vectors
COMMON /PARAMS/ AK, BK    ! Locate parameters

DNDT(1) = -AK*AN(1)       ! Calculate dA/dt
DNDT(2) = AK*AN(1) - BK*AN(2)  ! Calculate dB/dt
DNDT(3) = BK*AN(2)       ! Calculate dC/dt
RETURN
END
```
11.C Listing of decayrkqs.f

PROGRAM DECAYRKQS

EXTERNAL DER

DIMENSION AN(3), DNDT(3), ANS(3) ! Dimension vectors

COMMON /PARAMS/ AK, BK ! Locate parameters
AK = 0.1 ! Set parameters
BK = 0.1
DTTRY = 0.25 ! Set trial time step

AN(1) = 1000.0 ! Initialize dependent variables
AN(2) = 0.0
AN(3) = 0.0
T = 0.0 ! Set initial time

REL = 1.0E-6 ! Set desired relative error
ANS(1) = 1000.0 ! Set scaling reference
ANS(2) = 1000.0
ANS(3) = 1000.0

OPEN(UNIT = 1, FILE = 'decayrkqs_f.dat', STATUS = 'NEW')

WRITE(1, 10)
10 FORMAT(' T A B C')

WRITE(1, 20) T, AN(1), AN(2), AN(3)
20 FORMAT(' ', F6.2, 3F10.3)

DO WHILE (T .LT. 50.0)
 CALL DER(T, AN, DNDT)
 CALL RKQS(AN, DNDT, 3, T, DTTRY, REL, ANS, DTACT, +
 DTNEXT, DER)
 WRITE(1, 20) T, AN(1), AN(2), AN(3)
 DTTRY = DTNEXT
ENDDO

CLOSE(UNIT = 1)

STOP
END

SUBROUTINE DER(T, AN, DNDT)

DIMENSION AN(*), DNDT(*) ! Establish sizes of vectors
COMMON /PARAMS/ AK, BK ! Locate parameters

DNDT(1) = -AK*AN(1) ! Calculate dA/dt
DNDT(2) = AK*AN(1) - BK*AN(2) ! Calculate dB/dt
DNDT(3) = BK*AN(2) ! Calculate dC/dt
RETURN
END
11.D Listing of decay.c

/* PROGRAM decay.c */

#include <stdio.h>
#include <math.h>

main()
{

/***** Declare variables *****/
FILE *fptr; /* For file pointer */
float kA, kB; /* For parameters */
float t, A, B, C; /* For independent, dependent variables */
float dAdt, dBdt, dCdt; /* For derivatives */
float dt; /* For time increment */
int i, nsteps; /* Loop index, limit */

/***** Get parameters, time step, initial values *****/

printf("Decay constant for A: "); scanf("%f", &kA);
printf("Decay constant for B: "); scanf("%f", &kB);
printf("Number of steps : "); scanf("%d", &nsteps);
printf("Time step : "); scanf("%f", &dt);
printf("Initial A : "); scanf("%f", &A);
printf("Initial B : "); scanf("%f", &B);
printf("Initial C : "); scanf("%f", &C);
t = 0.0;

/***** Open file, write label and initial values *****/

fptr = fopen("decay_c.dat", "w");
fprintf(fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, A, B, C);

/***** Solve equations, writing results to file *****/

for(i=1; i<=nsteps; i++)
{

dAdt = -kA*A; /* Calculate current derivatives */

dBdt = kA*A - kB*B;

dCdt = kB*B;

A = A + dAdt*dt; /* Calculate new values */

B = B + dBdt*dt;

C = C + dCdt*dt;

t = t + dt;

fprintf(fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, A, B, C);
}

/***** Close file *****/

fclose(fptr);
}
/* PROGRAM decayrk4.c */

#include <stdio.h>
#include <math.h>
#include "nr.h"
#include "nrutil.h"

float kA, kB; /* For parameters */

void der(float t, float n[], float dndt[])
{
 dndt[1] = -kA*n[1]; /* Calculate dA/dt */
 dndt[3] = kB*n[2]; /* Calculate dC/dt */
}

main()
{
 FILE *fptr; /* For file pointer */
 float n[3+1], dndt[3+1]; /* For variables and derivatives */
 float t, dt; /* For time, time step */
 int i; /* For loop index */

 kA = 0.1; kB = 0.1; /* Set parameters */
 dt = 0.25; /* Set time step */
 n[1] = 1000.0; n[2] = 0.0; /* Initialize dependent variables */
 n[3] = 0.0;
 t = 0.0; /* Set initial time */

 fptr = fopen("decayrk4_c.dat", "w");
 fprintf(fptr, " t A B C\n");
 fprintf(fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3]);

 for(i=1; i<=200; i++)
 {
 der(t, n, dndt);
 rk4(n, dndt, 3, t, dt, n, der);
 t = t + dt;
 fprintf(fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3]);
 }
 fclose(fptr);
}
Listing of decayrkqs.c

```c
#include <stdio.h>
#include <math.h>
#include "nr.h"
#include "nrutil.h"

float kA, kB; /* For parameters */

void der( float t, float n[], float dndt[] )
{
    dndt[1] = -kA*n[1]; /* Calculate dA/dt */
    dndt[3] = kB*n[2]; /* Calculate dC/dt */
}

main()
{
    FILE *fptr; /* For file pointer */
    float n[3+1], dndt[3+1]; /* For variables and derivatives */
    float rel, ans[3+1]; /* For error control */
    float t, dttry, dtnext, dtact; /* For time, time steps */
    kA = 0.1; kB = 0.1; /* Set parameters */
    dttry = 0.25; /* Set time step */
    n[1] = 1000.0; n[2] = 0.0; /* Initialize dependent variables */
    n[3] = 0.0;
    t = 0.0; /* Set initial time */
    rel = 1.0e-6; /* Set desired relative error */
    ans[1] = 1000.0; /* Set scaling reference */
    ans[2] = 1000.0;
    ans[3] = 1000.0;

    fptr = fopen( "decayrkqs_c.dat", "w" );
    fprintf( fptr, " t  A  B  C\n" );
    fprintf( fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3] );

    while ( t <= 50.0 )
    {
        der( t, n, dndt );
        rkqs(n, dndt, 3, &t, dttry, rel, ans, &dtact, &dtnext, der );
        fprintf( fptr, "%6.2f %10.3f %10.3f %10.3f\n", t, n[1], n[2], n[3] );
        dttry = dtnext;
    }
    fclose( fptr );
}
```
Chapter 13
Evaluating Integrals

Frequently the answer to an interesting question in physics is given by—or can be cast in the form of—an integral, often as a function of the upper limit or as a parameter in the integrand. Sometimes, that integral can be evaluated in closed form. More often, however, the integral is analytically intractable and must be approached numerically. We begin this chapter by identifying several physical situations, the full addressing of which requires evaluating an integral, perhaps as a function of one or more parameters. Then we illustrate how to use symbolic algebra systems to approach those that can be evaluated analytically, describe a few of many available numerical algorithms (with attention to their accuracy), and—finally—describe ways to evaluate representative integrals using a variety of numerical approaches and computational tools. When parameters are involved, we also illustrate how to plot graphs of the integrals as functions of those parameters.

We shall classify each integral in one of three categories, since the approach to its numerical evaluation will depend on this classification. Integrals in the first category will simply be a number; their numerical evaluation involves a single invocation of one or another basic algorithm. In more complicated—and more interesting—cases, the integral will be a function of a parameter, which may appear in the limits of integration (second category) or embedded in the integrand (third category); the numerical evaluation of these integrals as a function of the parameter will involve repeated invocation of one or another basic algorithm within a loop.

13.1 Sample Problems

In this section, we identify several physical contexts in which integrals arise, and we determine a representative integral for each case.

13.1.1 One-Dimensional Trajectories

The motion of a particle of mass \(m \) in one dimension under the action of a force \(f \) satisfies Newton’s second law, equivalent to the two equations

\[
\frac{dp}{dt} = f \quad \text{and} \quad \frac{dx}{dt} = v
\]

which are to be solved subject to the prescribed initial conditions \(x(0) = x_0, v(0) = v_0, \) and \(p(0) = p_0 \). Here, \(x, v, \) and \(p \) are the position, velocity, and momentum of the particle, respectively, and, with \(c \) standing for the speed of light, the relationship between \(p \) and \(v \) assumes one of the forms

\[
p = \frac{mv}{\sqrt{1 - v^2/c^2}} \quad \text{or} \quad p = mv
\]
depending on whether the motion is relativistic or nonrelativistic. If the force happens to depend only on \(t \), the solution to these two differential equations can be expressed as the explicit integrals

\[
p(t) = p_0 + \int_0^t f(t') \, dt' \quad \text{and} \quad x(t) = x_0 + \int_0^t v(t') \, dt'
\]

and the physical problem of predicting the trajectory reduces to the mathematical problem of evaluating two integrals, finding the momentum from the first integral in Eq. (13.3), then solving for the velocity \(v(t) \) using the appropriate member of Eq. (13.2), and finally finding \(x(t) \) from the second integral in Eq. (13.3). Each integral is a function of at least one parameter—the upper limit \(t \)—and will also depend on additional quantities (e.g., \(m, c, \ldots \)) in the integrand (unless a dimensionless casting happens to suppress them). These integrals fall into either the second or the third of our three categories.

If, on the other hand, the force happens to depend only on \(x \), we can recast the computational task by noting first that

\[
\frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = v \frac{dv}{dx}
\]

Then, Newton’s second law becomes

\[
m \frac{d^2x}{dt^2} = f(x) \quad \Rightarrow \quad m v \frac{dv}{dx} = f(x) \quad \Rightarrow \quad m v \, dv = f(x) \, dx
\]

Finally, by integrating this last expression from initial values to general values at some other time, we find that

\[
m \int_{v_0}^v v' \, dv' = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2 = \int_{x_0}^x f(x') \, dx'
\]

and the task of finding the velocity (as a function of \(x \)) is reduced to the straight-forward evaluation of an integral. Once that integral has been evaluated, we can then predict the position by exploiting the relationship

\[
\frac{dx}{dt} = v(x) \quad \Rightarrow \quad dt = \frac{dx}{v(x)} \quad \Rightarrow \quad \int_{t_0}^t dt' = t - t_0 = \int_{x_0}^x \frac{dx'}{v(x')}
\]

and we have reduced the second step in the solution to the evaluation of an integral as well. Both integrals deduced in this paragraph may have internal parameters, so they might fall into either the second or the third of our three categories.

\subsection*{13.1.2 Center of Mass}

The location \(\mathbf{r}_{\text{cm}} \) of the center of mass of an object is given by

\[
\mathbf{r}_{\text{cm}} = \frac{1}{M} \int \mathbf{r} \, dm
\]

where \(\mathbf{r} \) locates a representative element of the object, \(dm \) is the mass of that element, \(M = \int dm \) is the total mass of the object, and the integral extends over the region of space (volume, surface, or line) occupied by the object. More specifically, if the object lies in a plane and polar coordinates \((r, \phi) \) are appropriate, we would write this integral more explicitly in the form

\[
\mathbf{r}_{\text{cm}} = \frac{1}{M} \int \sigma(r, \phi) r \, r \, dr \, d\phi = \frac{1}{M} \int \sigma(r, \phi) \left(r \cos \phi \ \hat{i} + r \sin \phi \ \hat{j} \right) r \, dr \, d\phi
\]

where \(\sigma(r, \phi) \) is the mass per unit area of the object and \(r \, dr \, d\phi \) is the area of the chosen element.
Even more specifically, if we seek the center of mass of the uniform semicircular plate of total mass \(M \), radius \(a \), and mass per unit area \(\sigma = M/(\frac{1}{2} \pi a^2) \) shown in Fig. 13.1, we would conclude that

\[
\rho_{cm} = \frac{1}{M} \int_0^a \int_0^\pi \frac{M}{2 \pi a^2} \left(r \cos \phi \ \hat{i} + r \sin \phi \ \hat{j} \right) r \, dr \, d\phi = \frac{2}{\pi a^2} \int_0^a \int_0^\pi r^2 \left(\cos \phi \ \hat{i} + \sin \phi \ \hat{j} \right) \, dr \, d\phi
\]

(13.10)

Recognizing as always the wisdom of casting problems to be addressed with a computer in dimensionless form, we finally introduce the dimensionless length \(\lambda = r/a \), in terms of which we then find that

\[
\rho_{cm} = \frac{2}{\pi} \int_0^1 \int_0^\pi \lambda^2 \left(\cos \phi \ \hat{i} + \sin \phi \ \hat{j} \right) \, d\phi \, d\lambda
\]

(13.11)

Although this integral is two-dimensional, it clearly falls into the first of our three categories—an integral whose value is simply a number (or, in this case, a constant vector).

13.1.3 Moment of Inertia; Radius of Gyration

The moment of inertia \(I \) of an object of mass \(M \) about a chosen axis is given by

\[
I = \int r^2 \, dm
\]

(13.12)

where \(r \) is the distance of an element of the object from the chosen axis, \(dm \) is the mass of that element, and the integral extends over the region of space (volume, surface, or line) occupied by the object. Further, the radius of gyration \(k \) of this object with respect to the same axis is defined so that a point object of mass \(M = \int dm \) located at the distance \(k \) from the axis has the same moment of inertia as the object itself, i.e., \(k \) is defined so that

\[
I = Mk^2 \quad \implies \quad k = \sqrt{\frac{I}{M}}
\]

(13.13)

Suppose, for example, we seek the moment of inertia of the uniform semicircular plate of mass \(M \) and radius \(a \) shown in Fig. 13.1 about the \(x \) axis. As in the previous example, the mass per unit area \(\sigma \) is given by \(\sigma = M/(\frac{1}{2} \pi a^2) \). We choose a horizontal strip, all elements of which are the same distance \(y \) from the \(x \) axis. If this strip has mass \(dm \), its contribution to the moment of inertia about that axis is \(y^2 \, dm \), and the moment of inertia of the plate about that axis is given by

\[
I = \int_{y=0}^{y=a} y^2 \, dm
\]

(13.14)
Remembering that the equation of a circle of radius a is $x^2 + y^2 = a^2$, we note next that the length of the illustrated strip at height y is $2\sqrt{a^2 - y^2}$. If we take the width of that strip to be dy, then its area is given by $dA = 2\sqrt{a^2 - y^2} dy$, and its mass is given by

$$dm = \sigma dA = \frac{4M}{\pi a^2} \sqrt{a^2 - y^2} dy$$ \hspace{1cm} (13.15)

Finally, the moment of inertia of the entire object is given by the integral

$$I = \frac{4M}{\pi a^2} \int_0^a y^2 \sqrt{a^2 - y^2} dy = \frac{4}{\pi} M a^2 \int_0^1 \lambda^2 \sqrt{1 - \lambda^2} d\lambda$$

$$\Rightarrow \quad \frac{I}{Ma^2} = \frac{4}{\pi} \int_0^1 \lambda^2 \sqrt{1 - \lambda^2} d\lambda$$ \hspace{1cm} (13.16)

where we have introduced the dimensionless variable $\lambda = y/a$ and expressed the moment of inertia in units of Ma^2, which is the moment of inertia of a point mass M a distance a from the axis. This integral is simply a number, and it therefore falls into the first of our three categories.

13.1.4 The Large Amplitude Simple Pendulum

Suppose we seek the period T of a simple pendulum of length l and mass m as shown in Fig. 13.2, but we do not wish to make the conventional small amplitude approximation, under which the period T_0 is given by $2\pi \sqrt{l/g}$, where g is the acceleration of gravity. With y standing for the vertical coordinate of the pendulum (measured upward from its point of support), $I = ml^2$ for its moment of inertia about the point of support, and ω for its angular velocity, we start by noting that the total energy (kinetic plus potential) of the pendulum in a general position is given by

$$\text{energy} = \frac{1}{2} I \omega^2 + mgy = \frac{1}{2} ml^2 \left(\frac{d\theta}{dt} \right)^2 - mgl \cos \theta$$ \hspace{1cm} (13.17)

If, with θ_0 symbolizing the amplitude of the motion, we invoke conservation of energy, equating the energy at a general point to the energy at the highest point in the swing (where $d\theta/dt = 0$ and $\theta = \theta_0$), we find that

$$\frac{1}{2} ml^2 \left(\frac{d\theta}{dt} \right)^2 - mgl \cos \theta = -mgl \cos \theta_0 \quad \Rightarrow \quad \frac{d\theta}{dt} = \pm \sqrt{\frac{2g}{l} \sqrt{\cos \theta - \cos \theta_0}}$$ \hspace{1cm} (13.18)

(We assume that the pendulum does not have sufficient energy to swing over the top.) This last relationship then leads to the conclusion that

$$dt = \pm \sqrt{\frac{l}{2g} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}} \quad \Rightarrow \quad \int_0^{T/4} dt = \frac{T}{4} = \sqrt{\frac{l}{2g} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}}$$ \hspace{1cm} (13.19)
where we have integrated over one-quarter of the period \((0 < t < T/4)\) in time and over one-quarter of the swing \((0 < \theta < \theta_0)\) in angle, and we have taken the positive sign because, in its motion over this interval, the pendulum indeed has positive angular velocity. Further, we have assumed from symmetry that the full period \(T\) is four times the time required for the pendulum to swing from its lowest point to its highest point.

This integral can be recast in numerous ways. Anticipating an existing standard function, we invoke the half angle identity \(\cos \theta = 1 - 2 \sin^2(\theta/2)\), finding that

\[
T = 2 \sqrt{\frac{l}{g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\sin^2(\theta_0/2) - \sin^2(\theta/2)}}
\] (13.20)

We then introduce the variable \(\phi\) defined by \(\sin(\theta/2) = \sin(\theta_0/2) \sin \phi\) to find that

\[
T(k) = 4 \sqrt{\frac{l}{g}} \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}
\] (13.21)

where the (dimensionless) parameter \(k = \sin(\theta_0/2)\) is determined by the amplitude of the pendulum’s motion. By writing \(T(k)\), we have drawn attention in the notation to the dependence of the period on \(k\) (and hence on the amplitude). Note also that, when the amplitude is small, \(k \approx 0\) and the integral can be readily evaluated to yield that \(T_0 = 2\pi \sqrt{l/g}\), which—reassuringly—agrees with the known value quoted at the beginning of this subsection. Then, expressing the period \(T(k)\) in units of \(T_0\), we find finally that

\[
\frac{T(k)}{T_0} = \frac{2}{\pi} \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}} = \frac{2}{\pi} K(k)
\] (13.22)

Here, for purposes of notation alone, we have introduced the integral

\[
K(k) = \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}
\] (13.23)

which defines a standard, tabulated function known as the complete elliptic integral of the first kind. Note that the value of this integral depends on a parameter not in a limit but in the very structure of the integrand. This integral falls into the third of our three categories.

13.1.5 Statistical Data Analysis

When repeated measurements of a single quantity are subject to a large number of individually small, random fluctuations, the distribution of those measurements about their mean follows the normal or Gaussian distribution function given by

\[
G(x) = \frac{1}{\sqrt{2\pi} \sigma^2} e^{- (x-\mu)^2 / (2\sigma^2)}
\] (13.24)

where \(\mu\) and \(\sigma\) are the mean and standard deviation of the distribution, respectively, and \(G(x)\) is normalized so that \(\int_{-\infty}^{\infty} G(x) \, dx = 1\). The probability that a single measurement will lie between \(\mu - \alpha \sigma\) and \(\mu + \alpha \sigma\) is then given by

\[
P(\mu - \alpha \sigma < x < \mu + \alpha \sigma) = \int_{\mu - \alpha \sigma}^{\mu + \alpha \sigma} G(x) \, dx = \frac{2}{\sqrt{\pi}} \int_0^{\alpha/\sqrt{2}} e^{-s^2} \, ds = \text{erf} \left(\frac{\alpha}{\sqrt{2}} \right)
\] (13.25)

where \(s = (x-\mu)/(\sigma \sqrt{2})\) and, for purposes of notation alone, we have introduced the integral

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} \, ds
\] (13.26)
which defines a standard, tabulated function known as the *error function*. Thus, determining the
probability given by Eq. (13.25) boils down to evaluating an integral that depends on a parameter
appearing in the upper limit, i.e., to evaluating an integral that falls into the second of our three
categories.

13.1.6 The Cornu Spiral

The two integrals

\[C(u) = \int_0^u \cos \left(\frac{\pi t^2}{2} \right) dt \quad \text{and} \quad S(u) = \int_0^u \sin \left(\frac{\pi t^2}{2} \right) dt \] (13.27)

which are called the *Fresnel integrals*, appear in the study of Fresnel diffraction. Together, they
define the *Cornu spiral*, which is a graph of \(S(u) \) versus \(C(u) \). Each is a function of its upper limit
as a parameter and falls into the second of our three categories.

13.1.7 Electric and Magnetic Fields and Potentials

Among the richest sources of important—and frequently analytically intractable—integrals are the
relationships in electromagnetic theory that determine fields and potentials from prescribed sources.

For a distribution of static charge, for example, we identify an element of that charge
\(dq \) and extend over all charges in the source. Similarly, for a source consisting of a steady current
\(I' \) in a wire, we identify an element \(dr' \) of the wire located at \(r' \) and, in mks units, find the magnetic
field \(B(r) \) and the magnetic vector potential \(A(r) \) at the point \(r \) by evaluating the integrals

\[E(r) = \frac{1}{4\pi \epsilon_0} \int \frac{r - r'}{|r - r'|^3} dq' \quad \text{and} \quad V(r) = \frac{1}{4\pi \epsilon_0} \int \frac{dq'}{|r - r'|} \] (13.28)

which extend over all charges in the source. Similarly, for a source consisting of a steady current \(I' \)
in a wire, we identify an element \(dr' \) of the wire located at \(r' \) and, in mks units, find the magnetic
field \(B(r) \) and the magnetic vector potential \(A(r) \) at the point \(r \) by evaluating the integrals

\[B(r) = \frac{\mu_0}{4\pi} \int \frac{I' dr' \times (r - r')}{|r - r'|^3} \quad \text{and} \quad A(r) = \frac{\mu_0}{4\pi} \int \frac{I' dr'}{|r - r'|} \] (13.29)

which extend over the path followed by the current.

More specifically, suppose we seek the electrostatic potential in the plane midway between two
identical uniformly charged circular rings of radius \(a \) with their planes parallel, their axes coincident,
and their centers separated by \(2a \). The envisioned situation is shown in Fig. 13.3. Each ring carries
a total charge \(Q \) with (linear) charge density \(\lambda \). Using cylindrical coordinates \((r, \phi, z)\), we first find
the potential at the general point \(r = r \cos \phi \hat{i} + r \sin \phi \hat{j} + z \hat{k} \), produced by *one* such ring positioned
in the \(xy \) plane with its center at the origin. Let \(r' = a \cos \phi' \hat{i} + a \sin \phi' \hat{j} \) locate an element on that
(single) ring. In this notation,

\[r - r' = (a \cos \phi - a \cos \phi') \hat{i} + (a \sin \phi - a \sin \phi') \hat{j} + z \hat{k} \] (13.30)

so

\[|r - r'| = \left[(r \cos \phi - a \cos \phi')^2 + (r \sin \phi - a \sin \phi')^2 + z^2 \right]^{1/2} \]

\[= \left[r^2 + a^2 - 2ar \cos(\phi' - \phi) + z^2 \right]^{1/2} \] (13.31)

Placing these results into the second member of Eq. (13.28) and recognizing that \(dq' = \lambda a d\phi' \), we
at last find that

\[V_{\text{one}}(r, \phi, z) = \frac{1}{4\pi \epsilon_0} \int_0^{2\pi} \frac{\lambda a d\phi'}{|r^2 + a^2 - 2ar \cos(\phi' - \phi) + z^2|^{1/2}} \] (13.32)
13.1. SAMPLE PROBLEMS

Figure 13.3: The potential produced by two charged rings. Part (a) shows the geometry of ultimate interest. Part (b) shows the simple situation with one ring used as a stepping stone.

The entire integral assumes a simpler appearance, however, on the variable \(\alpha = \phi' - \phi \), becoming

\[
V_{\text{one}}(r, \phi, z) = \frac{\lambda a}{4\pi\varepsilon_0} \int_0^{2\pi} \frac{d\alpha}{\left[r^2 + a^2 - 2ar\cos\alpha + z^2\right]^{1/2}}
\]

(13.33)

where we have invoked the periodicity of the integrand in \(\alpha \) to justify writing the integral to run from 0 to 2\(\pi \) rather than from \(-\phi\) to \(2\pi - \phi\). (The integral extends over an entire period of the integrand in either case.) As implied by the symmetry, the potential has turned out not to depend on \(\phi \).

We can now return to our original question, which asked about the potential in the midplane when two rings of the sort to which Eq. (13.33) applies have their centers separated by 2a. The observation point in the midplane is thus a distance \(a \) "above" one of the rings and the same distance \(a \) "below" the other. We find the potential produced by these two rings by adding a contribution from each ring, concluding that

\[
V_{\text{midplane}}(r) = V_{\text{one}}(r, \phi, -a) + V_{\text{one}}(r, \phi, a) = \frac{2\lambda a}{4\pi\varepsilon_0} \int_0^{2\pi} \frac{d\alpha}{\left[r^2 + 2a^2 - 2ar\cos\alpha\right]^{1/2}}
\]

(13.34)

Finally, introducing the variable \(s \) defined by \(r = sa \) to express the radial coordinate in dimensionless terms, we find the expression

\[
V_{\text{two}}(s) = V_{\text{midplane}}(sa) = \frac{2\lambda a}{4\pi\varepsilon_0 a} \int_0^{2\pi} \frac{d\alpha}{\left[s^2 - 2s\cos\alpha + 2\right]^{1/2}}
\]

(13.35)

or, even better, the expression

\[
V(s) = \frac{\sqrt{2}}{2\pi} \int_0^{2\pi} \frac{d\alpha}{\left[s^2 - 2s\cos\alpha + 2\right]^{1/2}}
\]

(13.36)

where \(V(s) = V_{\text{two}}(s)/V_{\text{two}}(0) \). Equation (13.36) gives the potential at the radial coordinate \(r = sa \) in the midplane between two uniformly charged rings of radius \(a \) separated by 2a. This integral falls into the third of our three categories, since its value is a function of the parameter \(s \) in the integrand.

13.1.8 Quantum Probabilities

In the standard interpretation, the wave function $\psi(x)$ for a one-dimensional quantum system is a probability amplitude, and the quantity $|\psi(x)|^2$ is a probability density. Further the wave function by convention is normalized so that $\int_{-\infty}^{\infty} |\psi(x)|^2 \, dx = 1$. Thus, the integral

$$P(x_1 < x < x_2) = \int_{x_1}^{x_2} |\psi(x)|^2 \, dx$$

(13.37)

gives the probability of finding the quantum system with its coordinate somewhere between $x = x_1$ and $x = x_2$.

More specifically, we remember that the wave function for a quantum harmonic oscillator in its ground state is given by

$$\psi(x) = \left(\frac{m\omega}{\pi \hbar}\right)^{1/4} e^{-y^2/2}$$

(13.38)

where \hbar is Planck’s constant, m is the mass of the oscillator and, with k the spring constant and $a = \sqrt{\hbar \omega / k}$, $\omega = \sqrt{k/m}$ is the frequency of the oscillator; $y = x/a$ is a dimensionless coordinate.

Since the classical turning point of the oscillator occurs when its energy ($\frac{1}{2} \hbar \omega$ for the ground state) is equal to the potential energy $\frac{1}{2} k x_{\text{turn}}^2$, the turning point of this oscillator is given by

$$\frac{1}{2} \hbar \omega = \frac{1}{2} k x_{\text{turn}}^2 \implies x_{\text{turn}} = \sqrt{\frac{\hbar \omega}{k}} = a$$

(13.39)

which provides a classical interpretation for the parameter a. The probability that the particle in the ground state of a quantum harmonic oscillator will be found in the classically forbidden region (i.e., somewhere outside the classical turning point) is given by the integral

$$P\left(|x| > |x_{\text{turn}}|\right) = \int_{-\infty}^{-a} |\psi(x)|^2 \, dx + \int_{a}^{\infty} |\psi(x)|^2 \, dx = 1 - \int_{-a}^{a} |\psi(x)|^2 \, dx$$

(13.40)

Finally, after substituting the wave function and recasting the entire integral as an integral on the variable y, we find that

$$P\left(|x| > |x_{\text{turn}}|\right) = 1 - \frac{1}{\sqrt{\pi}} \int_{-1}^{1} e^{-y^2} \, dy = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{1} e^{-y^2} \, dy = 1 - \text{erf}(1)$$

(13.41)

which contains no parameters and thus falls into the first of our three categories.

13.1.9 Expansion in Orthogonal Functions

Suppose we have identified a set of functions $\phi_i(x)$, $i = 1, 2, 3, \ldots$, that have the property

$$\int_{a}^{b} \phi_i(x) \phi_j(x) \, w(x) \, dx = N_j \delta_{ij}$$

(13.42)

where N_j is a constant, δ_{ij} is the Kronecker delta (which has the value 1 when the indices are equal and the value 0 otherwise), $w(x)$ is a known weight function, and a and b define a known interval. These functions are said to be orthogonal with weight $w(x)$ on the interval $a \leq x \leq b$. The members of this set provide a basis in terms of which any arbitrary function $f(x)$ defined on the same interval can be expanded in the form

$$f(x) = \sum_{n} a_n \phi_n(x)$$

(13.43)
13.3 Evaluating Integrals Symbolically with MAPLE

Though the argument we will here present is not mathematically rigorous, the expansion coefficients a_n can be quickly determined by multiplying Eq. (13.43) by $w(x) \phi_j(x)$, integrating over the interval $a \leq x \leq b$, and exchanging the order of integration and summation to find that

$$
\int_a^b w(x) \phi_j(x) f(x) \, dx = \sum_n a_n \int_a^b w(x) \phi_j(x) \phi_n(x) \, dx = \sum_n a_n N_n \delta_{nj} = N_j a_j \quad (13.44)
$$

We conclude that, if we know either of $f(x)$ or a_n, we can determine the other, i.e., that

$$
f(x) = \sum_n a_n \phi_n(x) \quad \iff \quad a_n = \frac{1}{N_n} \int_a^b w(x) \phi_n(x) f(x) \, dx \quad (13.45)
$$

The determination of the coefficients in this expansion of a known function clearly involves the evaluation of integrals, which explains the inclusion of this example in this chapter.

While many sets of orthogonal functions could be enumerated (see exercises), probably the most common set is\(^1\)

$$
\{1, \sin \frac{n\pi x}{l}, \cos \frac{n\pi x}{l}; \quad n, m = 1, 2, 3, \ldots\} \quad (13.46)
$$

Direct evaluation of the integral of each member of this set with all other members will reveal that these functions are orthogonal on the interval $-l \leq \pi \leq l$ with weight $w(x) = 1$, i.e., that

$$
\int_{-l}^{l} 1 \times 1 \, dx = 2l \quad ; \quad \int_{-l}^{l} 1 \times \sin \frac{n\pi x}{l} \, dx = 0 \quad ; \quad \int_{-l}^{l} 1 \times \cos \frac{n\pi x}{l} \, dx = 0 \quad (13.47)
$$

$$
\int_{-l}^{l} \sin \frac{n\pi x}{l} \sin \frac{m\pi x}{l} \, dx = l \delta_{nm} \quad ; \quad \int_{-l}^{l} \sin \frac{n\pi x}{l} \cos \frac{m\pi x}{l} \, dx = 0 \quad (13.48)
$$

$$
\int_{-l}^{l} \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} \, dx = l \delta_{nm} \quad ; \quad \int_{-l}^{l} \cos \frac{n\pi x}{l} \sin \frac{m\pi x}{l} \, dx = 0 \quad (13.49)
$$

The expansion\(^2\)

$$
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right) \quad (13.50)
$$

of a function $f(x)$ that is periodic with period $2l$ in this set of orthogonal functions is called a Fourier series. The coefficients are given by the integrals

$$
a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} \, dx \quad ; \quad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} \, dx \quad (13.51)
$$

13.3 Evaluating Integrals Symbolically with MAPLE

The MAPLE command for symbolic integration is int, though the synonym integrate will also work. The inert command Int, which postpones explicit evaluation, also exists. The first argument in these commands either is or stands for the integrand, and the second argument specifies the integration variable (with an optional range to convey limits). Thus, for example, the statement

\[
\text{int(sin(k*x), x)} ;
\]

\(^1\)To put this set into the form of the previous paragraph, we would identify $\phi_1(x) = 1, \phi_2(x) = \sin(\pi x/l), \phi_3(x) = \cos(\pi x/l), \phi_4(x) = \sin(2\pi x/l), \ldots$

\(^2\)The first coefficient is written $a_0/2$ rather than a_0 to simplify the integrals determining the coefficients. With the choice we have made, the integral for a_0 turns out to be obtainable by setting $n = 0$ in the expression for a_n; we do not need a third—and different—expression for that one coefficient.
evaluates the indefinite integral $\int \sin(kx)\,dx$—though does not include the arbitrary integration constant—while the statement

\[\text{int}(\sin(kx), x = 0..\pi); \]

evaluates the definite integral $\int_0^\pi \sin(kx)\,dx$. If MAPLE is unable to evaluate a particular integral, the program returns the noun form of the integral, i.e., the program simply returns the integral that was provided as input. MAPLE also evaluates improper integrals, recognizing the symbols \(+\infty \) for \(+\infty \) and \(-\infty \) for \(-\infty \). Whether integrating by hand or with the help of a symbolic program, we must always be wary of integrals when the integrand has a singularity in the interval of integration. Indeed, MAPLE checks for these singularities automatically unless the option ‘continuous’, which informs MAPLE that the integrand has no singularities in the interval of integration, has been specified as an argument.

In this section, we illustrate the use of the command \texttt{int} to evaluate some of the integrals deduced in Section 13.1. Beyond integration per se, we also show how, in many cases, MAPLE can be used to set up the integral as well. To abbreviate the presentation of MAPLE dialogs, we make liberal use of terminating colons to suppress intermediate output. You are therefore urged to duplicate the dialogs in an actual session with MAPLE, replacing colons with semicolons.

13.3.1 Relativistic Motion Under a Constant Force

Suppose the particle to which Eq. (13.3) applies moves relativistically, starting from rest at the origin $x(0) = 0$, $v(0) = 0$, $p(0) = 0$, and experiences a constant force f. Then, the basic relationships from which we would determine $x(t)$ and $v(t)$ are

\[
p(t) = \int_0^t f\,dt', \quad x(t) = \int_0^t v(t')\,dt', \quad \text{and} \quad p(t) = \frac{m v(t)}{\sqrt{1 - v(t)^2/c^2}} \quad (13.52)
\]

The “conversation” with MAPLE listed in Table 13.1 will find the desired quantities and explore a few of their properties.

Reassuringly, the velocity approaches c as $t \to \infty$ and, with the acceleration a identified as f/m, x and v for small t (classical limit) are $\frac{1}{2}at^2$ and at respectively.

13.3.2 Center of Mass

We next find the center of mass of the uniform, semicircular plate described in Section 13.1.2 as given by Eq. (13.9). We evaluate this integral with the statements

\[
> \text{with(LinearAlgebra)} : \quad \text{Add package LinearAlgebra.}
> \text{rr} := \text{Vector(\{r*cos(phi), r*sin(phi), 0\})} : \quad \text{Assign r.}
> \text{sigma} := m / (\pi * a^2 / 2) : \quad \text{Evaluate } \sigma, \text{ which is constant.}
\]
Table 13.1: MAPLE code for relativistic motion under constant force.

```maple
> interface( showassumed=0 );
> assume( c>0, f>0, m>0, t>0 );
p := int(f, tp=0..t);
p := ft
> p = m * v / sqrt(1 - v^2/c^2);
\[
ft = \frac{mv}{\sqrt{1 - v^2/c^2}}
\]
> soln := solve( %, v );
soln := \frac{ftc \sqrt{t^2 f^2 + m^2 c^2}}{\sqrt{t^2 f^2 + m^2 c^2}}
> v := soln[1];
\[
\frac{ftc}{\sqrt{t^2 f^2 + m^2 c^2}}
\]
> limit( v, t=infinity );
\[
c
\]
> vp := subs( t=tp, v );
x := int( vp, tp=0..t );
\[
x = \frac{c(-cm + \sqrt{t^2 f^2 + m^2 c^2})}{f}
\]
> vclassical := taylor( v, t=0, 4 );
\[
vclassical := \frac{f}{m} t - \frac{1}{2} \frac{f^3}{c^2 m^3} t^3 + O(t^5)
\]
> xclassical := taylor( x, t=0, 5 );
\[
xclassical := \frac{1}{2} \frac{f}{m} t^2 - \frac{1}{8} \frac{f^3}{c^2 m^3} t^4 + O(t^6)
\]
```

Evaluate integrand, using `ScalarMultiply` from the package `LinearAlgebra`.
Evaluate integral on ϕ.
Evaluate integral on r.
Multiply each component by $1/m$.
Obtain floating evaluation.

```maple
> integ := ScalarMultiply( rr, sigma*r ) :
> fst_int := map( int, integ, phi=0..Pi ) :
> scnd_int := map( int, fst_int, r=0..a ) :
r_cm := ScalarMultiply( scnd_int, 1/m );
\[
r_{cm} := \begin{bmatrix}
0 \\
4 a \\
3 \pi \\
0
\end{bmatrix}
\]
```

> evalf(%);
```
```
```
```
> restart:
```
Since only the \( y \) component of \( \mathbf{r}_{cm} \) differs from zero, the center of mass lies on the \( y \) axis—certainly not a surprise—a fraction \( 4/3\pi = 0.4244 \) of the radius from the center of the semicircle. Note that, to effect an element-by-element integration of the components of the vector, we have had to use MAPLE’s command \texttt{map} to apply the command \texttt{int} to each element of the vector in turn.

Note also that we have evaluated the double integral as a sequence of single integrals. In the present case, the two integrals are independent of one another, and the order in which we perform the integrals is irrelevant. In some cases, however, the order may be important—as, for example, when the limits on one integration variable happen to depend on the other integration variable.

13.3.3 Moment of Inertia; Radius of Gyration

The evaluation by MAPLE of the moment of inertia of a semicircular plate as given by Eq. (13.16) is quick and straightforward. We need only the statements\(^3\)

\[
> \text{int}( \lambda^2 \sqrt{1-\lambda^2}, \lambda=0..1 );
\]

\[
\frac{1}{16}\pi
\]

> \( II := m*a^2*(4/\pi)*%; \)

\( II := \frac{1}{4}ma^2 \)

> \( k := \text{simplify}( \text{sqrt}(II/m), \text{assume=positive} ); \)

\( k := \frac{1}{2}a \)

> \text{restart:}

To evaluate the necessary integral and find both the moment of inertia \( I = ma^2/4 \) and the radius of gyration \( k = a/2 \).

13.3.4 Electrostatic Potential of a Finite Line Charge

For a fourth example, we evaluate the electrostatic potential of a uniformly charged finite line extending along the \( z \) axis over the interval \(-a \leq z \leq +a\). The geometry is shown in Fig. 13.4. With \( \lambda \) representing the linear charge density on the line, \( dz' \) giving the length of an element of the line, \( r \) and \( r' \) locating the observation point and an element of the source, respectively, and \( dq' = \lambda dz' \), we deduce from Eq. (13.28) that the potential established by this source is given by

\[
V(x,y,z) = \frac{\lambda}{4\pi\epsilon_0} \int_{-a}^{+a} \frac{dz'}{|r-r'|} \tag{13.53}
\]

Electing cylindrical coordinates \((r,\phi,z)\), we set \( r' = z' \hat{k} \) and \( r = r \cos \phi \hat{i} + r \sin \phi \hat{j} + z \hat{k} \). Then we construct the integrand and evaluate the integral with the statements

\[
> \text{with(LinearAlgebra):}
\]

\[
> \text{rr := < r*cos(phi) | r*sin(phi) | z >:}
\]

\[
> \text{rp := < 0 | 0 | zp >:}
\]

\[
> \text{sep := MatrixAdd( rr, rp, 1, -1 ):}
\]

\[
> \text{DotProduct( sep, sep, conjugate=false ):}
\]

Add package \texttt{LinearAlgebra}.

Assign \( r \) in cylindrical coordinates.

Assign \( r' \).

Evaluate \( |r-r'| \).

Evaluate \( |r-r'|^2 \), setting the optional keyword \texttt{conjugate} to \texttt{false} to suppress complex conjugation. (We know all variables are real.)

\(^3\)The variable \( I \) in MAPLE is reserved for \( \sqrt{-1} \), so we use \( II \) for the moment of inertia.
13.3. EVALUATING INTEGRALS SYMBOLICALLY WITH MAPLE

Figure 13.4: A line charge lying on the $z$ axis.

\begin{align*}
  \text{> simplify( } \% \text{):} & \quad \text{Recognize } \cos^2 \phi + \sin^2 \phi = 1. \\
  \text{> den := sqrt( } \% \text{):} & \quad \text{Bind } |r - r'| \text{ to } \text{den}. \\
  \text{> cnst := 1/(4*Pi*epsilon[0]):} & \quad \text{Bind } 1/4\pi\epsilon_0 \text{ to } \text{cnst}. \\
  \text{> integ := lambda * cnst / den;} & \quad \text{Set integrand.}
\end{align*}

\begin{align*}
  \text{integ} & = \frac{\lambda}{4\pi\epsilon_0 \sqrt{r^2 + z^2 - 2zz' + z'^2}} \\
  \text{> interface( showassumed=0 ):} & \quad \text{Suppress display of assumptions.} \\
  \text{> assume( r>0, a>0 ):} & \quad \text{ Assume } r \text{ and } a \text{ to be positive.} \\
  \text{> V := int( integ, zp=-a..a );} & \quad \text{Find } V(r, z), \text{ with } r = \sqrt{x^2 + y^2}.
\end{align*}

Some versions of MAPLE return the value

\begin{align*}
  V := \frac{\lambda}{4\pi\epsilon_0} \left( \arcsinh\left(\frac{-z + a}{r}\right) + \arcsinh\left(\frac{z + a}{r}\right) \right)
\end{align*}

for $V$ while others return the equivalent value

\begin{align*}
  V := -\frac{\lambda}{4\pi\epsilon_0} \left( \ln(-z - a + \sqrt{z^2 + a^2 + 2az + r^2}) - \ln(-z + a + \sqrt{z^2 + a^2 - 2az + r^2}) \right)
\end{align*}

While correct, neither of these results is particularly transparent. Let us test either by examining its behavior in the $xy$ plane in the two limits $a/r \ll 1$ and $a/r \gg 1$, i.e., when $r$ is large compared to the length of the line and when $r$ is small compared to the length of the line. Conveniently, the same sequence of statements appears to work successfully with either form, though the intermediate results (here suppressed) will differ. For the first limit, we execute the statements

\begin{align*}
  \text{> VO := eval( V, z = 0 );} & \quad \text{Evaluate potential in } xy \text{ plane.} \\
  \text{> subs( a=s*r, VO );} & \quad \text{Let } a/r \to s. \\
  \text{> taylor( %, s=0, 2 );} & \quad \text{Expand near } s = 0 (a/r \to 0, r \to \infty). \\
  \text{> subs( s=a/r, % );} & \quad \text{Return to original variable.} \\
  \text{> subs( lambda=q/(2*a), % );} & \quad \text{Express in terms of total charge.}
\end{align*}

\begin{align*}
  \frac{q}{4\pi\epsilon_0 r} + O\left(\frac{a^3}{r^3}\right)
\end{align*}
As expected, the potential at points remote from the charged line varies with distance like that of a point charge. From a point far away from the wire (compared to its length), the wire looks like a point charge.

At the other extreme, when \( r \) is small compared to the length of the line, we would expand and simplify the potential with the statements
\[
> V1 := \text{series}(V0, r=0, 2);
\]
Expand potential at \( z = 0 \) for small \( r \), keeping only first non-zero term.

\[
> V2 := \text{convert}(V1, \text{polynom});
\]
Convert series to a polynomial.

The result obtained for \( V2 \) depends on the version of MAPLE and may also be context and platform dependent. For the first value of \( V \) above, MAPLE may return
\[
V2 := \frac{\lambda}{2\pi\epsilon_0} \left( -\ln\left(\frac{1}{2a}\right) - \ln(r) \right)
\]
while, for the second value of \( V \), MAPLE returns
\[
V2 := -\frac{\lambda}{4\pi\epsilon_0} \left( \ln\left(\frac{1}{2a}\right) + 2\ln(r) - \ln(2a) \right)
\]
Whatever is returned, the results will be equivalent to these two which are, of course, equivalent to each other. An even simpler expression results from a judicious use of \texttt{combine}. For the first form, the statement \texttt{combine(2*V2)/2} yields
\[
\frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{2a}{r}\right)
\]
while for the second form, the statement \texttt{combine(4*V2)/4} yields
\[
\frac{\lambda}{4\pi\epsilon_0} \ln\left(\frac{4a^2}{r^2}\right)
\]
though even these results may be version, context, and platform dependent. Though it may be difficult to persuade MAPLE to produce this form, these two results are equivalent to
\[
-\frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{r}{a}\right) + \frac{\lambda\ln 2}{2\pi\epsilon_0}
\]
which differs by a constant from the familiar logarithmic result for the potential of a uniformly charged, infinitely long straight wire when the reference point (point of zero potential) is taken at a distance \( a \) from the wire. From a point close to the wire (compared to its length) and near its center, the wire looks to be infinitely long.

Before going on to the next section, you should exit from and start a fresh session with MAPLE or, alternatively, issue a \texttt{restart}: command.

**13.3.5 The Helmholtz Coil**

Next, we evaluate the magnetic field produced on the \( z \) axis by a pair of circular current loops of arbitrary separation and demonstrate the significance of the specific separation used in the Helmholtz coil. Strategically, we regard the pair as a superposition of two loops and seek first the magnetic field of a single loop. In general, the magnetic field \( \mathbf{B}(\mathbf{r}) \) is given by the Biot-Savart law, which is the first member of Eq. (13.29). If the (single) loop has radius \( a \) and lies in the \( xy \) plane with its center at the origin, then, for an observation point on the \( z \) axis, the various vectors in the expression are given by \( \mathbf{r} = sa \mathbf{k} \), where (to facilitate expressing things in dimensionless form) the \( z \) coordinate is written as a multiple \( s \) of the radius \( a \) of the loop, \( \mathbf{r}' = a \cos \phi \mathbf{i} + a \sin \phi \mathbf{j} \), and \( d\mathbf{r}' = (-a \sin \phi \mathbf{i} + a \cos \phi \mathbf{j}) \, d\phi \). Evaluation of the integrand and the integral for a single loop then proceeds with the statements pp
13.3. EVALUATING INTEGRALS SYMBOLICALLY WITH MAPLE

> interface( showassumed=0 );
Suppress display of assumptions.
> assume( a > 0, phi >0, s > 0 );
Assume a, φ, and s to be positive.
> r := < 0 | 0 | s * a >:
Assign r as a vector.
> rp := < a*cos(phi) | a*sin(phi) | 0 >:
Assign r' as a vector.
> drp := < -a*sin(phi) | a*cos(phi) | 0 >:
Evaluate r - r'.
> sep := r - rp:
Evaluate |r - r'|^2.
> LinearAlgebra[DotProduct]( sep, sep ):
Recognize cos^2 φ + sin^2 φ = 1; set mag2 := |r - r'|^2.
> mag2 := simplify( % );
> LinearAlgebra[CrossProduct]( drp, sep ):
Recognize cos^2 φ + sin^2 φ = 1.
> num := map( simplify, % );
> b1 := map( int, %, phi=0..2*Pi );
Integrate around the loop.
> b1z := b1[3]:
Extract the z component.
> b1c := eval( b1z, s = 0 ):  
Find field at center.
> b1z := b1z / b1c;
Normalize field of single loop.

Finally, we bring various factors together to construct the integrand, simplify that integrand, evaluate the integral, and recast the results in a dimensionless form with the statements

> integ := LinearAlgebra[ScalarMultiply]( num, mu[0]*i/(4*Pi*mag2^(3/2)) ):  
> bpair := subs( s=s-c, b1z ) + subs( s=s+c, b1z );
> bpairc := eval( bpair, s = 0 );
Find field of two loops, one at s = c and the other at s = -c.
> bpair := bpair / bpairc;
Normalize field of two loops.
Figure 13.5: On-axis magnetic field of a pair of loops. The highest of the three graphs shows the field when the loop separation is $c = 1.0$ (separation of the two loops equal to twice the radius of each loop). The middle graph corresponds to $c = 0.5$ (the Helmholtz separation) and the lower graph corresponds to $c = 0.25$.

The resulting graph is shown in Fig. 13.5. As will be further supported in the next paragraph, the middle of the three graphs, which corresponds to $c = 0.5$ (separation of coils equal to the radius of each coil), has the largest region of near constant field near the on-axis point midway between the current loops (i.e., near $s = 0$).

Second, let us examine the behavior of the field near the center ($s = 0$) more closely. To do so, we suppose $s \to 0$ and look at the Taylor expansion of the field about $s = 0$ using the statement:

> tay := simplify( taylor( bpair, s=0, 6 ) );

\[
tay := 1 + \frac{3}{2} \left( \frac{-1 + 4c^2}{(1 + c^2)^2} \right) s^2 + \frac{15}{8} \left( \frac{1 - 12c^2 + 8c^4}{(1 + c^2)^4} \right) s^4 + O(s^6)
\]

Clearly there is a particular value of $c$—half the loop separation—at which the coefficient of the $s^2$ term is zero! For that separation, the magnetic field near the center of the loops is especially constant. We find that special value of $c$ with the statements:

\[4\text{Remember the structure of the storage of Taylor series as described in Section 7.8.7.}\]
13.3. EVALUATING INTEGRALS SYMBOLICALLY WITH MAPLE 369

\[ \text{Extract coefficient of numerator of second term of Taylor series.} \]

\[ \text{Find } c \text{ to make numerator zero.} \]

The first of these statements extracts the numerator of the second term of the Taylor series and the second finds the value of \( c \) that makes that numerator zero. The two solutions are equivalent. Both reveal that the physical arrangement in which the field has no \( s^2 \) term has one loop positioned one-half of the loop radius above the midplane and the other positioned one-half of the loop radius below the midplane. That is, the loops are separated by their common radius—the Helmholtz separation.

When the loops have that special separation, we determine numerically how the field varies with \( s \) by using the statements

\[ > \text{tay} := \text{convert( tay, polynom );} \]

\[ \text{tay} := 1 + \frac{3 (-1 + 4 c^2) s^2}{2} + \frac{15 (1 - 12 c^2 + 8 c^4) s^4}{8 (1 + c^2)^4} \]

\[ > \text{eval( tay, } c = 1/2); \]

\[ \text{tay1} := \text{evalf( } \% \text{ );} \]

\[ \text{tay1} := 1. - 1.152000000 s^4 \]

and we see again that, so long as we don’t stray too far from the center of the arrangement, the magnetic field falls away from its central value as the fourth power of the distance from the center. In particular (see next paragraph for a refinement), we might determine approximately how far we can stray from the center along the axis before the field has fallen to, say, 99% or 95% of its value at the center by executing the statements\(^5\)

\[ > \text{solve( tay1=0.99, } s); \]

\[ \ldots, 0.3052367918, \ldots \]

\[ > \text{solve( tay1=0.95, } s ); \]

\[ \ldots, 0.4564354646, \ldots \]

Unfortunately, these solutions are only approximate, since we have used a truncated expansion of the field, an expansion that becomes increasingly incorrect as \( s \) increases.

To find more accurately how far from the center we can stray before the field has fallen to 99% or 95% of its value at the center, we need return to the exact expression of \( b_{\text{pair}} \) but restrict it to the Helmholtz case by setting \( c = 1/2 \) with the statement

\[ > \text{bhelm} := \text{eval( bpair, } c = 1/2); \]

Then, we seek the values of \( s \) at which this expression assumes the value 0.99 (1% fall off) or 0.95 (5% fall off). Equivalently, we seek the roots of the expressions \( b_{\text{helm}} - 0.99 = 0 \) and \( b_{\text{helm}} - 0.95 = 0 \). The dependence of these expressions on \( s \), however, is complicated, and the command \texttt{solve} is not up to the task. Thus, we draw (prematurely—see Section 14.12) on MAPLE’s command \texttt{fsolve}, which uses an iterative numerical method to seek a root in a supplied range of values. The above results provide us with sensible stipulations for that range, so we invoke the statements\(^6\)

\[ ^5 \text{Since we are asking for the solution to a fourth order equation, there will be four solutions. MAPLE will find all of them. In the output, we suppress all but the relevant solution.} \]

\[ ^6 \text{In fsolve, the first argument is the equation whose root is sought, the second is the variable to be adjusted in finding the root, and the third is the range on that variable in which a root should be sought. By default, fsolve strives to find the root to an absolute tolerance of 10 significant digits.} \]
Finally, out of curiosity, we ask about the value of the magnetic field at a point in the center of one of the coils by executing the statement

\[ \text{evalf( eval( bhelm, s=0.5 ) );} \]

\[ .9458241850 \]

\[ \text{restart:} \]

In summary, as \( s \) increases (i.e., as the observation point moves away from the center of the Helmholtz pair), the on-axis field falls away from its value at the center, at least initially, by an amount proportional to \( s^4 = (z/a)^4 \). As the above results reveal, we would have to move 31.4% of the radius (62.8% of the distance from the center to the plane of either loop) before the field has fallen to 99% of its value at the center, and 48.8% of the radius (97.6% of the distance from the center to the plane of either loop) before the field has fallen to 95% of its value at the center. By the time we reach the plane of either loop, the field has fallen only to 94.6% of its value at the center. This optimal configuration of a pair of current loops is regularly used to produce a nearly uniform field over a large volume of space.

### 13.3.6 Period of a Pendulum: Correction as Amplitude Grows

The integral in Eq. (13.22) does not have a simple or familiar evaluation in closed form. MAPLE does, however, make it easy to examine the way in which the period departs from its limiting value as the amplitude moves away from the very small. We simply determine a Taylor expansion of the integrand with the statements

\[ \text{integ := 1/sqrt(1-k^2*sin(phi)^2);} \]

\[ \text{integ := } \frac{1}{\sqrt{1 - k^2 \sin^2 \phi}} \]

\[ \text{intapprox := taylor( integ, k=0, 6 );} \]

\[ \text{intapprox := } 1 + \frac{1}{2}(\sin^2 \phi)k^2 + \frac{3}{8}(\sin^4 \phi)k^4 + O(k^6) \]

Then we insert the pre-multiplying factor \( 2/\pi \) and integrate the series on \( \phi \) with the statement

\[ \text{(2*int( intapprox, phi=0..Pi/2 ) / Pi );} \]

\[ \text{expand( convert( %, polynom ) );} \]

\[ 1 + \frac{1}{4}k^2 + \frac{9}{64}k^4 \]

Finally, we substitute \( \sin(\theta_0/2) \) for \( k \) with the statement

\[ \text{subs(k=sin(theta0/2), %);} \]

\[ 1 + \frac{1}{4}\sin^2\left(\frac{\theta_0}{2}\right) + \frac{9}{64}\sin^4\left(\frac{\theta_0}{2}\right) \]

and expand this result as a power series in \( \theta_0 \).
13.3. EVALUATING INTEGRALS SYMBOLICALLY WITH MAPLE

\[ taylor( \%, \theta_0=0, 6 ); \]
\[ 1 + \frac{1}{16} \theta_0^2 + \frac{11}{3072} \theta_0^4 + O(\theta_0^6) \]

Note that \( \theta_0 \) must here be expressed in radians.

To see how significantly the period departs from the small-amplitude value when \( \theta_0 \) is not quite zero, let us evaluate this expression for \( \theta_0 = 5^\circ, 10^\circ, 15^\circ, \) and \( 20^\circ \). We use the MAPLE statements

\[ \text{deg} := < 5 | 10 | 15 | 20 >; \]
\[ \text{ampl := LinearAlgebra[ScalarMultiply]}( \text{deg}, \Pi/180 ); \]
\[ \text{per1 := Array(1..4):} \]

Set angles in degrees.
Convert angles to radians.
Establish array for periods.

to establish a few preliminary quantities. Then, we calculate the first correction with the statements

\[ \text{for i from 1 to 4 do per1[i] := 1+ampl[i]^2/16: end do:} \]
\[ \text{map( evalf, per1 );} \]
\[ \text{[ 1.000475965, 1.001903859, 1.004283682, 1.007615435 ]} \]

and add the second correction with the statements

\[ \text{for i from 1 to 4 do per1[i] := per1[i]+ 11*ampl[i]^4/3072: end do:} \]
\[ \text{map( evalf, per1 );} \]
\[ \text{[ 1.000476173, 1.001907182, 1.004300503, 1.007668597 ]} \]
\[ \text{restart:} \]

Evidently, at amplitudes of \( 5^\circ, 10^\circ, 15^\circ, \) and \( 20^\circ \), the period of the pendulum is approximately 0.05\%, .2\%, .4\%, and .8\% larger than the standard small-amplitude approximation given by the expression \( 2\pi \sqrt{l/g} \).

13.3.7 Fourier Coefficients for Half-Rectified Signal

Suppose we sought to express the half-rectified sine wave

\[ f(x) = \begin{cases} 
0 & -l \leq x < 0 \\
\sin \frac{\pi x}{l} & 0 \leq x < l 
\end{cases} \]

in a Fourier series. In accordance with Eq. (13.51), the coefficients would then be given by the integrals

\[ a_0 = \frac{1}{l} \int_0^l \sin \frac{\pi x}{l} dx \quad a_n = \frac{1}{l} \int_0^l \sin \frac{\pi x}{l} \cos \frac{n\pi x}{l} dx \quad b_n = \frac{1}{l} \int_0^l \sin \frac{\pi x}{l} \sin \frac{n\pi x}{l} dx \]

(13.55)

where \( n = 1, 2, 3, \ldots \). We find these coefficients quickly by submitting to MAPLE the statements

\[ \text{interface( showassumed=0 );} \]
\[ \text{assume( n, integer ):} \]
\[ \text{a0 := int( sin(Pi*x/l), x=0..1 )/1; } \]
\[ \text{a0 := 2/Pi} \]
\[ \text{an := int( sin(Pi*x/l)*cos(n*Pi*x/l), } \]
\[ \text{x=0..1 )/1; } \]
\[ \text{an := -} \frac{1+( -1 )^n}{\pi(-1+n^2)} \]
Note expression for $a_1$ is indeterminate, and find alternative evaluation.

Find $b_n$, $n \neq 1$.

Find $b_1$, $n = 1$.

Here, the second statement limits the nature of $n$ so that MAPLE can automatically replace expressions like $\sin n\pi$ and $\cos n\pi$ with explicit evaluations, and the remaining statements evaluate the desired integrals. Thus, we find that

$$a_0 = \frac{2}{\pi} ; \quad a_1 = 0 ; \quad a_n = \frac{-1 + (-1)^n}{\pi(n^2 - 1)}, n > 1 ; \quad b_1 = \frac{1}{2} ; \quad b_n = 0, n > 1$$  \hspace{1cm} (13.56)

Note, incidentally, that MAPLE gave us no warning that the value returned for $b_n$ was, in fact, incorrect for $n = 1$. We recognized its incorrectness by noting that, for $n = 1$, the integrand is $\sin^2(\pi x/l)$—a quantity that is always positive, so its integral couldn’t possibly be zero.

With these values for the Fourier coefficients, we assemble the Fourier series in accordance with Eq. (13.50) to find that

$$f(x) = \frac{1}{\pi} - \sum_{n=2}^{\infty} \frac{1 + (-1)^n}{\pi(n^2 - 1)} \cos \frac{n\pi x}{l} + \frac{1}{2} \sin \frac{\pi x}{l}$$

$$= \frac{1}{\pi} + \frac{1}{2} \sin \frac{\pi x}{l} - \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{1}{4m^2 - 1} \cos \frac{2m\pi x}{l}$$

$$= \frac{1}{\pi} + \frac{1}{2} \sin \frac{\pi x}{l} - \frac{2}{\pi} \left( \frac{1}{3} \cos \frac{2\pi x}{l} + \frac{1}{15} \cos \frac{4\pi x}{l} + \frac{1}{35} \cos \frac{6\pi x}{l} + \cdots \right)$$  \hspace{1cm} (13.57)

In the second and third forms, we have recognized that $1 + (-1)^n$ is zero when $n$ is odd and 2 when $n$ is even, so the sum on $n$ can be extended over only even values of $n$. Thus, setting $n = 2m$, we have arranged in the second form for $m$ to range over all positive integers.

The nature of this series is more clearly evident in a succession of graphs displaying the truncated series

$$f_n(x) = \frac{1}{\pi} + \frac{1}{2} \sin \frac{\pi x}{l} - \frac{2}{\pi} \sum_{m=1}^{n} \frac{1}{4m^2 - 1} \cos \frac{2m\pi x}{l}$$  \hspace{1cm} (13.58)

which approaches $f(x)$ as $n \to \infty$. Introducing the variable $\overline{x} = x/l$ (and then dropping the overbar), we then generate graphs for various values of $n$ with the statements listed in Table 13.2. Here, we force $m$ to be an integer, recast the general coefficient in an by replacing $n$ with $2m$, construct a MAPLE function defining the truncated series,\(^7\) and then plot the truncated series for each of four different truncation points. Shown in Fig. 13.6, the resulting graphs clearly reveal the convergence of the sum to the half-rectified wave as more terms are included.

### 13.5 Algorithms for Numerical Integration

Unfortunately, very many integrals of great interest have no closed form, analytic evaluation. To address these integrals, numerical analysts have developed many formulae—often called quadrature formulae—for numerical integration. In this section, we describe several of these formulae.

\(^7\)Note the use of the inert summation command \texttt{Sum}. Had we used the active command \texttt{sum}, MAPLE would have attempted to find a closed-form expression for the sum.
13.5. ALGORITHMS FOR NUMERICAL INTEGRATION

Table 13.2: MAPLE code for graphing several Fourier series.

```maple
> assume(m, integer):
> simplify(subs(n=2*m, an));
-2/
pi*(-1+4*m^2)
> a := m -> -2/(Pi*(-1+4*m^2));
> f := (x,n) -> 1/Pi + sin(Pi*x)/2 + Sum(a(m)*cos(2*m*Pi*x), m=1..n):
> plot(f(x,1), x=-3.0..3.0, y=-0.5..1.5, color=black,
 thickness=3, labels=["X","F(X,1)"],
 labelfont=[TIMES,ROMAN,16], axesfont=[TIMES,ROMAN,14]);
> plot(f(x,2), x=-3.0..3.0, y=-0.5..1.5, color=black,
 thickness=3, labels=["X","F(X,2)"],
 labelfont=[TIMES,ROMAN,16], axesfont=[TIMES,ROMAN,14]);
> plot(f(x,4), x=-3.0..3.0, y=-0.5..1.5, color=black,
 thickness=3, labels=["X","F(X,4)"],
 labelfont=[TIMES,ROMAN,16], axesfont=[TIMES,ROMAN,14]);
> plot(f(x,8), x=-3.0..3.0, y=-0.5..1.5, color=black,
 thickness=3, labels=["X","F(X,8)"],
 labelfont=[TIMES,ROMAN,16], axesfont=[TIMES,ROMAN,14]);
> restart:

13.5.1 Newton-Cotes Quadrature

One family of quadrature formulae can be deduced by starting with the recognition that the definite integral
\[A = \int_a^b f(x) \, dx \tag{13.59} \]
represents geometrically the area under the graph of \(f(x) \) over the interval \(a \leq x \leq b \). As shown in Fig. 13.7, let that interval be divided into \(N \) segments, each of width \(\Delta x = (b-a)/N \), let \(x_0 = a, x_1 = a + \Delta x, x_2 = a + 2\Delta x, \ldots, x_i = a + i\Delta x, \ldots, x_N = b \), and let \(f(x_0) = f(a) = f_0, f(x_1) = f_1, \ldots, f(x_i) = f_i, \ldots, f(x_N) = f(b) = f_N \). To deduce the simplest quadrature formula, we approximate the area of each resulting strip by the area of a rectangle whose height is the value of \(f(x) \) at the left end of the strip [Fig. 13.8(a)]. Thus
\[
\int_a^b f(x) \, dx \approx f_0 \Delta x + f_1 \Delta x + \cdots + f_i \Delta x + \cdots + f_{N-1} \Delta x
\]
which turns out to be 100% accurate only if \(f(x) \) happens to be a constant.

If, however, we approximate the area of each strip by the area of a rectangle whose height is the value of \(f(x) \) at the midpoint of the strip, we would deduce the midpoint rule
\[
\int_a^b f(x) \, dx \approx M_N = \left(f_{1/2} + f_{3/2} + f_{5/2} + \cdots + f_{N-3/2} + f_{N-1/2}\right) \Delta x \tag{13.61}
\]
Figure 13.6: Succession of truncated series representing half-rectified sine wave. The upper left, upper right, lower left, and lower right graphs show the series when truncated at $n = 1, 2, 4, \text{ and } 8,$ respectively. These graphs were created with MAPLE.

![Figure 13.6](image)

Figure 13.7: Division of interval $a < x < b$ into N segments.

![Figure 13.7](image)

which turns out to be 100% accurate when $f(x)$ is a linear function of x. (When $f(x)$ is linear, the error made by overestimating the function in one half of the interval is exactly compensated by the error made by underestimating the function in the other half of the interval. The formula turns out to be 100% accurate for a polynomial of one higher order than the polynomial used—here a constant—to approximate the function in each strip.)

For a further refinement, we might approximate the area of each strip by the area of a trapezoid [Fig. 13.8(b)], in which case we obtain the trapezoidal rule,

$$
\int_a^b f(x) \, dx \approx T_N \quad = \quad \frac{1}{2}(f_0 + f_1) \Delta x + \frac{1}{2}(f_1 + f_2) \Delta x + \cdots + \frac{1}{2}(f_{N-1} + f_N) \Delta x
$$
13.5. ALGORITHMS FOR NUMERICAL INTEGRATION

Figure 13.8: Two different approximations leading to quadrature formulae. The left figure corresponds to Eq. (13.60), the right figure to Eq. (13.62).

which, as with the midpoint rule, is 100% accurate when \(f(x) \) is linear, i.e., when \(f(x) \) is a polynomial of the same order as the one used to approximate the function.

A final (for here) and still better approximation is obtained if we pair the strips—which then requires \(N \) to be even—and approximate the area of each pair by the area under the parabola fitted to the values of \(f(x) \) at the three points defining the pair. The result,

\[
\int_a^b f(x) \, dx \approx S_N = \frac{1}{3} \left(f_0 + 4f_1 + 2f_2 + \cdots + 2f_{N-2} + 4f_{N-1} + f_N \right) \Delta x
\]

(13.63)
is called Simpson’s rule. (See the first exercise in Section 13.15.2.) For reasons similar to those that apply for the midpoint rule, Simpson’s rule is 100% accurate for cubic polynomials, one order higher than the quadratic polynomial used to approximate the function.

Continuation of this procedure to higher and higher degree polynomials generates a succession of increasingly more accurate—but also more and more complicated—Newton-Cotes formulae, which are characterized in particular by evaluating the function at equally spaced interpolation points.

13.5.2 Rearrangements for Computational Efficiency

Two rearrangements of the formulae deduced to this point facilitate the writing of more efficient algorithms. Suppose, for example, that we use the trapezoidal rule and write out a succession of formulae for evaluating \(\int_a^b f(x) \, dx \) for \(N = 1, 2, 4, 8, 16, \ldots \) divisions of the interval of integration. We find first that

\[
T_1 = T_{2^0} = \frac{f(a) + f(b)}{2} (b - a)
\]

(13.64)

Then, halving the step size and introducing \(x_1 = a + (b - a)/2 \), the midpoint of the interval (see Fig. 13.9, in which—for present convenience—we label the points differently than we did in Fig. 13.7), we find that

\[
T_2 = T_{2^1} = \left[\frac{f(a)}{2} + f(x_1) + \frac{f(b)}{2} \right] \frac{(b - a)}{2} = \frac{1}{2} T_1 + f(x_1) \frac{(b - a)}{2}
\]

(13.65)
Halving the step size again and introducing \(x_2 = a + (b - a)/4 \) and \(x_3 = a + 3(b - a)/4 \) (again, see Fig. 13.9), we find that

\[
T_4 = T_2^2 = \frac{1}{2} T_2 + \left[f(x_2) + f(x_3) + \frac{f(b)}{2} \right] \frac{b-a}{4}
\]

\[
= \frac{1}{2} T_2 + \left[f\left(a + \frac{b-a}{4}\right) + f\left(a + 3 \frac{b-a}{4}\right) \right] \frac{b-a}{4}
\]

(13.66)

Yet again, introducing

\[
x_4 = a + \frac{1}{8} (b-a) \quad x_5 = a + \frac{3}{8} (b-a)
\]

\[
x_6 = a + \frac{5}{8} (b-a) \quad x_7 = a + \frac{7}{8} (b-a)
\]

(13.67)

and continuing one more step, we find that

\[
T_8 = T_2^4 = \frac{1}{2} T_4 + \left[f(x_4) + f(x_5) + f(x_6) + f(x_7) \right] \frac{b-a}{8}
\]

\[
= \frac{1}{2} T_4 + \left[f\left(a + \frac{b-a}{8}\right) + f\left(a + 3 \frac{b-a}{8}\right) + f\left(a + 5 \frac{b-a}{8}\right) + f\left(a + 7 \frac{b-a}{8}\right) \right] \frac{b-a}{8}
\]

(13.68)

and, in general, with

\[
x_{2j} = a + \frac{(2j+1)(b-a)}{2^{N+1}} \quad ; \quad 0 \leq j < 2^{N+1}
\]

(13.69)

that

\[
T_{2^{N+1}} = \frac{1}{2} T_{2^N} + \left[f\left(a + \frac{b-a}{2^{N+1}}\right) + f\left(a + 3 \frac{b-a}{2^{N+1}}\right) + \ldots \right.
\]

\[
+ f\left(a + (2^N - 1) \frac{b-a}{2^{N+1}}\right) \frac{b-a}{2^{N+1}}
\]

(13.70)

Evidently, we can step from any evaluation by the trapezoidal rule to an evaluation by the trapezoidal rule with twice as many divisions without recalculating anything that we have already calculated! We shall refer to this embellishment as the recursive trapezoidal rule.

A second strategy for making algorithms more efficient involves what is called Richardson extrapolation. Using the trapezoidal rule of Eq. (13.62) and labeling the interpolation points as in Fig. 13.9, we find, for example, that

\[
T_4 = \left[\frac{1}{2} f(a) + f(x_2) + f(x_1) + f(x_3) + \frac{1}{2} f(b) \right] \frac{b-a}{4}
\]

\[
= \left[f(a) + 2 f(x_2) + 2 f(x_1) + 2 f(x_3) + f(b) \right] \frac{b-a}{8}
\]

(13.71)
and that

\[
T_8 = \left[\frac{1}{2} f(a) + f(x_4) + f(x_2) + f(x_5) + f(x_1) + f(x_6) + f(x_3) + f(x_7) + \frac{1}{2} f(b) \right] \frac{b - a}{8}
\]

(13.72)

Note, in particular, the combination

\[
\frac{4T_8 - T_4}{3} = \left[f(a) + 4f(x_4) + 2f(x_2) + 4f(x_5) + 2f(x_1) + 4f(x_6) + 2f(x_3) + 4f(x_7) + f(b) \right] \left(\frac{b - a}{8 \times 3} \right)
\]

(13.73)

and recognize that \((b - a)/8 = \Delta x\) is the width of a single strip when the interval \(a < x < b\) is divided into eight segments. Thus, we can write this last expression as

\[
\frac{4T_8 - T_4}{3} = \left[f(a) + 4f(x_4) + 2f(x_2) + 4f(x_5) + 2f(x_1) + 4f(x_6) + 2f(x_3) + 4f(x_7) + f(b) \right] \left(\Delta x \times \frac{1}{3} \right)
\]

(13.74)

which—mireabile dictu—we recognize as Simpson’s rule for evaluating the integral with 8 divisions of the interval! We conclude that

\[
S_8 = \frac{4T_8 - T_4}{3}
\]

(13.75)

More generally, we could also conclude that

\[
S_{2n} = \frac{4T_{2n} - T_n}{3}
\]

(13.76)

The extrapolation formula of Eq. (13.76) applied to two successive evaluations by the trapezoidal rule gives the result of evaluation by Simpson’s rule!

A subroutine for trapezoidal integration can thus be used in a very efficient algorithm for evaluating integrals by Simpson’s rule. We evaluate the integral twice by the trapezoidal rule for two values of \(n\), one of which is twice the other, finding \(T_n\) and \(T_{2n}\). Then we find the Simpson’s rule evaluation by exploiting the extrapolation formula of Eq. (13.76), which expresses the first step in what is called Romberg integration. We do actual numerical integration only with the trapezoidal rule, and we invoke the efficiency described in the first paragraph of this subsection in doing that. A routine for integration via the trapezoidal rule can thus be the workhorse for many other routines.

Indeed, Romberg integration goes beyond simply generating evaluations by Simpson’s rule from evaluations by the trapezoidal rule. Suppose we used the trapezoidal rule to generate the four values \(T_n, T_{2n}, T_{4n}, \text{ and } T_{8n}\). We could then use Eq. (13.76) to generate the three values \(S_{2n}, S_{4n}, \text{ and } S_{8n}\). In Romberg integration, we next generate a pair of still more accurate values from the formulae

\[
X_{4n} = (16S_{4n} - S_{2n}) / 15 \quad \text{and} \quad X_{8n} = (16S_{8n} - S_{4n}) / 15
\]

and then we generate a further improved value from the formula \(Y_{8n} = (64X_{8n} - X_{4n}) / 63\). This process can, of course, be continued indefinitely—though we rarely have to go even as far as we have described.

13.5.3 Assessing Error

Numerical evaluations, of course, only approximate the integral. Two distinctly different sorts of errors can occur. **Truncation errors** arise because the integral has been approximated by a finite sum; **roundoff errors** arise because computers do not store non-integers to 100% precision and, in the evaluation of a sum, the imprecision with which each component is represented within the computer
can accumulate as the number of arithmetic operations increases. Truncation errors become smaller as the width of strips is reduced. Roundoff errors, unfortunately, become more significant as the width of strips is reduced (because, with narrower strips, more arithmetic must be done). Usually, roundoff errors are negligible, the more so as the sophistication of the algorithm increases (and, hence, the amount of arithmetic decreases). Provided we do not strive for accuracy greater than about 1 part in 10^5 or 10^6 (with single precision floating point arithmetic), we can usually ignore roundoff errors. Thus, provided the function being integrated is such that the algorithm converges fairly rapidly with decreasing strip width, the quickest way to obtain a reasonably reliable estimate of truncation error is to evaluate the integral with two different step widths, the second being half of the first, and compare the two results. Presuming that roundoff error has not begun to be important, we can be confident that the second result is more accurate than the first. Thus, if the two agree to 1 part in 10^3, say, we can with reasonable confidence, assume that the second value is good to one part in 10^3. Indeed, the second value is probably better than that, but assessing its accuracy by this method would entail obtaining a third value by using a strip width half of that used to determine the second value.\(^8\) Indeed, one strategy for achieving a desired accuracy with reasonable certainty is to evaluate an integral repeatedly by a particular method, halving the strip width each time, and continuing until the new value received differs from its predecessor by less than the desired accuracy (though we must be careful not to push this approach so far that roundoff problems within the computer begin to become significant).\(^9\)

From a more sophisticated perspective, numerical analysts have deduced expressions for the error in various Newton-Cotes formulae.\(^10\) For the midpoint formula of Eq. (13.61), for example,

$$\left| \int_a^b f(x) \, dx - M_N \right| = \frac{(b-a)^3}{24N^2} \left| \frac{d^2 f}{dx^2} \right|_{x=\xi}$$

where ξ is some value of x satisfying $a < \xi < b$—an expression that is valid provided the function $f(x)$ satisfies suitable requirements on continuity. The similar expressions

$$\left| \int_a^b f(x) \, dx - T_N \right| = \frac{(b-a)^3}{12N^2} \left| \frac{d^2 f}{dx^2} \right|_{x=\xi}$$

and

$$\left| \int_a^b f(x) \, dx - S_N \right| = \frac{(b-a)^5}{180N^4} \left| \frac{d^4 f}{dx^4} \right|_{x=\xi}$$

can be derived for the trapezoidal rule given by Eq. (13.62) and for Simpson’s rule given by Eq. (13.63), respectively. Again, ξ is a value somewhere between $x = a$ and $x = b$, though it is not likely to have the same value in all three formulae.

These results do not, of course, tell us how to determine the error exactly because they don’t tell us how to determine ξ exactly. Even so, they are not entirely useless, having at least two particular values:

1. If it should happen in the first two cases that $d^2 f/dx^2 = 0$ or in the third case that $d^4 f/dx^4 = 0$ throughout the interval of integration, then the error is zero, since the right hand side of these expressions gives zero for all possible values of ξ. Thus, these formulae confirm our previous assertions that the midpoint and trapezoidal rules will be 100% accurate for linear functions and that Simpson’s rule will be 100% accurate for cubic polynomials.

\(^8\)We shall make this criterion a bit more explicit in the next paragraphs.

\(^9\)We shall see in later sections how we might decide when roundoff has started to be significant.

2. If $D_{\text{max}}(i)$ is the maximum value of $d^i f/dx^i$ in the interval $a < x < b$, then the above expressions support the inequalities

$$\left| \int_a^b f(x) \, dx - M_N \right| \leq \frac{(b-a)^3}{24N^2} D_{\text{max}}(2)$$

(13.80)

$$\left| \int_a^b f(x) \, dx - T_N \right| \leq \frac{(b-a)^3}{12N^2} D_{\text{max}}(2)$$

(13.81)

$$\left| \int_a^b f(x) \, dx - S_N \right| \leq \frac{(b-a)^5}{180N^4} D_{\text{max}}(4)$$

(13.82)

(though we must keep in mind that these approximations will frequently be extremely crude, so these upper bounds may well be very conservative). Provided that problems with computer roundoff do not begin to appear, we conclude from these results that an upper bound on the error in the midpoint and trapezoidal rules falls off like $1/N^2$ while that bound in Simpson’s rule falls off like $1/N^4$. Doubling N therefore reduces the error in the midpoint and trapezoidal rules by a factor of four, while doubling N reduces the error in Simpson’s rule by a factor of sixteen. With Simpson’s rule, every doubling of N should gain at least one more decimal point in accuracy, so the convergence criterion described in the first paragraph in this subsection is particularly apt when Simpson’s rule is used.

13.5.4 Iterative and Adaptive Algorithms

In the previous subsections, we assumed that the user of a particular algorithm would actually view the value obtained for a succession of values of N and decide personally when to stop by examining the changes that occur as N is successively doubled. We can, of course, program a computer to make those decisions. One extremely common approach exploits Simpson’s rule (probably via the trapezoidal rule and Romberg integration) to obtain S_2, S_4, S_8, ..., compares each new value with its predecessor and stops when the absolute value of the difference is smaller than a tolerance—either absolute or relative—prescribed in advance. As a guard against an infinite loop, these algorithms should also stop if the desired tolerance has not been achieved in some maximum number of refinements and should print a warning when the desired tolerance has not been achieved. This method is said to be **iterative**, because it generates a succession of results, examines each new result in turn, and repeats the process until the new result meets or exceeds the prescribed tolerance. The points at which the function is evaluated, however, are determined ahead of time and are not influenced at all by the nature of the specific integrand to which the algorithm is applied.

Another family of algorithms (which may be iterative or noniterative) aims to minimize computational labor by estimating—though the methods for doing so are often crude—the accuracy obtained with each strip as the evaluation unfolds and shrinking or enlarging that strip to achieve a particular tolerance before going on to the next strip. In these **adaptive** methods, the points at which the function is evaluated are adjusted in response to the particular function being integrated. Because the assessment of accuracy at a particular strip can result either in shrinking or enlarging the width of that—or the next—strip, adaptive methods focus the computational effort in regions where the function varies rapidly and give less attention to regions in which the function varies slowly.

13.5.5 Gaussian Quadrature

The approach of **Gaussian quadrature** to numerical integration is more complicated than the Newton-Cotes approach but significantly better in some respects. In the Gaussian approach, both the points
at which the function is to be evaluated and the weights to be applied to each value are adjusted to achieve maximum accuracy when the function is approximated by a polynomial of a given order.

The development of a formula for Gaussian quadrature is simplified if we begin by introducing a set of \(m + 1 \) points \(t_i, (i = 0, 1, 2, \ldots, m) \) that divide the interval \(t_0 = a \leq t \leq b = t_m \) into \(m \) segments, the \(i \)-th of which extends over the interval \(t_{i-1} \leq t \leq t_i \). The values \(t_i \) may—but need not—be equally spaced. In this notation, we write the integral of interest as a sum of integrals over each segment, i.e., we write

\[
\int_a^b g(t) \, dt = \sum_{i=1}^{m} \int_{t_i}^{t_{i+1}} g(t) \, dt
\]

(13.83)

To facilitate the discussion, however, we rescale and translate the variable in the \(i \)-th segment by

\[
x = \frac{2t - (t_{i+1} + t_i)}{t_{i+1} - t_i} \quad \text{or} \quad t = \frac{t_{i+1} + t_i}{2} + \frac{t_{i+1} - t_i}{2} x = t_{i}^{\text{mid}} + \frac{\Delta t_i}{2} x
\]

(13.84)

where \(t_{i}^{\text{mid}} \) is the coordinate at the midpoint of the \(i \)-th segment and \(\Delta t_i \) is the width of the \(i \)-th segment. With this change, \(x \) ranges from \(-1\) to \(+1\) as \(t \) ranges from \(t_i \) to \(t_{i+1} \), so the integrals of interest now assume the form

\[
\int_a^b g(t) \, dt = \sum_{i=1}^{m} \int_{t_{i}}^{t_{i+1}} g(t) \, dt = \sum_{i=1}^{m} \frac{\Delta t_i}{2} \int_{-1}^{1} g \left(\frac{t_{i}^{\text{mid}} + \frac{\Delta t_i}{2} x}{x} \right) \, dx = \sum_{i=1}^{m} \frac{\Delta t_i}{2} \int_{-1}^{1} f_i(x) \, dx
\]

(13.85)

where \(f_i(x) = g \left(t_{i}^{\text{mid}} + \frac{\Delta t_i}{2} x \right) \). In essence, then, we must evaluate an integral of the form

\[
\int_{-1}^{1} f(x) \, dx
\]

(13.86)

where we omit the subscript \(i \) on \(f \) for the sake of a simpler notation. If we can find a useful numerical evaluation for the integral in this standard form, then all else can be obtained by appropriate translations and rescalings.

The strategy for Gaussian integration now involves selecting the number of points—say \(N \)—at which the function is to be evaluated in the interval \(-1 < x < 1\), assuming an approximate formula of the form

\[
\int_{-1}^{1} f(x) \, dx = \sum_{k=1}^{N} w_k f(x_k)
\]

(13.87)

and then choosing both the weights \(w_k \) and the points of evaluation \(x_k \) to make this expression 100% accurate for a polynomial of as high an order as possible. Since we have \(2N \) parameters to be determined, we should be able to make this expression accurate for a polynomial of order \(2N - 1 \) with only \(N \) evaluations of the integrand.

To illustrate Gaussian integration more explicitly, let us derive a two-point formula, for which Eq. (13.87) would assume the more explicit form

\[
\int_{-1}^{1} f(x) \, dx = w_1 f(x_1) + w_2 f(x_2)
\]

(13.88)

We choose \(w_1, w_2, x_1 \) and \(x_2 \) so that the formula gives the correct answer for the special cases

\[
f(x) = 1, \text{ yielding that } \int_{-1}^{1} dx = 2 = w_1 + w_2
\]

(13.89)

\[
f(x) = x, \text{ yielding that } \int_{-1}^{1} x \, dx = 0 = w_1 x_1 + w_2 x_2
\]

(13.90)

\[
f(x) = x^2, \text{ yielding that } \int_{-1}^{1} x^2 \, dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2
\]

(13.91)

\[
f(x) = x^3, \text{ yielding that } \int_{-1}^{1} x^3 \, dx = 0 = w_1 x_1^3 + w_2 x_2^3
\]

(13.92)
Because the integral is a linear function of its integrand, a formula that yields the correct answer in these four cases will also yield the correct answer for any linear combination of these special cases, i.e., for any cubic polynomial. These four equations determine the four unknowns. Eqs. (13.90) and (13.92) imply that
\[w_1 x_1 = -w_2 x_2 \quad \text{and} \quad w_1 x_1^3 = -w_2 x_2^3 \] (13.93)
which, when we divide the second by the first, yields \(x_1^2 = x_2^2 \), implying that \(x_1 = -x_2 \). (We reject the plus sign so the two values will be distinct.) Then Eqs. (13.91) and (13.89) yield that
\[\frac{2}{3} = (w_1 + w_2) x_2^2 = 2x_2^2 \implies x_2^2 = \frac{1}{3} \] (13.94)
from which we also conclude that \(x_1^2 = \frac{1}{3} \). Thus,
\[x_1 = -\frac{1}{\sqrt{3}} \quad \text{and} \quad x_2 = \frac{1}{\sqrt{3}} \] (13.95)
Next, Eq. (13.90) implies that \(w_1 = w_2 \) and then Eq. (13.89) implies that \(w_1 = w_2 = 1 \). We conclude that
\[\int_{-1}^{1} f(x) \, dx = f \left(-\frac{1}{\sqrt{3}} \right) + f \left(\frac{1}{\sqrt{3}} \right) \] (13.96)
The result is exact for cubic polynomials with only two evaluations of the function per strip! Simpson’s rule, also exact for cubic polynomials, requires three evaluations of the function per strip.\(^{11}\)

Returning to the original function and variables as laid out in Eq. (13.85), we finally find that Eq. (13.96) supports the expression
\[\int_{a}^{b} g(t) \, dt = \sum_{i=1}^{m} \Delta t_i \left[g \left(t_i^{\text{mid}} - \frac{\Delta t_i}{2} \frac{1}{\sqrt{3}} \right) + g \left(t_i^{\text{mid}} + \frac{\Delta t_i}{2} \frac{1}{\sqrt{3}} \right) \right] \]
\[= \sum_{i=1}^{m} \Delta t_i \sum_{j=1}^{2} w_j g \left(t_i^{\text{mid}} \pm \frac{\Delta t_i}{2} x_j \right) \] (13.97)
The strategy invoked to develop the two-point Gaussian formula can also be applied to deduce higher order formulae. For a three-point formula, for example, we would have three points and three weights, and we would expect to be able to choose these unknowns to generate a formula that would be exact for a fifth-degree polynomial. The five-point formula
\[\int_{-1}^{1} f(x) \, dx = 0.23692689 f(-0.90617985) + 0.47862867 f(-0.53846931) \]
\[+ 0.56888889 f(0.00000000) \]
\[+ 0.47862867 f(0.53846931) + 0.23692689 f(0.90617985) \] (13.98)
which is 100% accurate for polynomials of the ninth-degree or lower, is among the most popular of the formulæ in this class. For the sake of later examples, we note that, in this expression
\[
\begin{align*}
 w_1 &= 0.23692689 & x_1 &= -0.90617985 \\
 w_2 &= 0.47862867 & x_2 &= -0.53846931 \\
 w_3 &= 0.56888889 & x_3 &= +0.00000000 \\
 w_4 &= 0.47862867 & x_4 &= +0.53846931 \\
 w_5 &= 0.23692689 & x_5 &= +0.90617985 \\
\end{align*}
\] (13.99)
\(^{11}\)The advantage isn’t that great, however, because, for Simpson’s rule, the upper evaluation for one strip could also be used as the lower evaluation for the next strip. No such feature applies to the two-point—or to any—Gaussian integration formula. The advantage of the Gaussian approach increases, however, as \(N \) in Eq. (13.87) increases.
Further, returning to the original variable, we note that
\[
\int_a^b g(t) \, dt = \sum_{i=1}^{m} \frac{\Delta t_i}{2} \sum_{j=1}^{5} w_j g \left(t_i^{\text{mid}} + \frac{\Delta t_i}{2} x_j \right) \tag{13.100}
\]

As an aside, note that the points \(x_1\) and \(x_2\) at which we have evaluated the function for two-point Gaussian quadrature are the two roots of the second Legendre polynomial, \(L_2(x) = \frac{1}{2}(3x^2 - 1)\) and the weight to be applied to \(f(x_i)\) is given by \((2/[(1 - x_i^2)](dL_2(x_i)/dx)^2)\). More generally, for an \(N\)-point Gaussian integration, we would discover that\(^{12}\)
\[
L_N(x_i) = 0 \quad \text{and} \quad w_i = \frac{2}{(1 - x_i^2)(dL_N(x_i)/dx)^2} \tag{13.101}
\]
and that
\[
\left| \int_{-1}^{1} f(x) \, dx - \sum_{k=1}^{N} w_k f(x_k) \right| = \frac{2^{2N+1}(N!)^4}{(2N + 1)(2N)!^3} \left| \frac{d^{2N} f}{dx^{2N}} \right|_{x=\xi} \tag{13.102}
\]
where \(-1 < \xi < 1\). This result shows that the \(N\)-point formula of this type will be 100\% accurate for polynomials of degree \(2N - 1\) or lower—a property which we have already inferred informally. Because of the role played by the Legendre polynomials in these formulae, they are sometimes referred to as *Gauss-Legendre formulae*.\(^{13}\)

13.9 Evaluating Integrals Numerically with PYTHON

Note: All PYTHON program (.py) files referred to in this chapter are available in the directory \$\text{HEAD/python}\), where (as defined in the *Local Guide*) \$\text{HEAD}\) must be replaced by the appropriate path for your site. At some sites, this directory or some other directory containing these files may also have been placed in PYTHON’s default search path. If so, the files can be found by PYTHON without explicit specification of a path. Otherwise, you will have to use the full path to copy them into your default directory to access them.

One-dimensional integrals can be evaluated numerically either by using PYTHON’s elementary commands as described in Section 13.9.1 or, more simply, by invoking one of the built-in routines as described in Section 13.9.2.

13.9.1 Using Elementary Commands

Relatively simple sequences of elementary commands can implement one or another of the algorithms described in Section 13.5. If, for example, we seek an evaluation of the integral
\[
I = \text{erf}(1) = \frac{2}{\sqrt{\pi}} \int_0^1 e^{-x^2} \, dx \tag{13.103}
\]

\(^{13}\)A more general integral that can be approached with the techniques of this subsection has the form \(\int_a^b f(x)w(x) \, dx\), where \(w(x)\) is a weighting function. In the case we dealt with, \(w(x) = 1\) and, in our rescaling, the interval became the interval from \(-1\) to \(1\). That the Legendre polynomials \(L_i(x)\) are orthogonal on the interval \(-1 < x < 1\) with weight \(w(x) = 1\) is part of the reason that the roots of these polynomials ultimately emerged as important. For other weight functions and other intervals, a different set of polynomials would have played the role of the Legendre polynomials. Thus, there are several different types of Gaussian quadrature, each specific to a particular weight and basic interval.
13.9. EVALUATING INTEGRALS NUMERICALLY WITH PYTHON

Table 13.3: Values of erf(1.0) obtained by the trapezoidal rule and a user-constructed program in PYTHON. Values were determined by double-precision calculations and all resulting digits are shown, even though not all are significant.

<table>
<thead>
<tr>
<th>n</th>
<th>T_n</th>
<th>n</th>
<th>T_n</th>
<th>n</th>
<th>T_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.77174332258</td>
<td>64</td>
<td>0.842683902045</td>
<td>4096</td>
<td>0.842700788826</td>
</tr>
<tr>
<td>2</td>
<td>0.825262955597</td>
<td>128</td>
<td>0.842696570249</td>
<td>8192</td>
<td>0.842700791919</td>
</tr>
<tr>
<td>4</td>
<td>0.838367777441</td>
<td>256</td>
<td>0.842699737276</td>
<td>16384</td>
<td>0.842700792692</td>
</tr>
<tr>
<td>8</td>
<td>0.841619221245</td>
<td>512</td>
<td>0.842700529031</td>
<td>32768</td>
<td>0.842700792885</td>
</tr>
<tr>
<td>16</td>
<td>0.842430505490</td>
<td>1024</td>
<td>0.842700726970</td>
<td>65536</td>
<td>0.842700792934</td>
</tr>
<tr>
<td>32</td>
<td>0.842633227681</td>
<td>2048</td>
<td>0.842700776455</td>
<td>131072</td>
<td>0.842700792946</td>
</tr>
</tbody>
</table>

which appears in the expression of Eq. (13.41) for the probability of finding a quantum oscillator in the classically forbidden region, we might invoke the trapezoidal rule as presented in Eq. (13.62), divide the interval $0 \leq x \leq 1$ into $n = 4$ segments, and use the statements

```python
import numpy as np
n = 4
x = np.linspace(0.0, 1.0, n+1)
f = 2.0*np.exp(-x**2)/np.sqrt(np.pi)
y = 0.5*f[0]
for i in np.arange(1,n):
y = y + f[i]
y = y + 0.5*f[n]
int = (1.0/n) * y
print(int)
0.838367777441
```

where, of course, not all of the digits are significant. To illustrate the reduction of truncation error with decreasing step size, we re-execute this procedure, starting with $n = 1$ and successively doubling n, finding the values shown in Table 13.3. On the basis of this succession of numbers, however, we conclude that, to six decimal places, the value of the integral is 0.842701. The trapezoidal rule took 513 evaluations of the function to reach that value.

Note in this example that the result for $n = 1$ is quite inaccurate. As n increases, however, the result becomes more and more accurate. After a time (here at about $n = 512$) the result stabilizes—at least to the first six or seven digits after the decimal point—and further increase of n makes almost no difference in the value to that precision. A graph of T_n versus n would start low, increase to this stable value and remain horizontal as n is further increased. Indeed, in this example, that graph would remain horizontal all the way to $n = 131072$. Were we to increase n still further, we would sooner or later find that this graph would begin to depart from the value at which it stabilized, at first slowly but then more dramatically. The point at which this departure begins is the point at which roundoff errors begin to become significant. Fortunately, n exhibits a substantial range of values that are simultaneously large enough to keep truncation error at bay and small enough to prevent significant roundoff error. Short of changing to a more sophisticated algorithm, the most accurate value we can obtain is the value at which further increase of n (for awhile) makes little difference in the value obtained.

We illustrate with three alternative and more efficient approaches. First, note that Richardson extrapolation applied to T_1 and T_2 and then again to T_2 and T_4 yields the values

$$S_2 = \frac{4 \ast T_2 - T_1}{3} = \frac{4 \ast 0.825262955597 - 0.771743332258}{3} = 0.843102830043333$$

14 Alternatively, as long as $n \geq 2$, the fifth through eighth lines in this code can be replaced with the single statement $y = -0.5\ast f[0] + \text{sum}(f) - 0.5\ast f[n]$.

$$y = 0.5\ast f[0] + \text{sum}(f) - 0.5\ast f[n]$$
and

\[
S_4 = \frac{4 \cdot T_4 - T_2}{3} = \frac{4 \cdot 0.838367777441 - 0.825262955597}{3} = 0.842736051389 \quad (13.105)
\]

Continuing this process of Richardson extrapolation, we find the values \(S_8 = 0.842703035846 \), \(S_{16} = 0.842700933572 \), and \(S_{32} = 0.842700801745 \). Because \(S_{16} \) and \(S_{32} \) agree to six digits, we conclude that \(I = 0.842701 \) to the sixth decimal place. We have here arrived at the same conclusion as in the previous paragraph, but only 17 evaluations of the function were necessary. The trapezoidal rule coupled with Richardson extrapolation is clearly more efficient than the trapezoidal rule alone, at least with this integral.

Second, if we instead adopt Simpson’s rule as in Eq. (13.63), we would need to modify the above procedure to recognize that each evaluation of the function requires a different weight, i.e., the first and last values of the function must be multiplied by 1, the second value and alternate values thereafter must be multiplied by 4, and the third value and alternate values thereafter must be multiplied by 2. To achieve this end, we create a vector of weights having the value \([1,4,2,4, ..., 2,4,1]\). We might invoke the statements

\[
\begin{align*}
\text{n} & = 2 \\
\text{x} & = \text{np.linspace}(0.0, 1.0, \text{n+1}) \\
\text{f} & = 2.0 \cdot \text{np.exp}(-x**2)/\text{np.sqrt}(\text{np.pi}) \\
\text{w} & = \text{np.zeros(n+1)} \\
\text{w}[0] & = 1.0; \text{w}[\text{n}] = 1.0 \\
\text{for} \ i \ \text{in} \ \text{np.arange}(1,\text{n},2): \text{w}[i]=4.0 \\
\text{for} \ i \ \text{in} \ \text{np.arange}(2,\text{n-1},2): \text{w}[i]=2.0 \\
\text{y} & = 0.0; \\
\text{for} \ i \ \text{in} \ \text{np.arange}(0,\text{n}): \ y = y + \text{w}[i] \cdot \text{f}[i] \\
\text{int} & = (1.0/\text{n}) \cdot y/3.0 \\
\text{print(} \text{int }) \\
0.843102830043
\end{align*}
\]

where, again, not all digits are significant. If this process is repeated with \(n = 4 \), the end result is 0.842736051389. With \(n = 32 \) and \(n = 64 \), this process yields the values 0.842700801745 and 0.8427007935, respectively. Reassuringly, all of these values agree with the values obtained by applying Richardson extrapolation to the values obtained in the previous paragraph with the trapezoidal rule. We again conclude that, to six digits, \(I = 0.842701 \).

Third, we could adopt the Gaussian approach. If, for example, we identify \(t \) in Eq. (13.97) with \(x \) in Eq. (13.103) and \(g(t) \) with \(2e^{-x^2}/\sqrt{\pi} \) and we divide the interval \(0 \leq x \leq 1 \) into \(m = 4 \) segments of equal width, we might invoke the PYTHON statements

\[
\begin{align*}
\text{pts} & = [-1.0/\text{np.sqrt}(3.0), 1.0/\text{np.sqrt}(3.0)] \\
\text{w} & = [1.0, 1.0] \\
\text{a} & = 0.0; \ \text{b} = 1.0 \\
\text{m} & = 4 \\
\text{xmid} & = \text{np.zeros(m)} \\
\text{for} \ i \ \text{in} \ \text{np.arange}(0,m): \ x\text{mid}[i]=(x[i]+x[i+1])/2.0
\end{align*}
\]

to set the evaluation points, weights, and limits. Then we would execute the statements

\[
\begin{align*}
\text{m} & = 4 \\
\text{x} & = \text{np.linspace}(\text{a}, \text{b}, \text{m+1}) \\
\text{xmid} & = \text{np.zeros(}\text{m}) \\
\text{for} \ i \ \text{in} \ \text{np.arange}(0,\text{m}): \ x\text{mid}[i]=(\text{x}[i]+\text{x}[i+1])/2.0
\end{align*}
\]

Alternatively, the sum of the products of the components of \(w \) and \(f \) could be viewed as a multicomponent vector dot product and evaluated with the single statement \(y = f \ast \text{transpose}(w) \).
13.9. EVALUATING INTEGRALS NUMERICALLY WITH PYTHON

\[
dx = \frac{(b-a)}{m}
\]

\[
\text{int} = 0.0
\]

for \(i\) in np.arange(0,m):
 \[fcts = 0.0\]
 for \(j\) in [0,1]:
 \[fcts = fcts + w[j]*\exp(-(xmid[i]+dx*pts[j]/2.0)^2)\]
 \[\text{int} = \text{int} + fcts\]
\[\text{int} = dx*\text{int}/\sqrt{\pi}\]
\[
\text{print(} \text{int })
\]
\[0.842699298102\]

finding that the two-point Gaussian formula with two equal divisions of the interval of integration yields a result that is correct to five digits. With 1, 2, 4, and 8 divisions, the results are 0.84244189253, 0.842677323863, 0.842699298102, and 0.842700699207, respectively—and we find that the two-point Gaussian formula yields a result correct to four digits even with only two divisions of the interval of integration and correct to six digits with eight divisions.

The coding worked out in the previous paragraph is easily adapted to express the five-point Gaussian formula in Eq. (13.99). We begin by invoking the statements

\[
\text{pts} = [-0.90617985, -0.53846931, 0.0, 0.53846931, 0.90617985]
\]
\[
\text{w} = [0.23692689, 0.47862867, 0.56888889, 0.47862867, 0.23692689]
\]
\[a = 0.0; b = 1.0\]

to set the evaluation points \(x_1, \ldots, x_5\), the weights \(w_1, \ldots, w_5\) and the limits. Then, we prepare to evaluate the integral with the statements

\[
m = 4
\]
\[
dx = \frac{(b-a)}{m}
\]
\[
x = \text{np.linspace}(a, b, m+1)
\]
\[
xmid = \text{np.zeros}(m)
\]

for \(i\) in np.arange(0,m):
 \[xmid[i]=(x[i]+x[i+1])/2.0\]

Finally, we evaluate the sum, multiply with an overall factor whose inclusion was postponed, and display the result with the statements

\[
\text{int} = 0.0
\]

for \(i\) in np.arange(0,m):
 \[fcts = 0.0\]
 for \(j\) in [0,1,2,3,4]:
 \[fcts = fcts + w[j]*\exp(-\text{xmid}[i]+dx*\text{pts}[j]/2.0)^2\]
 \[\text{int} = \text{int} + fcts\]
\[0.842700797138\]

finding that the five-point Gaussian formula with four equal divisions of the interval of integration yields a result that is correct to six digits. Even more amazing, this five-point formula gives the result 0.842700789923—which agrees with the above result to seven digits—with \(m = 1\), i.e., when the entire interval of integration is treated as a single segment!

13.9.2 Built-In Integration Routines

The scipy.integrate module for PYTHON contains several routines for evaluating integrals numerically. One-dimensional integrals can be evaluated numerically either by using PYTHON’s elementary commands or, more simply, by invoking one of the built-in routines. Some, specifically
• `scipy.integrate.quad`, which uses a general purpose technique from the FORTRAN library QUADPACK,

• `scipy.integrate.fixed_quad`, which uses Gaussian quadrature of a fixed order (default 5) specified with the keyword n,

• `scipy.integrate.quadrature`, which uses Gaussian quadrature but adaptively adjusts the order until a fixed tolerance has achieved, and

• `scipy.integrate.romberg`, which is adative and uses Romberg extrapolation to speed convergence

evaluate one-dimensional integrals of a user-supplied function $f(x)$ and are invoked with a statement like

$$VarName = RoutineName(\ Function, \ LowLim, \ UpLim)$$

where $VarName$ is the variable in which the value returned will be stored, $RoutineName$ is the name of the integration routine to be invoked,16 $Function$ is a properly defined function returning the integrand, and $LowLim$ and $UpLim$ are the lower and upper limits of integration. As discussed in Section 13.9.10, these routines also admit a number of keywords to control tolerances and several other specific behaviors of the integration. To keep things simple initially, we will accept all defaults, which in particular stipulate absolute and relative errors of 1.49×10^{-8}.

Sometimes, for example with data acquired experimentally, one seeks to integrate a function defined by values in a table that provides values of the function at equally spaced values of the independent variable. The module `scipy.integrate` provides also the routines

• `scipy.integrate.trapz` and `scipy.integrate.cumtrapz`, which use the trapezoidal rule,

• `scipy.integrate.simps`, which uses Simpson’s Rule that works best with an even number of intervals (and an odd number of values) but knows how to handle the other case, and

• `scipy.integrate.romb`, which uses Romberg integration

to evaluate one-dimensional integrals when the function is supplied by a table of values. The routines `trapz`, `cumtrapz`, and `simps` are invoked with a statement like

$$VarName = RoutineName(y, x)$$

while the routine `romb` is invoked with a statement like

$$VarName = romb(y, dx=Space)$$

Here $VarName$ is the variable in which the value returned will be stored, $RoutineName$ is the name of the integration routine to be invoked,17 y is a list or an array providing values of the dependent variable at the (equally-spaced) values of the independent variable provided in the list or array x, and dx is a keyword that conveys the difference between consecutive values of the independent variable.

Information about the available routines for evaluating two-, three- and n-dimensional integrals is left to the PYTHON manuals.

The optimal method to use depends on the character of the integrand. For smooth integrands, all methods will work, though some will require more calculation than others to achieve a particular accuracy. Most can deal with integrals that have infinite limits and a few will work well with integrands that have singularities. In the following sections, we illustrate the use of only a few of these options. Full details on each of these commands can be found in the PYTHON manuals and on the web.18

16The routine must, of course, have been appropriately imported before invoking it.

17The routine must, of course, have been appropriately imported before invoking it.

18See docs.scipy.org/doc/scipy/reference/tutorial/integrate.html and docs.scipy.org/doc/scipy/reference/integrate.html for details on all of these utilities.
The simplest of these routines—\texttt{trapz}—is straight-forward and non-adaptive. It simply uses the trapezoidal rule to evaluate $\int y\,dx$ when supplied with two one-dimensional lists or arrays x and y, the first containing equally spaced values of the independent variable and the second containing values of the dependent variable at the points in x. Thus, for example, we might evaluate the integral in the previous section via the trapezoidal rule with 16 segments with the statements

\begin{verbatim}
import numpy as np
import scipy.integrate as sp
x = np.linspace(0.0, 1.0, 17)
y = 2.0*np.exp(-x**2)/np.sqrt(np.pi)
I = sp.trapz(y, x); print(I)
 0.8424305054902326
I = sp.simps(y, x); print(I)
 0.842700933572054
I = sp.romb(y, dx=1.0/16.0); print(I)
 0.8427007932686706
\end{verbatim}

As invoked here, the routine \texttt{trapz} has, of course, yielded T_{16}—and this result agrees with previous evaluations of the integral by this method with 16 divisions. The routine \texttt{cumtrapz} differs from \texttt{trapz} simply by printing out the accumulating value of the integral as each next step is added to the result, and it may produce a substantial volume of output. The result from \texttt{trapz} is accurate only to the third digit; those from \texttt{simps} and \texttt{romb} are accurate at least through the sixth digit.

Before invoking any routine that integrates a defined function, we must create a function py-file that returns the integrand as a function of a single scalar argument (the integration variable). The construction of such files is described in Section 5.7. For the integral in Eq. (13.41), for example, the function py-file might be

\begin{verbatim}
def gausint(t):
 # GAUSINT - Defines Gaussian lineshape
 # GAUSINT defines the integrand for evaluating the error function.
 tmp1 = 2.0/np.sqrt(np.pi)
y = tmp1*np.exp(-t**2)
return y
\end{verbatim}

Having stored the py-file in the user’s default directory with a name identical to that of the function name and with the file extension .py (here \texttt{gausint.py}) and using defaults for all keywords, we would evaluate the integral and display its value with a statements20

\begin{verbatim}
execfile('gausint.py') or exec(open('gausint.py').read())
import numpy as np
import scipy.integrate as sp
int = sp.quad(gausint, 0.0, 1.0)
print(int)
 (0.8427007929497149, 9.355858232026503e-15)
int = sp.fixed_quad(gausint, 0.0, 1.0)
print(int)
 (0.8427007861273327, None)
\end{verbatim}

19Inclusion of parameters in the definition of the function will be discussed in Section 13.9.8.

20\texttt{quad} returns a tuple containing the value of the integral and an estimate of the error in that value; \texttt{fixed_quad} returns a tuple containing the value of the integral and a fixed value \texttt{None}; \texttt{quadrature} returns a tuple containing the value of the integral and the difference between the last two estimates of the integral; and \texttt{romberg} returns only the value of the integral.
int = sp.quadrature(gausint, 0.0, 1.0)
print(int)
(0.8427007930374221, 6.910089389577934e-09)
int = sp.romberg(gausint, 0.0, 1.0)
print(int)
0.842700792949508

With the default tolerance of 1.49×10^{-8}, we have reason to believe that these results are all accurate
to about the seventh digit, though quad claims an accuracy much better than that and romberg
implies an accuracy a bit better than that. For example, if we believe the change reported by
quadrature, we might presume the value of the integral to be $0.842700793 \pm 0.000000007$.

13.9.3 Moment of Inertia

To evaluate the integral appearing in Eq. (13.16) for the moment of inertia of a semicircular plate,
we must first create the function M-file

```python
def moment( lamb ):
    # MOMENT - Defines integrand for moment of inertia
    # MOMENT defines the integrand for evaluating the moment of
    # inertia of a semicircular plate.
    tmp = lamb**2
    y = 4.0*tmp*np.sqrt(1.0-temp)/np.pi
    return y
```

and store it in a file named moment.py. Then, the simple statements

```python
import numpy as np
import scipy.integrate as sp
execfile('moment.py') or exec(open('moment.py').read() )
I = sp.quad( moment, 0.0, 1.0 ); print( I )
(0.2499999999999999478, 1.003955966354808e-09)
I = sp.quadrature( moment, 0.0, 1.0 ); print( I )
... AccuracyWarning: maxiter (50) exceeded. Latest difference = 8.915380e-07
(0.250001440787829, 8.915380134144613e-08)
I = sp.quadrature( moment, 0.0, 1.0, maxiter=100 ); print( I )
(0.2500003690920863, 1.4289524896682337e-08)
```

Here, prompted by the first output from quadrature, we have (prematurely—see Section 13.9.10)
invoked the keyword maxiter to increase the allowed number of iterations and succeeded in
suppressing the warning first displayed. These results are clearly in agreement with one another and
with those obtained by other methods in this chapter, provided we don’t believe more than five or
six digits, though the value given by quad implies that $I = 0.25000000000 \pm 0.000000001$.

If we didn’t know, however, what the “exact” value should be, we would have to be more
careful about interpreting the above numerical result. We could, for example, exploit the simpler,
non-adaptive command trapz with the statements

```python
import numpy as np
import scipy.integrate as sp
execfile('moment.py') or exec(open('moment.py').read() )
I = sp.trapz( moment, 0.0, 1.0 ); print( I )
(0.2499999999999999478, 1.003955966354808e-09)
I = sp.romberg( moment, 0.0, 1.0 ); print( I )
0.25000000000000003690920863
```
13.9. EVALUATING INTEGRALS NUMERICALLY WITH PYTHON

n = 10
x = np.linspace(0.0, 1.0, n+1)
y = 4.0 * x**2 * np.sqrt(1.0-x**2)/np.pi
I = trapz(x, y)
I = 0.2384963329797492

to evaluate the desired integral via the trapezoidal rule with 10 segments in the interval 0 ≤ x ≤ 1. We can repeat this process for larger values of n, finding the values

<table>
<thead>
<tr>
<th>n</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.24962670804382944</td>
</tr>
<tr>
<td>1000</td>
<td>0.2499881660155479</td>
</tr>
<tr>
<td>10000</td>
<td>0.24999962568360487</td>
</tr>
<tr>
<td>100000</td>
<td>0.2499999881627824</td>
</tr>
<tr>
<td>1000000</td>
<td>0.24999999962567337</td>
</tr>
</tbody>
</table>

Since, as discussed in Section 13.5.3, the error in the trapezoidal rule decreases in inverse proportion to the square of n, each new step in this sequence should yield an improvement of a factor of 100 (two decimal digits) in precision. By replacing the automatic criterion with a personal examination, we can be more confident that the value of this integral is approaching 0.25000.21

13.9.4 Quantum Probabilities

In Section 13.9.2, we have already evaluated the integral that appears in the determination of the probability that a quantum harmonic oscillator in its ground state will be found outside the classical turning point. According to Eq. (13.41), that probability is given by the expression

$$P(|x| > |x_{\text{turn}}|) = 1.0 - \text{erf}(1.0) = 1.0 - 0.842701 = 0.157299$$ \hspace{1cm} (13.106)

We conclude that, in a bit over 15% of the measurements, the quantum oscillator will be found in the classically forbidden region!

13.9.5 Integrals as Functions of the Upper Limit

To evaluate an integral as a function of a parameter, the routine used must be invoked repeatedly in a loop. With each execution of the loop, the parameter assumes a new value and the current values of the parameter and of the corresponding integral are stored for later examination. This process is easiest to implement when the parameter is the upper limit of the integral as, for example, in the integral

$$g(x) = \int_0^x f(t) \, dt$$ \hspace{1cm} (13.107)

We begin by constructing a py-file to define the integrand f(t), say integ.py. Then, supposing that we want to evaluate the integral as a function of its upper limit x for a ≤ x ≤ b, we invoke the PYTHON statements22,23

21 Remember that PYTHON does its internal arithmetic in double precision, so we have probably not yet begun to be affected by problems from internal roundoff.
22 We might, of course, use fixed_quad or quadrature instead of quad in this example. If we used romberg, the characters [0] at the end of the line beginning g[i] would not be there.
23 We assume that numpy and scipy.integrate have been imported as np and sp, respectively.
Set number of segments in interval.
Set values for upper limit.
Create list for values of integral.
Evaluate integral for each upper limit in \(x \), using \texttt{quad} and accepting the default tolerance.

Upon execution of these statements, values of \(g(x) \) as a function of \(x \) for the selected values of \(x \) will be stored in the list \(g \) and can be further processed as desired. In particular, the values in \(g \) could be plotted versus the values in \(x \) to generate a graph of \(g \) versus \(x \).\(^{24}\)

13.9.6 The Error Function

To evaluate the error function as given by Eq. (13.26), we begin by constructing the \texttt{py-file} giving the integrand. The function \texttt{gausint.m} defined in Section 13.9.2 can be used here also. Thus, supposing we want \(x \) to range from 0.0 to 3.0 in steps of 0.1, we invoke the PYTHON statements

\begin{verbatim}
import matplotlib.pyplot as plt
N = 30
x = np.linspace(0.0, 3.0, N+1)
erf = np.zeros(N+1)
for i in np.arange(0,N+1):
erf[i] = sp.quad(gausint, 0.0, x[i])
plt.plot(x, erf, linewidth=4, color='black')
plt.title('Error Function', fontsize=20)
plt.xlabel('x', fontsize=16)
plt.ylabel('erf(x)', fontsize=16)
plt.tick_params(labelsize=12)
plt.grid()
plt.show()
\end{verbatim}

The resulting graph is shown in Fig. 13.10.

13.9.7 The Cornu Spiral

To determine the Cornu spiral, we use \texttt{quad} to generate vectors \(C \) and \(S \) containing values of the defining integrals as given in Eq. (13.27) over a suitable range of upper limits and then plot the values in \(S \) versus the values in \(C \). First we create the \texttt{py-files}

\begin{verbatim}
def spiralc(t):
 # SPIRALC - returns cosine integrand for Cornu spiral.
 # SPIRALC defines the integrand for the integral giving the
 # vertical coordinate of the Cornu spiral.
 y = np.cos(np.pi * t**2 / 2.0)
 return y
\end{verbatim}

\(^{24}\)This sequence of statements actually is computationally inefficient. We might increase the efficiency by recognizing, for example, that \(g(x + \Delta x) = g(x) + \int_x^{x+\Delta x} f(t) \, dt \) and obtain integrals for larger \(x \) by adding an appropriate increment to already evaluated integrals for smaller \(x \). For our present purposes, that approach unnecessarily complicates the algorithm of evaluation.
def spirals(t):
 # SPIRALS - returns sine integrand for Cornu spiral.
 # SPIRALS defines the integrand for the integral giving the
 # horizontal coordinate of the Cornu spiral.
 y = np.sin(np.pi * t**2 / 2.0)
 return y

to provide the two integrands, storing them in the user’s default directory in the same file with the name spiral.py. For definiteness, we elect to explore the spiral over the range \(-5 \leq u \leq 5\), though we evaluate only integrals for \(0 \leq u \leq 5\) and obtain values for \(-5 \leq u \leq 0\) by recognizing that both integrals are odd functions of \(u\). First, we generate the necessary values of the upper limit and evaluate the integrals with the statements

```python
execfile('spiral.py') or
exec(open('spiral.py').read() )
```

Define functions. See Section 5.7.

```
N = 100
u = np.linspace( 0.0, 5.0, N+1 )
CP = np.zeros(101); SP = np.zeros(101)
CN = np.zeros(101); SN = np.zeros(101)
for i in np.arange(0,N+1):
    CP[i]=sp.quad( spiralc, 0.0, u[i] )[0]
    SP[i]=sp.quad( spirals, 0.0, u[i] )[0]
    CN[N - i] = -CP[i]
    SN[N - i] = -SP[i]
```

Set number of segments.
Specify values of upper limit.
Prepare lists for values.
Evaluate/store integrals for each limit.

Finally, we assemble the variables to be plotted and plot the graph with the statements

```python
C = np.append(CN, CP); S = np.append(SN, SP)
plt.plot( C, S, linewidth=3, color='black' )
```

Concatenate values for positive and negative limits.
Plot graph of \(S\) versus \(C\).
CHAPTER 13. EVALUATING INTEGRALS

Figure 13.11: The Cornu spiral.

```
plt.title( 'Cornu Spiral', fontsize=20 )  # Add title.
plt.xlabel( '$C(u)$', fontsize=16 )  # Label axes.
plt.ylabel( '$S(u)$', fontsize=16 )  # Label axes.
plt.grid()  # Turn on grid.
plt.tick_params(labelsize=12)  # Set size of tick labels.
plt.xlim( (-1.0,1.0) )  # Set range on axis.
plt.ylim=( (-1.0,1.0) )  # Set range on axis.
plt.axis('square')  # Make axes square.
```

The resulting graph is shown in Fig. 13.11.

13.9.8 Integrals as Functions of an Internal Parameter

The situation in which an integral of interest is a function of a parameter in the integrand is more difficult because we must somehow sneak the parameters in the integrand through the integration routine and into the function called by those routines to evaluate the integrand. One technique for achieving this objective is to exploit global variables as discussed in Section 5.7.3. Using global variables will work with all of PYTHON’s routines for integrating specified functions. Conveniently, these routines offer an alternative. Calls to these routines can take advantage of the keyword args. The full structure of statements involving these commands is

```
VarName = RoutineName( Function, LowLim, UpLim, args=... )
```

Here—beyond the quantities already defined—the keyword args has as its target a tuple that provides arguments to be passed to the function evaluating the integrand. That function must, of course, be defined with those parameters as additional arguments. As has been previously mentioned, if the tuple assigned to args has only one value, that value must be followed by a seemingly irrelevant comma, e.g., args = (P1,).

25 This sequence of statements actually has two glitches. First, it is computationally inefficient in the way described in footnote 24. Second, and less significantly, the values of $S(0)$ and $C(0)$ appear twice in the vectors finally plotted.

26 Passing parameters is not an issue when tabulated data are to be integrated.
To invoke this feature, we must do two things. First, we must define the integrand with the parameters as additional arguments to the function. The appropriate file would then have the general format

```python
def FunctionName( x, p1, p2, p3, ... ):
    # Explanatory comments.
    ...
    Statements to evaluate integrand, using p1, p2, p3, ... for the parameters.
    ...
    y = integrand
    return y
```

Here `FunctionName` is the user-assigned name for the function returning the integrand, `x` is the independent variable, `p1, p2, p3, ...` are the parameters, and `integrand` is the finally calculated value of the integrand. The file will normally be stored with the name `FunctionName.py`.

Second, having defined the py-file in this new way and stored it in the default directory, we invoke PYTHON to evaluate and display the desired integral by using, for example, `quad` with the statements

```python
p1 = ??; p2 = ??; p3 = ??; ...
q = sp.quad(FunctionName, Lowlim, UpLim, args=(p1,p2,p3) )
```

where we first assign values to however many parameters there are and then invoke `quad` (or some other integration routine), including a use of the keyword `args`.

Note that the names of the parameters need not be the same at command level as they are in the function py-file. Only the position and data type of the entities must match in the two occurrences, since it is the order and type of items—not the variable names used—that provide the association of values in the two occurrences.

13.9.9 The Off-Axis Electrostatic Potential of Two Rings

Equation (13.36) illustrates a situation in which the integral is a function of an internal parameter. For the integral in Eq. (13.36), for example, we might write the py-file

```python
def rings( phi, s ):
    # RINGS - Integrand for charged rings
    # RINGS defines the integrand whose integral gives the
    # electrostatic potential in the midplane between two
    # uniformly charged circular rings.
    tmp = np.sqrt( 2.0 ) / ( 2.0 * np.pi );
    y = tmp / np.sqrt( 2.0 - 2.0*s*np.cos(phi) + s*s )
    return y
```

We store this file with the name `rings.py`, then invoke PYTHON to evaluate and display the desired integral by using `quad`, say, with the statement

```python
q = quad( rings, a, b, args=(s,) )
```
Figure 13.12: The potential in the midplane of a charged ring.

Since we seek to explore this integral as a function of s over, say, $0.0 \leq s \leq 4.0$, we must generate a list of values of s and then, in a loop, invoke `quad` once for each element in that vector. We might use the statements:

```python
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as sp

s = np.linspace(0.0, 4.0, 41)
N = s.size
V = np.zeros(N)
for i in np.arange(0,N):
    V[i] = sp.quad( rings, 0.0, 2.0*np.pi, args=(s[i],))[0]

plt.plot( s, V, linewidth=4, color='black' )
plt.title( 'Potential in Midplane', fontsize=20)
plt.xlabel('$s/a$', fontsize=16)
plt.ylabel('$V(s)/V(0)$', fontsize=16)
plt.xlim( (0.0,4.0) )
plt.ylim( (0.0,1.0) )
plt.grid()
plt.show()
```

The resulting graph is shown in Fig. 13.12.

13.9.10 Keywords that Modify Function Integrators

When the default values of the keywords that control the detailed action of `quad`, `fixed_quad`, `quadrature`, and `romberg` are not appropriate to the task at hand, these keywords can be given different values. The available keywords with the default values include

- `args=()`, which provides parameters to be passed to the function defining the integrand,
13.11. Evaluating Integrals Numerically with MAPLE

To evaluate an integral numerically using MAPLE, we simply embed the command \texttt{int} or the command \texttt{Int} within the command \texttt{evalf}. In response to the simple command

\begin{verbatim}
 evalf(int(f, x=a..b));
\end{verbatim}

where \(f \) is an expression that depends on \(x \), MAPLE first attempts to evaluate \(\int_a^b f \, dx \) symbolically and then evaluates the numerical value of the symbolic result. If, however, the attempt at symbolic integration fails, MAPLE first submits the integral to some built-in routines based on algorithms from the Numerical Algorithms Group (NAG) library and, if that fails, adopts by default the Clenshaw-Curtis quadrature algorithm and includes some features for dealing with singularities of the integrand detected in (or near) the interval of integration—to produce the numerical result. The alternative form

\begin{verbatim}
 evalf(Int(f, x=a..b));
\end{verbatim}

causes MAPLE to skip any attempt at symbolic integration and go directly to evaluation by a NAG routine and then, if necessary, by Clenshaw-Curtis quadrature. The more elaborate form

Table 13.4: Applicability of keywords to integration routines.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>quad</th>
<th>fixed_quad</th>
<th>quadrature</th>
<th>romberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>args</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>epsabs</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tol</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>epsrel</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rtol</td>
<td></td>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>limit</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>maxiter</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>divmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\text{epsabs}=1.49\times10^{-8} \) or \(\text{tol}=1.49\times10^{-8} \), which specifies the desired absolute error in the evaluation of the integral.
- \(\text{epsrel}=1.49\times10^{-8} \) or \(\text{rtol}=1.49\times10^{-8} \), which specifies the desired absolute error in the evaluation of the integral.
- \(\text{limit}=50 \), which sets the upper bound on the number of subintervals to be used in any adaptive routines.
- \(\text{maxiter}=50 \), which sets the maximum number of iterations before a message of non-convergence will be displayed.
- \(\text{n}=5 \), which specifies the order of a Gaussian quadrature procedure.
- \(\text{divmax}=10 \), which specifies the maximum number of extrapolations allowed

Table 13.4 conveys which of these keywords are recognized by which integration routines.
evalf(Int(f, x=a..b, digits=dig, method=flag));

provides control over the tolerance and the method. Here,

- \textit{dig} specifies the number of digits of accuracy in the returned value, where the default value of \textit{dig} is taken to be the value of the environment variable \texttt{Digits}, typically 10.

- \textit{flag} specifies the method, and may have one of the values \texttt{CCquad} (Clenshaw-Curtis quadrature but with no attempt to detect or deal with singularities), \texttt{Dexp} (adaptive double-exponential routine), and \texttt{NCrule} (Newton-Cotes quadrature using \texttt{quanc8}, an adaptive eighth-order method).

Fuller detail about these features of MAPLE can be found in the MAPLE manuals.

With this feature of MAPLE, we can evaluate our standard example in many ways. We might, for example, use the statement

\begin{verbatim}
> evalf(int(2*exp(-t^2)/sqrt(Pi), t=0..1));
.8427007929
\end{verbatim}

which will evaluate the integral analytically [obtaining erf(1)] and then evaluate the error function of argument 1. Alternatively, we might use the statement

\begin{verbatim}
> evalf(Int(2*exp(-t^2)/sqrt(Pi), t=0..1));
.8427007929
\end{verbatim}

which jumps directly to numerical integration. We might reduce the accuracy—and speed the evaluation—of the result with the statement

\begin{verbatim}
> evalf(Int(2*exp(-t^2)/sqrt(Pi), t=0..1, digits=3));
.843
\end{verbatim}

or preserve the default accuracy but use the Newton-Cotes method with the statement

\begin{verbatim}
> evalf(Int(2.0*exp(-t^2)/sqrt(Pi), t=0..1.0, method=_NCrule));
.8427007929
\end{verbatim}

Reassuringly, the results are all consistent with one another.

13.11.1 Quantum Probability

In the opening paragraphs of this section, we have already evaluated the integral that appears in the determination of the probability that a quantum harmonic oscillator in its ground state will be found outside the classical turning point. According to Eq. (13.41), that probability is given by the expression

\[
P(|x| > |x_{\text{turn}}|) = 1.0 - \text{erf}(1.0) = 1.0 - 0.8427007929 = 0.1572992071
\]

(13.108)

which is (probably) correct to ten digits after the decimal point. We conclude that in a bit over 15% of the measurements, the quantum oscillator will be found in the classically forbidden region!
13.11.2 The Error Function

To define the function \texttt{gaussian} and then generate successive numerical values of the function \(\text{erf}(x)\) defined by Eq. (13.26) as \(x\) varies from 0.0 to 3.0 in steps of 0.1, we might use the statements

\begin{verbatim}
> q := Array(1..31):
> gaussian := t -> 2*exp(-t^2)/sqrt(Pi):
> for j from 1 to 31 do
> q[j] := [evalf((j-1)/10), evalf(Int(gaussian(x), x=0..(j-1)/10))]:
> end do:
\end{verbatim}

The \texttt{Array} \texttt{q} of two-component lists created by these statements must then be converted into a \texttt{list} of those lists with the statement

\begin{verbatim}
> q1 := convert(q, list):
\end{verbatim}

before the graph of Fig. 13.13 can be created with the statement

\begin{verbatim}
> plots[plot][plot]([q1, color='black', labels=['x','Error Function'], thickness=3, labelfont=[TIMES,ROMAN,16], axesfont=[TIMES,ROMAN,14], labelfont=HORIZONTAL,VERTICAL]);
\end{verbatim}

13.11.3 The Off-Axis Electrostatic Potential of Two Rings

Using MAPLE, we could evaluate and plot the integral in Eq. (13.36) to find the electrostatic potential at the radial coordinate \(s_a\) in the midplane between two identical, uniformly charged parallel rings of radius \(a\). The statement

\begin{verbatim}
> \texttt{plots}[\texttt{plot}][\texttt{plot}](\texttt{q1}, \texttt{color}='\texttt{black}', \texttt{labels}=['\texttt{x}','\texttt{Error Function}'], \texttt{thickness}=3, \texttt{labelfont}=[\texttt{TIMES},\texttt{ROMAN},16], \texttt{axesfont}=[\texttt{TIMES},\texttt{ROMAN},14], \texttt{labelfont}=[\texttt{HORIZONTAL},\texttt{VERTICAL}]);
\end{verbatim}
defines the integrand, and the statements

```maple
> rings := (phi,s) -> sqrt(2)/(2*Pi*sqrt(2-2*s*cos(phi)+s^2));
```

establish a suitable array, evaluate the integral as a function of \(s \) for \(0.0 \leq s \leq 3.0 \) in steps of 0.1, and create the appropriate list of lists to facilitate plotting. Finally, the statement

```maple
> plots[listplot]( v1, color='black', labels=["s","Potential"], thickness=3, labelfont=[TIMES,ROMAN,16], axesfont=[TIMES,ROMAN,14], labeldirections=[HORIZONTAL,VERTICAL], view=[0..3,0..1] );
```

produces the graph shown in Fig. 13.14.
13.13 Evaluating Integrals Numerically with FORTRAN

Note: Except for files explicitly flagged as from the Numerical Recipes library, all FORTRAN programs (*.f) and all FORTRAN-created data files (*.f.dat) in this chapter can be copied from the directory $HEAD/fortran, where (as defined in the Local Guide) $HEAD must be replaced by the appropriate path for your site.

FORTRAN programs to evaluate integrals numerically can be constructed in several ways. In this section, we describe how we can implement one or another algorithm directly in a program that we write from scratch—a task that is tedious and difficult except for the simplest of algorithms. In addition, we describe how we can make use of available standard subroutines—we here focus on those in the Numerical Recipes library—and devote our efforts solely to the easier task of writing a suitable driving program to invoke the features of whatever integration subroutine we choose to use.

13.13.1 Writing Programs from Scratch

More to illustrate the essence of an algorithm than to develop a truly useful integration program, we begin by presenting a quick FORTRAN program to implement the trapezoidal rule as expressed in Eq. (13.62). The program contains three major sections. The first section obtains controlling input (integration limits and desired number of segments) and is expressed with the coding:

```
WRITE(*, '(1X,A)') 'Lower limit : '  
READ(*,*) A  
WRITE(*, '(1X,A)') 'Upper limit : '  
READ(*,*) B  
WRITE(*, '(1X,A)') 'Number of segments: '  
READ(*,*) N
```

The second section evaluates the integral with the coding:

```
DX = (B-A)/FLOAT(N) ! Set size of segment  
VALUE = 0.5 * FUNC(A) ! Compute first term  
DO I = 1, N-1 ! Add middle terms  
  VALUE = VALUE + FUNC( A + I*DX )  
ENDDO  
VALUE = VALUE + 0.5 * FUNC(B) ! Add last term  
VALUE = VALUE * DX ! Compute integral
```

Finally, the third section displays the resulting evaluation with the coding:

```
WRITE(*, '(1X,A,F10.6)') 'Integral = ', VALUE
```

Partly because we would otherwise have to type the integrand three times and partly because we wish to make the program relatively flexible, we have defined the integrand as a user-defined function, whose definition is conveyed by the coding:

```
WRITE(*, '(1X,A)') 'Lower limit : '  
READ(*,*) A  
WRITE(*, '(1X,A)') 'Upper limit : '  
READ(*,*) B  
WRITE(*, '(1X,A)') 'Number of segments: '  
READ(*,*) N
```

The second section evaluates the integral with the coding:

```
DX = (B-A)/FLOAT(N) ! Set size of segment  
VALUE = 0.5 * FUNC(A) ! Compute first term  
DO I = 1, N-1 ! Add middle terms  
  VALUE = VALUE + FUNC( A + I*DX )  
ENDDO  
VALUE = VALUE + 0.5 * FUNC(B) ! Add last term  
VALUE = VALUE * DX ! Compute integral
```

```
WRITE(*, '(1X,A,F10.6)') 'Integral = ', VALUE
```

Partly because we would otherwise have to type the integrand three times and partly because we wish to make the program relatively flexible, we have defined the integrand as a user-defined function, whose definition is conveyed by the coding:

27 Remember that, except within quoted strings, FORTRAN is insensitive to case. For the most part, we shall use lower-case letters within textual discussions but upper-case letters in presenting program statements.

28 Remember also that we are using implicit data typing.
Table 13.5: Values of erf(1.0) obtained with the trapezoidal rule and the FORTRAN program trapezoidal.f.

<table>
<thead>
<tr>
<th>n</th>
<th>T_n</th>
<th>n</th>
<th>T_n</th>
<th>n</th>
<th>T_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.771743</td>
<td>256</td>
<td>0.842700</td>
<td>65536</td>
<td>0.842701</td>
</tr>
<tr>
<td>2</td>
<td>0.825263</td>
<td>512</td>
<td>0.842700</td>
<td>131072</td>
<td>0.842699</td>
</tr>
<tr>
<td>4</td>
<td>0.838368</td>
<td>1024</td>
<td>0.842701</td>
<td>262144</td>
<td>0.842694</td>
</tr>
<tr>
<td>8</td>
<td>0.841619</td>
<td>2048</td>
<td>0.842700</td>
<td>524288</td>
<td>0.842726</td>
</tr>
<tr>
<td>16</td>
<td>0.842430</td>
<td>4096</td>
<td>0.842701</td>
<td>1048576</td>
<td>0.842636</td>
</tr>
<tr>
<td>32</td>
<td>0.842633</td>
<td>8192</td>
<td>0.842701</td>
<td>2097152</td>
<td>0.843682</td>
</tr>
<tr>
<td>64</td>
<td>0.842684</td>
<td>16384</td>
<td>0.842701</td>
<td>4194304</td>
<td>0.839947</td>
</tr>
<tr>
<td>128</td>
<td>0.842696</td>
<td>32768</td>
<td>0.842701</td>
<td>8388608</td>
<td>0.847357</td>
</tr>
</tbody>
</table>

FUNCTION FUNC(X)
 FUNC = 2.0*EXP(-X**2)/SQRT(3.14159265)
END

which can be placed either before or after the program itself. A full listing of this program, named trapezoidal.f, is presented in Section 13.A. Simply changing the definition of the function FUNC will create a program that will integrate a different function.

For the sake of an explicit example, we have defined FUNC in trapezoidal.f to return the integrand for the error function as defined in Eq. (13.26). To compile and run this program to evaluate erf(1.0), we execute the statements:

```
f77 -o trapezoidal.xf trapezoidal.f      Create executable file.
./trapezoidal.xf                          Execute program.
Lower limit : 0.0
Upper limit : 1.0
Number of segments: 1
Integral = 0.771743                     View output.
```

The results for various divisions of the integration interval are shown in Table 13.5. Note in particular that, as \(n \) increases from 1, the results change noticeably (reflecting decreasing truncation error) until \(n \) reaches 256 or 512. From \(n = 256 \) to \(n = 65536 \), however, the results are quite stable. For \(n > 65536 \), the results once again change (this time reflecting increasing roundoff error). This table provides evidence that there indeed is a fairly wide range in which \(n \) is simultaneously large enough (\(\Delta x \) is small enough) to give accurate results but not so large (\(\Delta x \) not so small) as to trigger problems from computer roundoff. We conclude that, to six digits, the value of this integral is 0.842701.

This example, of course, illustrates only how to write a FORTRAN program to address integrals that fall into our first category—integrals that are simply a number. If the integral of interest happens to depend on a parameter, our approach needs refinement. When the parameter occurs in the limits of integration, e.g., as the upper limit, we simply invoke the integrating routine—here all the statements in the second section identified at the beginning of this subsection—in a loop, specifying a different upper limit with each pass through the loop. When the parameter occurs embedded in the integrand, we still need a loop. In addition, however, to communicate the parameter from the main program to the function, we must either (1) add that parameter as an argument to

29To be specific, both here and throughout this section, we illustrate these steps with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. In particular, preceding the program name with ./ is necessary in UNIX but may not be necessary with other operating systems. Details will be found in the Local Guide.
the function or, alternatively, (2) arrange for the main program to store the parameter in named common and edit the function defining the integrand to refer to that named common for the value of the parameter.\footnote{Details on the use of named common are discussed in Section 9.5.4; further illustration will be found in Section 11.14.}

13.13.2 Using Numerical Recipes

Numerical Recipes provides many subroutines to integrate functions numerically, including `trapzd.f`, `qtrap.f`, `qsimp.f`, and `qromb.f`. Since it can be used by itself and it is also used in the interior of the other routines, `trapzd.f` is the workhouse for the entire suite. It is called with the statement

```fortran
CALL TRAPZD( FUNC, A, B, S, I )
```

When invoked, `trapzd.f` evaluates the integral of the function defined by `func` over the limits from `A` to `B`, dividing that interval into 2^{I-1} segments\footnote{The parameter I cannot, however, be made too large, since roundoff errors become more significant as the number of segments becomes excessive. As a rule of thumb, I should probably be kept less than about 15.} and returning the result in the variable `S`. Note, however, that this subroutine must be called in a sequence of calls, starting with $I = 1$, then with $I = 2$, $I = 3$, etc. The variable `S` is initialized in the first call and then incremented appropriately with each subsequent call for the next larger value of I. At base, `trapzd.f` evaluates T_1 and then—recursively—T_2, T_4, T_8, ..., using the efficiency described in the first paragraph of Section 13.5.2.

A FORTRAN driving program for using `trapzd.f` must be written by the user and will have the general form in Table 13.6.\footnote{A somewhat more elaborate demonstration program named `xtrapzd.f` can be found in the directory `$NRHEAD/recipes_f/demo/src$`.} This program defines the function to be integrated, establishes the desired limits, invokes `trapzd` in a properly constructed loop, and displays each value as it is obtained.

For the sake of an explicit example, we have chosen to evaluate $\text{erf}(1.0) = \left(\frac{2}{\sqrt{2\pi}}\right) \int_0^1 e^{-x^2} \, dx$. The steps in evaluating the desired integral with this program then are

1. Create the driving program, either by copying the demonstration program `xtrapzd.f` from the directory `$NRHEAD/recipes_f/demo/src$` to the default directory, giving it the name `errtrapzd.f` and editing it appropriately, or by creating the file `errtrapzd.f` from scratch with an available text editor.

2. Copy the recipe `trapzd.f` from the directory `$NRHEAD/recipes_f/recipes$` to the default directory.

3. Compile and link the executable module with the statement

   ```fortran
   f77 -o errtrapzd.xf errtrapzd.f trapzd.f
   ```

4. Run the program with the statement `.\errtrapzd.xf`.

The output from the program will be that shown in Table 13.7. Because the last several of these values do not change, we conclude that, to six digits, the value of this integral is 0.842701. This output also shows the way truncation error diminishes as the step size is decreased.
CHAPTER 13. EVALUATING INTEGRALS

Table 13.6: The FORTRAN program ERRTRAPZD.F.

PROGRAM ERRTRAPZD

EXTERNAL FUNC ! Alert compiler that FUNC is a user-defined
! procedure that will appear as an argument
! to a subroutine
NUMIT = 14 ! Set number of iterations
A = 0.0 ! Set lower limit
B = 1.0 ! Set upper limit

! Head table, then invoke TRAPZD iteratively
! and display result at each step
WRITE(*,'(1X,A)') ' n No Divs Approx. Integral'
DO I = 1, NUMIT
 CALL TRAPZD(FUNC, A, B, S, I)
 WRITE(*,'(1X,I6,I10, F20.6)') I, 2**(I-1), S
ENDDO
END

FUNCTION FUNC(X) ! Define integrand
 FUNC = 2.0*EXP(-X**2)/SQRT(3.14159265)
END

(default 10^-6) in the subroutine qtrap.f] or when more than 20 refinements of the step size [as
defined by the editable parameter jmax (default 20)] have been effected without convergence. It
is invoked with a statement of the form

CALL QTRAP(FUNC, A, B, S)

where FUNC defines the function to be integrated, A and B are the lower and upper limits, and S is
the variable in which the routine returns the final value. Thus, a driving program to invoke qtrap.f
is simpler than one using trapzd.f directly and might have the form listed in Table 13.8. The steps
in evaluating the desired integral with this program are

1. Create the driving program, either by copying the demonstration program xqtrap.f from
 the directory $NRHEAD/recipes_f/demo/src to the default directory, giving it the name
 errqtrap.f, and editing it appropriately, or by creating the file errqtrap.f from scratch
 with an available text editor.

2. Copy any necessary recipes to the default directory. In the present case, the needed recipe
 trapzd.f presumably remains from the first example. The recipe qtrap.f must also be copied
 from the directory $NRHEAD/recipes_f/recipes.

3. Compile and link the executable module with the statement

 f77 -o errqtrap.xf errqtrap.f trapzd.f qtrap.f

4. Run the program with the statement ./errqtrap.xf

33 In some cases, e.g., when the value of the integral being addressed is actually zero, it may be prudent to edit
qtrap.f to replace the convergence criterion based on fractional change with one based on absolute change in consecutive iterates.
Table 13.7: Output from FORTRAN program ERRTRAPZD.F.

<table>
<thead>
<tr>
<th>n</th>
<th>No Divs</th>
<th>Approx. Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.771743</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.825263</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.838368</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.841619</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>0.842430</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>0.842633</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>0.842684</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>0.842697</td>
</tr>
<tr>
<td>9</td>
<td>256</td>
<td>0.842700</td>
</tr>
<tr>
<td>10</td>
<td>512</td>
<td>0.842701</td>
</tr>
<tr>
<td>11</td>
<td>1024</td>
<td>0.842701</td>
</tr>
<tr>
<td>12</td>
<td>2048</td>
<td>0.842701</td>
</tr>
<tr>
<td>13</td>
<td>4096</td>
<td>0.842701</td>
</tr>
<tr>
<td>14</td>
<td>8192</td>
<td>0.842701</td>
</tr>
</tbody>
</table>

Table 13.8: The FORTRAN program ERRQTRAP.F.

```
PROGRAM ERRQTRAP

EXTERNAL FUNC ! Admit that function may be defined elsewhere
A = 0.0 ! Set lower limit
B = 1.0 ! Set upper limit

! Head table, then invoke QTRAP and display result
CALL QTRAP( FUNC, A, B, S )
WRITE(*, '(1X,A,F10.6)') 'Result using QTRAP = ', S
END

FUNCTION FUNC(X) ! Define integrand
    FUNC= 2.0*EXP(-X**2)/SQRT(3.14159265)
END
```

The output from the program will be

Result using QTRAP = 0.842701

which is certainly in agreement with the result to which errtrapzd.f converged. (Note that failure to converge will result in a message “Too many steps ...” being printed on the screen. Here, the maximum number of steps is 20 by default, that value being defined by an editable parameter in the subroutine qtrap.f. After printing this message, the program pauses. Proper response—see the rest of the message—will result in continued execution with the assignment of the current value to the integral (even though convergence was not attained); any other response will terminate execution of the program.)

The *Numerical Recipes* subroutines qsimp.f and qromb.f are used in a way parallel to that of qtrap.f. The generation of programs to evaluate this test integral using each of these additional
routines is left to the exercises. That these additional routines also yield the value 0.842701 is not at all a surprise.

Throughout this subsection, we have confined our explicit examples to integrals falling into our first category. If the integral of interest happens to depend on a parameter, our approach needs refinement. When the parameter occurs in the limits of integration, e.g., as the upper limit, we simply invoke the integrating routine in a loop, specifying a different upper limit with each pass through the loop. When the parameter occurs embedded in the integrand, we still need a loop. In addition, however, to communicate the parameter from the main program to the function, we must either (1) add that parameter as an argument to the function and edit the numerical recipes routine to accept that parameter as an argument as well or, alternatively, (2) arrange for the main program to store the parameter in named common and edit the function defining the integrand to refer to that named common for the value of parameter.34

13.14 Evaluating Integrals Numerically with C

Note: Except for files explicitly flagged as from the Numerical Recipes library, all C programs (*.c) and all C-created data files (*.c.dat) in this chapter can be copied from the directory $HEAD/cc, where (as defined in the Local Guide) $HEAD must be replaced by the appropriate path for your site.

C programs to evaluate integrals numerically can be constructed in several ways. In this section, we describe how we can implement one or another algorithm directly in a program that we write from scratch—a task that is tedious and difficult except for the simplest of algorithms. In addition, we describe how we can make use of available standard subroutines—we here focus on those in the Numerical Recipes library—and devote our efforts solely to the easier task of writing a suitable driving program to invoke the features of whatever integration subroutine we choose.

13.14.1 Writing Programs from Scratch

More to illustrate the essence of an algorithm than to develop a truly useful integration program, we begin by presenting a quick C program to implement the trapezoidal rule as expressed in Eq. (13.62). The program contains three major sections. The first section loads standard library routines, declares variables, and obtains controlling input (integration limits and desired number of segments) and is expressed with the coding

```c
#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math routines */

float a, b, value; /* For limits, sum */
float dx; /* For step size */
int n, i; /* For number of segments, loop index */

printf( "Lower limit : " ); scanf("%f", &a);
printf( "Upper limit : " ); scanf("%f", &b);
printf( "Number of segments: " ); scanf("%d", &n);
```

The second section evaluates the integral with the coding

```c
dx = (b-a)/n; /* Set size of segment */
value = 0.5*func(a); /* Compute first term */
```

34See footnote 30.
for (i=1; i<=n-1; i++) /* Add middle terms */
 value = value + func(a + i*dx);
value = value + 0.5*func(b); /* Add last term */
value = value * dx; /* Compute integral */

Finally, the third section displays the resulting evaluation with the coding

printf("Integral = \%10.6f\n", value);

Partly because we would otherwise have to type the integrand three times and partly because we wish
to make the program relatively flexible, we have defined the integrand as a user-defined function,
whose definition is conveyed by the coding

float func(float x) /* Define integrand as function */
{
 return 2.0*exp(-pow(x,2))/sqrt(3.14159265);
}

which must be placed before the main program. A full listing of this program, named trapezoidal.c,
is presented in Section 13.B. Simply changing the definition of the function FUNC will create a
program that will integrate a different function.

For the sake of an explicit example, we have defined func in trapezoidal.c to return the
integrand for the error function as defined in Eq. (13.26). To compile and run this program to
evaluate erf(1.0) for various N, we execute the statements

cc -o trapezoidal.xc trapezoidal.c -lm
./trapezoidal.xc Create executable file.
Lower limit : 0.0 Enter controlling values.
Upper limit : 1.0
Number of segments: 1
Integral = 0.771743 View output.

The results for various divisions of the integration interval are shown in Table 13.9. Note in particular
that, as N increases from 1, the results change noticeably (reflecting decreasing truncation error)
until N reaches 256 or 512. From N = 256 to N = 65536, however, the results are quite stable.
For N > 65536, the results once again change (this time reflecting increasing roundoff error). This
table provides evidence that there indeed is a fairly wide range in which N is simultaneously large
enough (Δx is small enough) to give accurate results but not so large (Δx not so small) as to trigger
problems from computer roundoff. We conclude that, to six digits, the value of this integral is
0.842701.

This example, of course, illustrates only how to write a C program to address integrals that
fall into our first category—integrals that are simply a number. If the integral of interest happens
to depend on a parameter, our approach needs refinement. When the parameter occurs in the
limits of integration, e.g., as the upper limit, we simply invoke the integrating routine—here all the
statements in the second section identified at the beginning of this subsection—in a loop, specifying
a different upper limit with each pass through the loop. When the parameter occurs embedded in
the integrand, we still need a loop. In addition, however, to communicate the parameter from the
main program to the function, we must either (1) add that parameter as an argument to the function

35To be specific, both here and throughout this section, we illustrate these steps with the statements that would
be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end
with different statements. In particular, preceding the program name with ./ is necessary in UNIX but may not be
necessary with other operating systems. Details will be found in the Local Guide.
36Don’t overlook the final item (-lm) in the first statement. It is necessary to tell the compiler to link in the C
mathematical libraries.
Table 13.9: Values of erf(1.0) obtained with the trapezoidal rule and the C program `trapezoidal.c`.

<table>
<thead>
<tr>
<th>n</th>
<th>(T_n)</th>
<th>n</th>
<th>(T_n)</th>
<th>n</th>
<th>(T_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.771743</td>
<td>256</td>
<td>0.842700</td>
<td>65536</td>
<td>0.842701</td>
</tr>
<tr>
<td>2</td>
<td>0.825263</td>
<td>512</td>
<td>0.842700</td>
<td>131072</td>
<td>0.842699</td>
</tr>
<tr>
<td>4</td>
<td>0.838368</td>
<td>1024</td>
<td>0.842701</td>
<td>262144</td>
<td>0.842694</td>
</tr>
<tr>
<td>8</td>
<td>0.841619</td>
<td>2048</td>
<td>0.842700</td>
<td>524288</td>
<td>0.842636</td>
</tr>
<tr>
<td>16</td>
<td>0.842431</td>
<td>4096</td>
<td>0.842701</td>
<td>1048576</td>
<td>0.842636</td>
</tr>
<tr>
<td>32</td>
<td>0.842633</td>
<td>8192</td>
<td>0.842701</td>
<td>2097152</td>
<td>0.843682</td>
</tr>
<tr>
<td>64</td>
<td>0.842684</td>
<td>16384</td>
<td>0.842701</td>
<td>4194304</td>
<td>0.839947</td>
</tr>
<tr>
<td>128</td>
<td>0.842696</td>
<td>32768</td>
<td>0.842701</td>
<td>8388608</td>
<td>0.847357</td>
</tr>
</tbody>
</table>

or, alternatively, (2) arrange for the main program to store the parameter in a global variable (by declaring the variable to be used for the parameter ahead of and outside all other program blocks and then using the declared variable name both in the function and in the main program when values are assigned to the parameter).\(^{37}\)

13.14.2 Using Numerical Recipes

`Numerical Recipes` provides many integration procedures cast in the form of functions, including `trapzd.c`, `qtrap.c`, `qsimp.c`, and `qromb.c`. Since it can be used by itself and it is also used in the interior of the other routines, `trapzd.c` is the workhouse of the entire suite. It is called by the statement

\[
s = \text{trapzd(func, a, b, i);}
\]

When invoked, `trapzd.c` evaluates the integral of the function defined by `func` over the limits from `a` to `b`, dividing that interval into \(2^{i-1}\) segments\(^{38}\) and returning the result in the variable `s`. Note, however, that this procedure must be called in a sequence of calls, starting with `i = 1`, then with `i = 2`, `i = 3`, etc. The variable `s` is initialized in the first call and then incremented appropriately with each subsequent call for the next larger value of `i`. At base, `trapzd.c` evaluates \(T_1\) and then—recursively—\(T_2, T_4, T_8, \ldots\), using the efficiency described in the first paragraph of Section 13.5.2.

A C driving program for using `trapzd.c` must be written by the user and will have the general form listed in Table 13.10.\(^{39}\) This program defines the function to be integrated, establishes the desired limits, invokes `trapzd` in a properly constructed loop, and displays each value as it is obtained.

For the sake of an explicit example, we have chosen to evaluate \(\text{erf}(1.0) = (2/\sqrt{\pi}) \int_0^1 e^{-x^2} dx\). The steps in evaluating the desired integral with this program then are

1. Create the driving program, either by copying the demonstration program `xtrapzd.c` from the directory\(^{40}\) `$NRHEAD/recipes_c-ansi/demo/src` to the default directory, giving it the name

\(^{37}\)Details on the use of global variables in C are discussed in Section 9.7.4; further illustration will be found in Section 11.15.

\(^{38}\)The parameter `i` cannot, however, be made too large, since roundoff errors become more significant as the number of segments becomes excessive. As a rule of thumb, `i` should probably be kept less than about 15.

\(^{39}\)A somewhat more elaboration demonstration program named `xtrapzd.c` can be found in the directory `$NRHEAD/recipes_c-ansi/recipes` or, possibly, in the directory `$NRHEAD/recipes_c-kr/recipes`. (See the Local Guide.)

\(^{40}\)At some sites, the KR variant of C may be installed rather than the ANSI variant. In that case, the directory from which all files should be copied will be `$NRHEAD/recipes_c-kr/...`.
Table 13.10: The C program errtrapzd.c.

```c
/* PROGRAM errtrapzd */
#include <stdio.h> /* Load standard i/o routines */
#include <math.h> /* Load standard math functions */
#include "nr.h" /* Load necessary recipes headers */

float func(float x) /* Define integrand as function */
{
  return 2.0*exp(-pow(x,2))/sqrt(3.14159265);
}

main()
{
  float a, b, s; /* For limits, sum */
  int numit, i; /* For number of iterations */
  numit = 14; /* Set number of iterations */
  a = 0.0; b = 1.0; /* Set limits */
  /* Head table, then invoke trapzd iteratively */
  printf("%6s %24s
","n","approx. integral");
  for (i=1;i<=numit;i++)
  {
    s=trapzd( func, a, b, i );
    printf("%6d %20.6f
",i,s);
  }
}
```

errtrapzd.c, and editing it appropriately or by creating the file errtrapzd.c from scratch with an available text editor.

2. Copy the recipe trapzd.c from the directory $NRHEAD/recipes.c-ansi/recipes and the header file nr.h from the directory $NRHEAD/recipes.c-ansi/include to the default directory.

3. Compile and link the executable module with the statement

   ```bash
   cc -o errtrapzd.xc errtrapzd.c trapzd.c -lm
   ```

4. Run the program with the statement ./errtrapzd.xc.

The output from the program will be as shown in Table 13.11. Because the last several of these values do not change, we conclude that, to six digits, the value of this integral is 0.842701. This output also shows the way truncation error diminishes as the step size is decreased.

The *Numerical Recipes* function qtrap.c uses trapzd.c in a loop that evaluates the integral repeatedly, assessing convergence at each step, and stops either when two consecutive values differ by less than $10^{-3}\%$ of the first of the two [as defined by the editable parameter EPS (default 10^{-5}) in the function qtrap.c] or when more than 20 refinements of the step size [as defined by the editable parameter JMAX (default 20)] have been effected without convergence.\footnote{In some cases, e.g., when the value of the integral being addressed is actually zero, it may be prudent to edit qtrap.c to replace the convergence criterion based on fractional change with one based on absolute change in consecutive iterates.} It is invoked with
Table 13.11: Output from errtrapzd.c.

<table>
<thead>
<tr>
<th>n</th>
<th>approx. integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.771743</td>
</tr>
<tr>
<td>2</td>
<td>0.825263</td>
</tr>
<tr>
<td>3</td>
<td>0.838368</td>
</tr>
<tr>
<td>4</td>
<td>0.841619</td>
</tr>
<tr>
<td>5</td>
<td>0.842431</td>
</tr>
<tr>
<td>6</td>
<td>0.842633</td>
</tr>
<tr>
<td>7</td>
<td>0.842684</td>
</tr>
<tr>
<td>8</td>
<td>0.842697</td>
</tr>
<tr>
<td>9</td>
<td>0.842700</td>
</tr>
<tr>
<td>10</td>
<td>0.842701</td>
</tr>
<tr>
<td>11</td>
<td>0.842701</td>
</tr>
<tr>
<td>12</td>
<td>0.842701</td>
</tr>
<tr>
<td>13</td>
<td>0.842701</td>
</tr>
<tr>
<td>14</td>
<td>0.842701</td>
</tr>
</tbody>
</table>

Table 13.12: The C program errqtrap.c.

```c
/* PROGRAM errqtrap */

#include <stdio.h>    /* Load standard i/o routines */
#include <math.h>      /* Load standard math routines */
#include "nr.h"        /* Load necessary recipes headers */

float func(float x)   /* Define integrand as function */
{
    return 2.0*exp(-pow(x,2))/sqrt(3.14159265);
}

main()
{
    float a, b, s;     /* For limits, sum */
    a = 0.0; b = 1.0;   /* Set limits */
    s = qtrap( func, a, b );   /* Evaluate integral */
    printf("Result using QTRAP = %10.6f\n", s);  /* Display result */
}
```

a statement of the form

```c
s = qtrap( func, a, b );
```

where `func` defines the function to be integrated, `a` and `b` are the lower and upper limits, and `s` is the variable in which the routine returns the final value. Thus, a driving program to invoke `qtrap.c` is simpler than one using `trapzd.c` directly and might have the form shown in Table 13.12. The steps in evaluating the desired integral with this program are

1. Create the driving program, either by copying the demonstration program `xqtrap.c` from the
directory giving it the name `errqtrap.c` and editing it appropriately, or by creating the file `errqtrap.c` from scratch with an available text editor.

2. Copy any necessary recipes and include files to the default directory. In the present case, the needed recipe `trapzd.c` and header file `nr.h` presumably remain from the first example. Each of the recipes `qtrap.c` and—discovered in a first (failed) attempt at compilation—`nrutil.c` must be copied from the directory `$NRHEAD/recipes.c-ansi/recipes`.

3. Compile and link the executable module with the statement

   ```
   cc -o errqtrap.xc errqtrap.c trapzd.c qtrap.c nrutil.c -lm
   ```

4. Run the program with the statement `./errqtrap.xc`.

The output from the program will be

```result using QTRAP = 0.842700```

which is certainly in agreement with earlier results (Note that failure to converge will result in a message that includes “Too many steps ...” being printed on the screen. Here, the maximum number of steps is 20 by default, that value being defined by an editable parameter in the subroutine `qtrap.c`. After printing this message, the subroutine returns control to the operating system.)

The *Numerical Recipes* procedures `qsimp.c` and `qromb.c` are used in a way quite parallel to that of `qtrap.c`. The generation of programs to evaluate this test integral using each of these additional routines is left to the exercises. That these additional routines also yield the value 0.842701 is not at all a surprise.

Throughout this subsection, we have confined our explicit examples to integrals falling into our first category. If the integral of interest happens to depend on a parameter, our approach needs refinement. When the parameter occurs in the limits of integration, e.g., as the upper limit, we simply invoke the integrating routine in a loop, specifying a different upper limit with each pass through the loop. When the parameter occurs embedded in the integrand, we still need a loop. In addition, however, to communicate the parameter from the main program to the function, we must either (1) add that parameter as an argument to the function and edit the numerical recipes routine to accept that parameter as an argument as well or, alternatively, (2) arrange for the main program to store the parameter in a global variable (by declaring the variable to be used for the parameter ahead of and outside all other program blocks and then using the declared variable name both in the function and in the main program when values are assigned to the parameter).\(^\text{42}\)

### 13.15 Exercises

#### 13.15.1 . . . using Symbolic Methods

13.1. A particle of mass \( m \) moves non-relativistically in one dimension under the action of a constant force \( f \). Starting with Eq. (13.3) and using symbolic integration, find the position \( x \), velocity \( v \), and momentum \( p \) of this particle as functions of time if \( x(0) = x_0 \) and \( v(0) = v_0 \).

13.2. A particle of mass \( m \) moves non-relativistically in one dimension under the action of a constant force \( f \). Starting with Eqs. (13.5) and (13.6) and using symbolic integration, find the position \( x \), velocity \( v \), and momentum \( p \) of this particle as functions of time if \( x(0) = x_0 \) and \( v(0) = v_0 \).

\(^{42}\)See footnote 37.
13.3. A particle of mass $m$ moves non-relativistically in one dimension $x$ under the action of a force given by $f(x) = -kx$, where $k$ is a (spring) constant. Starting with Eqs. (13.5) and (13.6) and using symbolic integration, find the position $x$, velocity $v$, and momentum $p$ of this particle as functions of time if $x(0) = x_0$ and $v(0) = v_0$.

13.4. Suppose an object of mass $m$ moves non-relativistically in one dimension under the action of the force $f(t) = f_0 e^{-bt}$, where both $b$ and $f_0$ are positive. Let $x(0) = x_0$ and $v(0) = v_0$. Use symbolic integration to find $x(t)$ and $v(t)$ by evaluating the integrals in Eq. (13.3). Then, find and interpret both the limits of these two results as $t \to \infty$ and the Taylor expansion of these two results for small $t$.

13.5. The normalized Lorentz distribution function is given by

$$p(x) = \frac{1}{\pi} \frac{a/2}{x^2 + (a/2)^2}$$

Using symbolic integration, (a) verify that $\int_{-\infty}^{\infty} p(x) \, dx = 1$, (b) evaluate— as best you can—the average $\overline{x}$ and variance $\sigma^2$, defined by

$$\overline{x} = \lim_{b \to \infty} \int_{-b}^{b} x \, p(x) \, dx \quad \text{and} \quad \sigma^2 = \lim_{b \to \infty} \int_{-b}^{b} (x - \overline{x})^2 \, p(x) \, dx$$

for this distribution, and (c) find the probability that a single, randomly selected value will lie in the range $-a \leq x \leq a$. Finally, (d) show analytically that you should have expected the result of part (c) to be independent of $a$. Hint: Introduce the dimensionless variable $\lambda = x/a$.

13.6. Suppose some cataclysmic event stops the earth dead in its tracks and, responding to the sun's gravitational attraction, the earth falls into the sun. Using symbolic integration, find the time required for the earth to fall over the middle half of its journey to the sun. Expressed in years, what is the value of this time for the earth-sun system? Hint: Since the gravitational potential is $-GmM/x$, conservation of energy yields

$$\frac{1}{2} m \left(\frac{dx}{dt}\right)^2 - \frac{GmM}{x} = -\frac{GmM}{x_0} \quad \Rightarrow \quad \frac{dx}{dt} = -\sqrt{2GM} \sqrt{\frac{1}{x} - \frac{1}{x_0}}$$

(The negative square root is taken because $x$, the distance to the sun, is known to be decreasing.) This expression then leads to the value

$$T_{\text{midhalf}} = \frac{1}{\sqrt{2GM}} \int_{x_0/4}^{3x_0/4} \left(\frac{1}{x} - \frac{1}{x_0}\right)^{-1/2} \, dx$$

**Hint**: The evaluation will be simpler if you begin by recasting the problem in dimensionless terms, expressing lengths in units of $x_0$ and times in units of $\sqrt{x_0^3/(2GM)}$. To interpret the significance of this unit of time, determine the period of a circular orbit of radius $x_0$, which will turn out to be $2\pi \sqrt{x_0^3/(2GM)}$. For the earth around the sun, this latter time is, of course, 1 year. Optional: Evaluate the time required for the first half of the journey, which involves a convergent but improper integral.

13.7. According to the quantum theory, the probability that the electron in the ground state of the hydrogen atom will be found between the center of the atom and some radius $r$ is given by

$$P(r) = \frac{4}{a^3} \int_0^r e^{-2r'/a} r'^2 \, dr' = \frac{4}{a^3} \int_0^r e^{-2\rho} \rho^2 \, d\rho$$

where $a$ is the Bohr radius and $\rho = r'/a$. Evaluate this integral symbolically. Then plot and comment on a graph of $P(r)$ versus $r/a$.

13.8. Consider a source consisting of two uniformly charged disks, each of radius $a$ and each oriented with its center on the $z$ axis and its plane perpendicular to the $z$ axis. Let one disk have its center
at \((0,0,ca)\) and carry a positive charge density \(\sigma\) and the other have its center at \((0,0,−ca)\) and carry a negative charge density \(−\sigma\). Using a symbolic program, show that the on-axis electrostatic potential established by this source is given by

\[
V(z) = \frac{\sigma}{2ao} \left[ \sqrt{a^2 + (z-ca)^2} - |z-ca| - \sqrt{a^2 + (z+ca)^2} + |z+ca| \right]
\]

and then explore this potential as a function of \(z/a\) for various values of \(c\). Hint: First find the on-axis potential of a single disk lying in the \(xy\) plane, and then construct the desired potential by superposition.

13.10. Consider a surface in the \(In quantum mechanics, the two integrals

\[
x_{mn} = \int_{−\infty}^{\infty} \psi_n^*(x) x \psi_n(x) \, dx \quad \text{and} \quad p_{mn} = \int_{−\infty}^{\infty} \psi_n^*(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \psi_n(x) \, dx
\]

are important in a variety of contexts. For a particle in an infinitely deep potential well that extends over the region \(−a \leq x \leq a\),

\[
\psi_n(x) = \begin{cases} 
\frac{1}{\sqrt{a}} \cos \frac{n\pi x}{2a} & n = 1, 3, 5, \ldots \\
\frac{1}{\sqrt{a}} \sin \frac{n\pi x}{2a} & n = 2, 4, 6, \ldots 
\end{cases}
\]

Using symbolic integration, show that, for these wave functions, \(x_{mn} = 0\) and \(p_{mn} = 0\) when \(m\) and \(n\) are both even or both odd and that

\[
x_{mn} = \frac{16a}{\pi^2} (-1)^{(m+n+1)/2} \frac{mn}{(m^2-n^2)^2}
\]

\[
p_{mn} = \frac{2i\hbar}{a} (-1)^{(m+n+1)/2} \frac{mn}{(m^2-n^2)}
\]

otherwise. Note that, for purposes of translating the general integrals above to the circumstances of this exercise, the wave functions should both be regarded as zero outside of the interval \(−a \leq x \leq a\).
CHAPTER 13. EVALUATING INTEGRALS

13.12. The sawtooth wave is defined by

\[ f(x) = \frac{x}{l} \quad ; \quad -l \leq x \leq l \]

Use symbolic integration to find the Fourier coefficients \( a_n \) and \( b_n \) for this function and then generate graphs showing the function given by the truncated series

\[ f_{\text{trunc}}(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left( a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right) \]

for various values of \( N \), including 0, 1, 2, 3, and 10.

13.13. The Legendre polynomials \( L_n(x) \), \( n = 0, 1, 2, \ldots \), are orthogonal on the interval \(-1 \leq x \leq 1\) with weight 1. In particular,

\[ \int_{-1}^{1} L_m(x) L_n(x) \, dx = \frac{2}{2n+1} \delta_{mn} \]

Any function defined over the interval \(-1 \leq x \leq 1\) can then be expanded in the Legendre series

\[ f(x) = \sum_{n=0}^{\infty} c_n L_n(x) \]

(a) Show by hand that the coefficient \( c_n \) in this expansion is given by

\[ c_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) L_n(x) \, dx \]

(b) Use symbolic integration to find \( c_n \) for \( n = 0, 1, 2, 3, 4, 5 \) and 6 in the Legendre expansion for the function

\[ f(x) = \begin{cases} 
-1 & -1 < x < 0 \\
1 & 0 < x < 1 
\end{cases} \]

(c) Graph the functions defined by the partial sums \( \sum_{n=0}^{N} c_n L_n(x) \) for \( N = 0, 1, 2, 3, 4, 5, \) and 6.

**Hint:** Quite possibly the symbolic program you are using has the Legendre polynomials built in somehow, and you should study its manuals to find out how to invoke them. Just in case that isn’t true, the first nine Legendre polynomials are

\[
\begin{align*}
L_0(x) &= 1 \\
L_1(x) &= x \\
L_2(x) &= \frac{1}{2}(3x^2 - 1) \\
L_3(x) &= \frac{1}{2}(5x^3 - 3x) \\
L_4(x) &= \frac{1}{8}(35x^4 - 30x^2 + 3) \\
L_5(x) &= \frac{1}{8}(63x^5 - 70x^3 + 15x) \\
L_6(x) &= \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5) \\
L_7(x) &= \frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x) \\
L_8(x) &= \frac{1}{128}(6435x^8 - 12012x^6 + 6930x^4 - 1260x^2 + 35) \\
L_9(x) &= \frac{1}{128}(12155x^9 - 25740x^7 + 18018x^5 - 4620x^3 + 315x) 
\end{align*}
\]

13.15.2 ... using Numerical Methods

13.14. To deduce Simpson’s rule, we start by supposing three consecutive values \( f_1, f_2, \) and \( f_3 \) of the integrand, where for simplicity in notation we take the points of evaluation to be \( x_1 = x_2 - \Delta x, x_2, \) and \( x_3 = x_2 + \Delta x. \) Using a symbol manipulating program to do the algebra and calculus, (a) find the coefficients \( A, B, \) and \( C \) needed to make the parabola \( Ax^2 + Bx + C \) pass through the three points \((x_i, f_i), i = 1, 2, 3, \) (b) integrate that parabola over the interval \( x_1 < x < x_3 \) to find that

\[ \int_{x_1}^{x_3} f(x) \, dx \approx \int_{x_1}^{x_3} (Ax^2 + Bx + C) \, dx = \frac{\Delta x}{3} \left( f_1 + 4f_2 + f_3 \right) \]

(c) show that this result actually gives the correct value for \( f(x) = x^3 \) and, finally, (d) deduce the (extended) Simpson’s rule of Eq. (13.63). **Note:** Because this exercise relates to numerical algorithms, it has been placed in with other exercises that are numerical. This exercise is symbolic, and you should use a symbol manipulating program for parts (a), (b), and (c); however, you should address part (d) by hand.
13.17. (a) Deduce the three-point Gaussian formula, for which—paralleling Eq. (13.88)—we set
\[ \int_{-1}^{1} f(x) \, dx = w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3) \]
We then choose the six quantities \( w_i \) and \( x_i \) so that the expression gives an exact result for \( f(x) = 1, x, x^2, x^3, x^4, \) and \( x^5 \). (b) Verify that the interpolation points \( x_i \) and weights \( w_i \) are given by Eq. (13.101) where \( L_3(x) = (5x^3 - 3x)/2 \).

13.18. The (normalized) wave functions for a quantum harmonic oscillator in its first and second excited states \( (n = 1, n = 2) \) are
\[ \psi_1(x) = \sqrt{2} \left( \frac{m_\omega}{\pi \hbar} \right)^{1/4} y e^{-y^2/2} \quad \psi_2(x) = \frac{1}{\sqrt{2}} \left( \frac{m_\omega}{\pi \hbar} \right)^{1/4} (2y^2 - 1) e^{-y^2/2} \]
where \( y = x/\sqrt{\hbar \omega / k} \), the energies of these states are \( 3\hbar \omega / 2 \), and \( 5\hbar \omega / 2 \), respectively, and the symbols have the same meanings as in Section 13.1.8. Find the probability that a harmonic oscillator in each of these states will be found outside the classical turning point.

13.19. The Maxwell-Boltzmann speed distribution yields the integral
\[ f(v) = 4\pi \left( \frac{m}{2\pi kT} \right)^{3/2} \int_{0}^{\nu} e^{-mv'^2/2kT} v'^2 \, dv' \]
for the fraction of the molecules having speed less than \( v \). Using numerical means, explore this integral as a function of \( v \). Hint: Re-express the integral using \( \sqrt{2kT/m} \) as the unit of velocity.

13.20. Planck’s black body radiation law gives the expression
\[ I(\nu_2, \nu_1) = \frac{8\pi \hbar}{c^3} \int_{\nu_1}^{\nu_2} \frac{\nu^3}{e^{\hbar\nu/kT} - 1} \, d\nu \]
for the power radiated per unit area in the frequency range \( \nu_1 \leq \nu \leq \nu_2 \). Using numerical means, explore the power radiated in the visible spectrum \( 4 \times 10^{14} \, \text{Hz} \leq \nu \leq 7 \times 10^{14} \, \text{Hz} \) as a function of temperature. Hint: One way to approach this exercise would be to choose a reference frequency \( \nu_0 \) arbitrarily (say \( 10^{14} \, \text{Hz} \)) and recast the integral on the dimensionless variable \( s = \nu / \nu_0 \). Examination of \( I \) in units of \( 8\pi \hbar \nu_0^3 / c^2 \) as a function of \( T \) in units of \( \hbar \nu_0 / k \) would then be indicated.

13.21. As used in statistical data analysis, the Gaussian distribution for a variable \( t \) is usually expressed in terms of the standard deviation \( \sigma \), the distribution function being
\[ \frac{1}{\sqrt{2\pi} \sigma} e^{-t^2/(2\sigma^2)} \]
Thus, the probability of finding a value between \( a \) and \( b \) is given by
\[ P(a, b) = \frac{1}{\sqrt{2\pi} \sigma} \int_{a}^{b} e^{-t^2/(2\sigma^2)} \, dt \]
Show analytically that \( P(-x, x) = \text{erf}(x/(\sqrt{2} \sigma)) \), and then evaluate \( P(-\sigma, \sigma), P(-2\sigma, 2\sigma), \) and \( P(-3\sigma, 3\sigma) \) numerically. The values of these three quantities are 0.6827, 0.9545, and 0.9973, respectively—values that give rise to the designations of 68%, 95%, and 99% confidence intervals in statistical data analysis.

13.22. Suppose some cataclysmic event stops the earth dead in its tracks and, responding to the sun’s gravitational attraction, the earth falls into the sun. Using numerical integration, find the time required for the earth to fall over the middle half of its journey to the sun. Expressed in years, what numerically is the value of this time for the earth-sun system? Hint: Since the gravitational potential is \(-GmM/x\), conservation of energy yields
\[ \frac{1}{2} \left( \frac{dx}{dt} \right)^2 - G\frac{mM}{x} = -G\frac{mM}{x_0} \quad \Longrightarrow \quad \frac{dx}{dt} = -\sqrt{2GM} \sqrt{\frac{1}{x} - \frac{1}{x_0}} \]
(The negative square root is taken because \( x \), the distance to the sun, is known to be decreasing.)

This expression then leads to the value

\[
T_{\text{midhalf}} = \frac{1}{\sqrt{2GM}} \int_{x_0/4}^{3x_0/4} \left( \frac{1}{x} - \frac{1}{x_0} \right)^{-1/2} dx
\]

*Hint:* The evaluation will be simpler if you begin by recasting the problem in dimensionless terms, expressing lengths in units of \( x_0 \) and times in units of \( \sqrt{x_0^3/(2GM)} \). To interpret the significance of this unit of time, determine the period of a circular orbit of radius \( x_0 \), which will turn out to be \( 2\pi \sqrt{x_0^3/(2GM)} \). For the earth around the sun, this latter time is, of course, 1 year. *Optional:* See if you can develop a means to determine the time required for the first half of the journey, which unfortunately—for numerical approaches—involves a convergent but improper integral.

### 13.23.

The normalized Lorentz distribution function is given by

\[
p(x) = \frac{1}{\pi} \frac{a/2}{x^2 + (a/2)^2}
\]

Find the probability that a single, randomly selected line will be in the range \(-a \leq x \leq a\). Make sure to assess the precision of your result by methods that do not exploit a priori knowledge of the exact value. *Hint:* Before evaluating the integral, introduce the dimensionless variable \( s = x/a \) and note that the result actually doesn’t depend on \( a \), so there is but one number to determine.

### 13.24.

According to the quantum theory, the probability that the electron in the ground state of the hydrogen atom will be found between the center of the atom and some radius \( r \) is given by

\[
P(r) = \frac{4}{a^3} \int_0^r e^{-2r'/a} r'^2 \, dr' = 4 \int_0^{r/a} e^{-2\rho} \rho^2 \, d\rho
\]

where \( a \) is the Bohr radius and \( \rho = r'/a \). Using numerical integration, evaluate this integral as a function of its upper limit. Then plot and comment on a graph of \( P(r) \) versus \( r/a \).

### 13.25.

The complete elliptic integrals of the first and second kinds are given by

\[
K(k) = \int_0^{\pi/2} \frac{d\phi}{(1 - k^2 \sin^2 \phi)^{1/2}} \quad ; \quad E(k) = \int_0^{\pi/2} (1 - k^2 \sin^2 \phi)^{1/2} \, d\phi
\]

Explore these integrals as functions of the *modulus* \( k \). As part of your exploration, obtain a graph of the period \( T \) of a simple pendulum as a function of the amplitude \( \alpha \) of that pendulum. Analytically, the period of that pendulum is given as a function of \( \alpha \) by \( T/T_0 = (2/\pi)K(\sin(\alpha/2)) \), where \( T_0 \) is the period of the pendulum at small amplitude.


The angular position \( \theta(t) \) of a simple pendulum swinging with amplitude \( \alpha \) is given by the integral

\[
\omega t = \int_0^\beta \frac{d\phi}{(1 - k^2 \sin^2 \phi)^{1/2}}
\]

where, with \( l \) the length of the pendulum and \( g \) the acceleration of gravity, \( \omega = \sqrt{g/l} \), \( k = \sin(\alpha/2) \), and \( \beta = \sin^{-1}(|\sin(\theta)|)/k \). Obtain graphs of \( \theta(t) \) versus \( \omega t \) for several different values of \( k \).

### 13.27.

The \( n \)-th order Bessel function can be defined by the integral

\[
J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(n\theta - x \sin \theta) \, d\theta
\]

By evaluating this integral numerically as a function of \( x \) for different values of \( n \), obtain graphs of \( J_0(x) \), \( J_1(x) \), and \( J_2(x) \) over the range \( 0 \leq x \leq 10 \).

### 13.28.

The Bessel function \( J_1(x) \) can be defined by the integral

\[
\frac{1}{x} J_1(x) = \frac{2}{\pi} \int_0^1 (1 - u^2)^{1/2} \cos(xu) \, du
\]

Using this definition, obtain a graph of \( J_1(x) \) versus \( x \) over the range \( 0 \leq x \leq 10 \).
13.29. A circular ring of radius $a$ resides in the $xy$ plane with its center at the origin and carries a charge $Q$ uniformly distributed about its perimeter. The electrostatic potential established by this ring at an observation point whose cylindrical coordinates are $(r, \phi, z)$ is

$$\frac{V(r, \phi, z)}{Q/4\pi\varepsilon_0} = \frac{1}{\pi} \int_0^\pi \left( 1 - 2 \frac{r}{a} \cos \phi' + \frac{r^2}{a^2} + \frac{z^2}{a^2} \right)^{-1/2} d\phi'$$

Explore this integral as a function of $r/a$ for several values of $z/a$.

13.30. A circular current loop of radius $a$ lies in the $xy$-plane with its center at the origin and carries a current $I'$ counterclockwise as viewed from a point on the positive $z$ axis. The magnetic field at a point in the $xz$ plane is given by

$$\frac{\mathbf{B}(x, z)}{\mu_0 I'/2\pi a} = \frac{a^2}{\pi} \int_0^\pi \frac{z \cos \phi' i + (a - x \cos \phi') k}{\sqrt{x^2 + z^2 + a^2 - 2ax \cos \phi'}} d\phi'$$

Explore both components of this magnetic field numerically as functions of $x/a$ for various values of $z/a$, including $z/a = 0$ (which will require some creativity for dealing with the point $x/a = 1$, at which the integrand diverges at one point in the range of the integration variable).

13.31. In a dimensionless presentation, the intensity in the Fresnel diffraction pattern produced by a single slit when that slit is illuminated by a line source parallel to the slit is proportional to the quantity

$$I \propto \left| \int_{t_b}^{t_b + \delta t} e^{i\pi t^2/2} dt \right|^2$$

where $t$ is measured in a unit determined by the distance of the source from the screen containing the slit, the distance of the observation point from that same screen, and the wavelength of the illuminating radiation. In these units, $t_b$ locates the position of the lower edge of the slit (or, equivalently, the observation point in the diffraction pattern) and $\delta t$ measures the width of the slit. Obtain graphs of $I$ versus $t_b$—i.e., graphs of $I$ versus position on the viewing screen—for various values of $\delta t$. *Hints:* (1) As a start, let $t_b$ range over the interval $-4 \leq t_b \leq 4$ and examine values of $\delta t$ on the order of 1, but allow these initial explorations to suggest possibly more appropriate values. (2) Note that the real and imaginary parts of the integral appearing in this exercise are related to the integrals defining the Cornu spiral discussed in Section 13.1.6.

13.32. Patterning your program after the program `trapezoidal.f`, write and test a FORTRAN program that uses Simpson’s rule [Eq. (13.63)] to evaluate

$$I = \frac{2}{\sqrt{\pi}} \int_a^b e^{-x^2} dx$$

13.33. Write and test a FORTRAN program that uses the five-point Gaussian formula to evaluate the integral

$$I = \frac{2}{\sqrt{\pi}} \int_a^b e^{-x^2} dx$$

13.34. Patterning your program after the program `trapezoidal.c`, write and test a C program that uses Simpson’s rule [Eq. (13.63)] to evaluate

$$I = \frac{2}{\sqrt{\pi}} \int_a^b e^{-x^2} dx$$

13.35. Write and test a C program that uses the five-point Gaussian formula to evaluate the integral

$$I = \frac{2}{\sqrt{\pi}} \int_a^b e^{-x^2} dx$$
13.15.3 ... using Numerical Recipes

Note: Numerical recipes can, of course, also be used for any of the exercises in Section 13.15.2.

13.36. Edit the program ertrapzd.f so that it requests the input of the limits and the number of iterations at execution time, prints only the final value obtained, and does not report each value along the way. Be sure to test your program.

13.37. Following the pattern illustrated in Section 13.13.2, create and test FORTRAN programs errqsimp.f and errqromb.f using qsimp.f and qromb.f, respectively, to evaluate erf(1.0). Note that, in addition to trapzd.f, qromb.f also invokes polint.f, which will have to be available and included in the compile instruction before errqromb.f will compile successfully.

13.38. Edit the driving program errqtrap.f (or—better—the driving program errqsimp.f created in the previous exercise) so that it requests the limits of integration as input from the terminal at execution time, prints the limits and the value of the integral, and then returns to the beginning to request a new set of limits. Include a smooth way (other than simply CONTROL-C) to terminate execution of the program. Be sure to test your program.

13.39. Edit the driving program errqtrap.f (or—better—the driving program errqsimp.f created in an earlier exercise) so that it evaluates the integral

\[ F(x) = \int_0^x g(s) \, ds \]

as a function of the upper limit \( x \), printing a table of values of \( x \) and \( F(x) \) for values of \( x \) ranging in steps \( \Delta x \) from \( x = a \) to \( x = b \), where \( g(s) \) is defined by a function subprogram and \( \Delta x, a, \) and \( b \) are to be entered at execution time. Use the error function erf(\( x \)) as defined in Eq. (13.26) as a test integrand for your program.

13.40. Use trapzd.f, qtrap.f, qsimp.f, and qromb.f in a succession of programs to evaluate the quantity

\[ f(v) = \int_0^v v^2 e^{-v^2/2} \, dv \]

(a) for \( v = 1.0 \) and (b) as a function of \( v \) over the range \( 0.0 \leq v \leq 3.0 \). Cast your response to part (b) so that it writes the values of \( v \) and \( f(v) \) into a (text) file that could then be imported into another program for graphical display. Statements for opening, writing to, and closing a file in FORTRAN are introduced in Chapter 9.

13.41. Use Numerical Recipes in FORTRAN to address Exercise 13.19, which involves evaluating an integral as a function of its upper limit.

13.42. Use Numerical Recipes in FORTRAN to address Exercise 13.27, which involves evaluating an integral as a function of a parameter in the integrand. You will, of course, have to refresh your understanding of COMMON storage in FORTRAN.

13.43. Edit the program ertrapzd.c so that it requests the input of the limits and the number of iterations at execution time, prints only the final value obtained, and does not report each value along the way. Be sure to test your program.

13.44. Following the pattern illustrated in Section 13.14.2, create and test C programs errqsimp.c and errqromb.c using qsimp.c and qromb.c, respectively, to evaluate erf(1.0). Note that, in addition to trapzd.c, qromb.c also invokes polint.c, which will have to be available and included in the compile instruction before errqromb.c will compile successfully.

13.45. Edit the driving program errqtrap.c (or—better—the driving program errqsimp.c created in the previous exercise) so that it requests the limits of integration as input from the terminal at execution time, prints the limits and the value of the integral, and then returns to the beginning to
13.15. EXERCISES

request a new set of limits. Include a smooth way (other than simply CONTROL-C) to terminate execution of the program. Be sure to test your program.

13.46. Edit the driving program errqtrap.c (or—better—the driving program errqsimp.c created in an earlier exercise) so that it evaluates the integral

\[ F(x) = \int_0^x g(s) \, ds \]

as a function of the upper limit \( x \), printing a table of values of \( x \) and \( F(x) \) for values of \( x \) ranging in steps \( \Delta x \) from \( x = a \) to \( x = b \), where \( g(s) \) is defined by a function subprogram and \( \Delta x \), \( a \), and \( b \) are to be entered at execution time. Use the error function \( \text{erf}(x) \) as defined in Eq. (13.26) as a test integrand for your program.

13.47. Use trapzd.c, qtrap.c, qsimp.c, and qromb.c in a succession of programs to evaluate the quantity

\[ f(v) = \int_0^v v^2 e^{-v^2/2} \, dv \]

(a) for \( v = 1.0 \) and (b) as a function of \( v \) over the range \( 0.0 \leq v \leq 3.0 \). Cast your response to part (b) so that it writes the values of \( v \) and \( f(v) \) into a (text) file that could then be imported into another program for graphical display. Statements for opening, writing to, and closing a file in C are introduced in Chapter 9.

13.48. Use Numerical Recipes in C to address Exercise 13.19, which involves evaluating an integral as a function of its upper limit.

13.49. Use Numerical Recipes in C to address Exercise 13.27, which involves evaluating an integral as a function of a parameter in the integrand. You will, of course, have to refresh your understanding of global variables in C.
13.A Listing of trapezoidal.f

! Program trapezoidal.f

! This FORTRAN program evaluates the integral of a user-specified function between user-specified limits for a user-specified number of divisions of the interval of integration. Integration is achieved with the trapezoidal rule.

! ***** DEFINE INTEGRAND AS FUNCTION *****

FUNCTION FUNC(X)
   FUNC = 2.0*EXP(-X**2)/SQRT(3.14159265)
END

PROGRAM TRAPEZOIDAL

! ***** READ LIMITS, NUMBER OF SEGMENTS, *****

WRITE(*, '(1X,A)') 'Lower limit : ', A
READ(*,*) A
WRITE(*, '(1X,A)') 'Upper limit : ', B
READ(*,*) B
WRITE(*, '(1X,A)') 'Number of segments: ', N
READ(*,*) N

! ***** EVALUATE INTEGRAL *****

DX = (B-A)/FLOAT(N) ! Set size of segment
VALUE = 0.5 * FUNC(A) ! Compute first term
DO I = 1, N-1 ! Add middle terms
   VALUE = VALUE + FUNC(A + I*DX)
ENDDO
VALUE = VALUE + 0.5 * FUNC(B) ! Add last term
VALUE = VALUE * DX ! Compute integral

! ***** DISPLAY RESULT *****

WRITE(*, '(1X,A,F10.6)') 'Integral = ', VALUE
END
13.B Listing of trapezoidal.c

/* PROGRAM trapezoidal.c

This C program evaluates the integral of a user-specified function between user-specified
limits for a user-specified number of divisions of the interval of integration. Integration is
achieved with the trapezoidal rule.
*/

#include <stdio.h>     /* Load standard i/o routines */
#include <math.h>      /* Load standard math routines */

float func( x )       /* Define integrand as function */
float x;
{
  return 2.0*exp(-pow(x,2))/sqrt(3.14159265);
}

main()
{
  float a, b, value;    /* For limits, sum */
  float dx;             /* For step size */
  int n, i;             /* For number of segments, loop index */

  /***** Read limits, number of segments *****/
  printf( "Lower limit : " ); scanf("%f", &a );
  printf( "Upper limit : " ); scanf("%f", &b );
  printf( "Number of segments: " ); scanf("%d", &n );

  /***** Evaluate integral *****/
  dx = (b-a)/n;           /* Set size of segment */
  value = 0.5*func(a);    /* Compute first term */
  for ( i=1; i<n-1; i++ ) /* Add middle terms */
    value = value + func( a + i*dx );
  value = value + 0.5*func(b);    /* Add last term */
  value = value * dx;          /* Compute integral */

  /***** Display result *****/
  printf("Integral = %10.6f\n", value);
}
Chapter 14

Finding Roots

In this chapter, we seek the roots of a known function \( f(x) \), i.e., we seek values of \( x \) satisfying the equation

\[
f(x) = 0
\]  

(14.1)

If \( f(x) \) is simple, we may be able to find a closed form, analytic solution. More often, however, \( f(x) \) is sufficiently complicated that approximate, numerical methods are needed. Further, many functions will have several roots, some of which may be physically meaningless. Thus, we must learn not only how to find the roots but also how to sort the physically meaningful roots from a possibly larger number of mathematically acceptable ones, the “extras” of which are said to be spurious. We begin this chapter by identifying several physical situations, the full addressing of which requires finding one or more roots of some function. Then we illustrate how to use symbolic algebra systems to approach those that can be addressed analytically, describe a few of many available numerical algorithms, and describe ways to find roots using a variety of numerical approaches and computational tools. Briefly at the end, we comment about the more complicated issue of finding roots of sets of simultaneous linear and non-linear equations. Until that point, our discussion will focus on functions of a single variable.

Whatever the function and whatever the approach, the first step in seeking roots should always be to learn as much as possible about the nature of the function and its roots. Further, since numerical methods in particular—most of them iterative—require a starting guess or guesses and will converge more or less rapidly and reliably depending on the quality of those guesses, a priori knowledge of the approximate location of roots is essential. Thus, we should always start by drawing a graph of \( f(x) \) in sufficient detail to reveal the approximate location of the roots of interest. Since the focus of this chapter is not graphing (and graphing has been fully addressed in earlier chapters), we shall carry out this step once in Section 14.1 as we present several sample problems rather than carrying it out repeatedly in later sections.\(^1\)

14.1 Sample Problems

In this section, we identify several physical contexts in which the essential computational problem is to find the roots of some function, and we obtain graphs of the appropriate functions for later reference.

\(^1\)The graphs could, of course, be produced in any number of ways. Except for Fig. 14.2 (which was produced with tgif), the graphs in Section 14.1 have all been produced with IDL. Those in each later section have been produced by whatever software is the subject of that section.
14.1.1 Classical Turning Points

Let $V(x)$ be the potential energy under which an object of mass $m$ is moving in one dimension. Turning points in the motion occur at values of $x$ where the total energy $E$ is entirely potential energy (kinetic energy is zero), i.e., when

$$V(x) = E \quad \text{or} \quad V(x) - E = 0 \quad (14.2)$$

Finding physical turning points thus involves finding the mathematical roots of the function $f(x) = V(x) - E$, i.e., finding solutions to Eq. (14.2). If, for example, the potential energy of interest is given by the cubic polynomial

$$V(x) = \frac{x^3}{10000} + \frac{x^2}{200} - \frac{x}{500} - \frac{1}{2} \quad (14.3)$$

the turning points for the motion of a particle with total energy $E = 0$ moving in this potential energy would satisfy $V(x) = 0$. The first step in finding those turning points would therefore be to produce the graph of Fig. 14.1—a task that may require a bit of trial and error before a suitable range for the independent variable has been found. From this graph, we conclude that $V(x)$ has three real roots, one in the vicinity of $x = -50$, a second in the vicinity of $x = -10$, and a third in the vicinity of $x = +10$. With more refined graphs drawn in the vicinity of each of these roots, we could conclude that the three roots are more tightly bound by the limits

$$-50.00 < x_1 < -47.50 \quad ; \quad -12.50 < x_2 < -10.00 \quad ; \quad 7.50 < x_3 < 10.00 \quad (14.4)$$

14.1.2 A Max-Min Problem: Equilibrium Points

From a different perspective, a particle moving in one dimension under the action of the force $F = -dV/dx$ associated with the potential energy $V(x)$ will be in equilibrium at those points $x$ at which the force is zero, i.e., where

$$F = 0 \quad \implies \quad \frac{dV}{dx} = 0 \quad (14.5)$$

or where the graph of $V(x)$ has a horizontal tangent. Further, evaluated at a point of equilibrium, $d^2V/dx^2 > 0$ implies that the equilibrium is stable while $d^2V/dx^2 < 0$ implies that the equilibrium is unstable. Finding points of physical equilibrium therefore involves finding mathematical roots of the function $F(x) = -dV/dx$, and assessing the stability of those equilibria entails examining the sign of $d^2V/dx^2$.

More specifically, for the potential energy given in Eq. (14.3) and graphed in Fig. 14.1, we would find the points of equilibrium by solving the equation

$$\frac{dV}{dx} = \frac{3x^2}{10000} + \frac{x}{100} - \frac{1}{500} = 0 \quad (14.6)$$

By looking at local extrema in the graph of $V(x)$, we infer that this potential energy exhibits two points of equilibrium, one located in the vicinity of $x = -35$ and the other in the vicinity of $x = 0$. A more refined graph leads to the conclusion that these two roots are bounded by

$$-35.0 < x_4 < -30.0 \quad \text{and} \quad -2.5 < x_5 < 2.5 \quad (14.7)$$

\textsuperscript{2}This function is, of course, not particularly realistic as a potential energy. We can, however, provide a physical context for at least a portion of $V(x)$. If we confine our attention to the region around the one minimum it possesses, we can interpret the function as the potential energy of an anharmonic oscillator, for which—if that minimum occurs at $x = 0$—we might write $V(x) = kx^2/2 + ax^3$ while imposing the constraint that $a$, the coefficient of the cubic perturbation from the potential energy of a simple harmonic oscillator, be small. The expression in Eq. (14.2) simply places the minimum at a different value of $x$ and adds a constant to the potential energy. In what follows, we will explore this function over a wider range of values of $x$ than is physically meaningful. The pedagogic advantage of Eq. (14.2) is that it combines many of the important features of potential energy functions with, as we shall see, tractability by a variety of different approaches.
14.1. Natural Frequencies of Oscillating Systems

Suppose we seek the natural frequencies of oscillation for the system shown in Fig. 14.2, which consists of two objects, each having mass \( m \). Let these objects move in one dimension on a horizontal, frictionless surface, let them be connected to one another with a spring having constant \( k' \), and let each be connected to the nearer wall with a spring having constant \( k \). Further, let the position of each be measured from its equilibrium position. Then, Newton’s second law combined with Hooke’s law leads to the equations of motion\(^3\)

\[
\begin{align*}
    m \frac{d^2 x_1}{dt^2} &= -kx_1 + k'(x_2 - x_1) \quad \text{and} \quad m \frac{d^2 x_2}{dt^2} = -kx_2 - k'(x_2 - x_1)
\end{align*}
\]  

(14.8)

To cast these equations in dimensionless form, we choose a unit of length \( a \), set \( x_i/a = \bar{x}_i \), introduce \( \omega_0 = \sqrt{k/m} \), set \( \bar{\kappa} = k'/k \), and introduce \( \bar{t} = \omega_0 t \) to find that

\[
\begin{align*}
    \frac{d^2 \bar{x}_1}{d\bar{t}^2} &= -(1 + \bar{\kappa})\bar{x}_1 + \bar{\kappa} \bar{x}_2 \\
    \frac{d^2 \bar{x}_2}{d\bar{t}^2} &= \bar{\kappa} \bar{x}_1 - (1 + \bar{\kappa})\bar{x}_2
\end{align*}
\]  

(14.9)

Next, seeking sinusoidal (or simple harmonic) solutions, we suppose that

\[
\begin{align*}
    \bar{x}_1(\bar{t}) &= \bar{x}_{10} \cos \omega \bar{t} \\
    \bar{x}_2(\bar{t}) &= \bar{x}_{20} \cos \omega \bar{t}
\end{align*}
\]  

(14.10)

\(^3\)These equations were also discussed in Section 11.1.6.
where the (yet to be determined) frequency $\omega$ is measured in units of $\omega_0$. Substituting these suppositions into Eq. (14.9), we conclude that the (presently unknown) amplitudes must satisfy

$$
\begin{vmatrix}
1 + \kappa - \omega^2 & -\kappa \\
-\kappa & 1 + \kappa - \omega^2
\end{vmatrix}
\begin{pmatrix}
\bar{x}_{10} \\
\bar{x}_{20}
\end{pmatrix} = 0
$$

(14.11)

The solution of this equation for the unknowns $\bar{x}_{10}$ and $\bar{x}_{20}$ will be trivial (i.e., both zero—a particularly uninteresting motion) unless the determinant of the matrix of coefficients happens itself to be zero, i.e., unless the characteristic equation

$$
D(\omega) = (1 + \kappa - \omega^2)^2 - \kappa^2 = \omega^4 - 2\omega^2(1 + \kappa) + 1 + 2\kappa = 0
$$

(14.12)

is satisfied. We arrive at a fourth-order polynomial $D(\omega)$ in $\omega$, the roots of which will give the natural frequencies of oscillation for the simple system under consideration. Since only even powers of $\omega$ appear, however, we can for the sake of a simpler solution regard the polynomial as quadratic in $\omega^2$.

Suppose we seek the dependence of the roots of this polynomial on $\kappa = k'/k$, i.e., on the strength of the middle spring compared to that of the two outer ones. Graphs of $D(\omega)$ versus $\omega$ for four different values of $\kappa$ are shown in Fig. 14.3. The lower of the two (positive) roots of $D(\omega)$ appears to be $\omega = 1$ regardless of the value of $\kappa$, while the upper of the two roots increases steadily as $\kappa$ increases.

### 14.1.4 Range of Projectile in Viscous Medium

For a fourth example, suppose we seek the range of a projectile of mass $m$ fired with the initial speed $v_0$ at angle $\theta$ up from the horizontal in a viscous medium having damping constant $b$. Supposing the
projectile to move in the $xy$ plane, with $x$ horizontal and $y$ vertical, we begin by invoking Newton’s second law\(^4\) to write the equations of motion

$$
md^2x/dt^2 = -b\frac{dx}{dt} \quad \text{and} \quad md^2y/dt^2 = -mg - b\frac{dy}{dt}
$$

(14.13)

Here, $g$ is the acceleration of gravity (which we take to be a positive number). These equations are to be solved subject to the initial values

$$
x(0) = 0 \quad , \quad v_x(0) = v_0 \cos \theta \quad , \quad y(0) = 0 \quad \text{and} \quad v_y(0) = v_0 \sin \theta
$$

(14.14)

The solution to this problem—see Chapter 11 on ordinary differential equations—is

$$
x(t) = \frac{mv_0 \cos \theta}{b} \left(1 - e^{-bt/m}\right)
$$

(14.15)

$$
y(t) = -\frac{mgt}{b} + \frac{m}{b} \left( v_0 \sin \theta + \frac{mg}{b} \right) \left(1 - e^{-bt/m}\right)
$$

(14.16)

Finally, to find the range $R$, we seek the value of $x$ at that non-zero value of $t$ for which $y(t) = 0$. Thus, we need to find the non-zero solution, say $t_1$, of the equation

$$
-\frac{mgt}{b} + \frac{m}{b} \left( v_0 \sin \theta + \frac{mg}{b} \right) \left(1 - e^{-bt/m}\right) = 0
$$

(14.17)

and then evaluate $x(t_1)$. Equivalently, if we introduce the dimensionless time $\tau = bt/m$ and the dimensionless parameter $\alpha = bv_0/(mg)$, the equation whose root we seek becomes

$$
f(\tau) = \tau - (1 + \alpha \sin \theta) \left(1 - e^{-\tau}\right) = 0
$$

(14.18)

Once we have found the desired root, say $\tau_1$, we then determine the range $R$ by substituting $\tau_1$ into Eq. (14.15), finding that

$$
\frac{R(\theta, \alpha)}{v_0^2/g} = \frac{\cos \theta \left(1 - e^{-\tau_1}\right)}{\alpha} = \frac{\cos \theta}{\alpha(1 + \alpha \sin \theta)} \tau_1
$$

(14.19)

The mathematical task confronting us involves finding the non-zero root of the function $f(\tau)$ defined in Eq. (14.18). More specifically, finding the angle $\theta$ at which the projectile should be fired to achieve maximum range would entail

- Choosing a value of $\alpha = bv_0/(mg)$.
- Finding the non-zero root of $f(\tau)$ for several values of $\theta$ ranging from 0 to $\pi/2$.
- Calculating and plotting values of $R(\theta, \alpha)$.
- Finding the value of $\theta$ corresponding to the peak in a graph of $R(\theta, \alpha)$ versus $\theta$.

Note that $\alpha$ increases as $b$ (the damping) increases and as $v_0$ increases but decreases as $m$ increases.

To gain some insight into the nature of the desired roots, we begin by plotting the family of graphs of $f(\tau)$ versus $\tau$ for various values of $\theta$ with fixed $\alpha$. After some exploration using techniques introduced in earlier chapters, we arrive at the several graphs shown in Fig. 14.4. Every graph exhibits a root at $\tau = 0$, corresponding to the moment of launch. Though it is hard to judge, each graph for $\theta = 0^\circ$ also exhibits a second root at $\tau = 0$, since a projectile launched at $\theta = 0^\circ$ returns to its initial altitude immediately. As the angle of launch is increased in each case, however, the second root moves to larger and larger values of $\tau$. Our task in subsequent sections will be to find numerical values for that second root for various values of $\alpha$ and $\theta$, determine the range for each, and find the particular angle at which the range is greatest for a given $\alpha$.

\(^4\)Compare Eqs. (11.3) and (11.4).
Figure 14.4: Graphs of $f(\tau)$ versus $\tau$. The individual frames in this display correspond to different values of $\alpha$; the graphs in each frame correspond to different values of $\theta$, ranging in $15^\circ$ increments from $0^\circ$ for the highest graph to $90^\circ$ for the lowest graph in each frame. The scalings have been chosen to reveal the nature of the roots most clearly and are different in each frame.

As a quick aside, we can reassure ourselves that this approach is appropriate by examining the limits of Eqs. (14.18) and (14.19) as $b$ becomes small. In that limit, both $\tau = bt/m$ and $\alpha = bv_0/(mg)$ also become small. To assess the limit, we need to expand Eq. (14.18) to second order in $\tau$ and $\alpha$, finding that

$$0 = \tau - (1 + \alpha \sin \theta) \left[ 1 - \left( 1 - \tau + \frac{\tau^2}{2} \right) \right] = \tau + (1 + \alpha \sin \theta) \left[ -\tau + \frac{\tau^2}{2} \right]$$

$$= -\alpha \tau \sin \theta + \frac{\tau^2}{2} = 0 \quad \Rightarrow \quad \tau = 2\alpha \sin \theta$$

(14.20)

Then, substituting this result into Eq. (14.19), we find that

$$\frac{R(\theta, \alpha \to 0)}{v_0^2/g} = \frac{\cos \theta}{\alpha(1 + \alpha \sin \theta)} (2\alpha \sin \theta) = \frac{2 \sin \theta \cos \theta}{(1 + \alpha \sin \theta)} \to 2 \sin \theta \cos \theta$$

(14.21)

which is in complete agreement with the known result for the range of a projectile in the absence of air resistance.
14.1.5 Energy Levels in a Quantum Well

The quantum mechanical analysis for the energy levels of a particle of mass \( m \) in a one-dimensional quantum well characterized by the potential energy

\[
V(x) = \begin{cases} 
\infty & x < 0 \\
-V_0 & 0 \leq x \leq a \\
0 & a \leq x 
\end{cases} \tag{14.22}
\]

leads to the conclusion that the allowed energies \( E \) should satisfy the equation\(^5\)

\[
s \cot s = -\sqrt{c^2 - s^2} \tag{14.23}
\]

where \( c^2 = 2ma^2V_0/\hbar^2 \) and \( s^2 = c^2(1 - E/V_0) \) or \( E = -V_0(1 - s^2/c^2) \). To find the energies, we must thus solve Eq. (14.23) for acceptable values of \( s \) once the depth of the well conveyed by the (fixed) value of \( c \) has been specified.

A simpler version of this equation emerges if we square it (thereby possibly introducing spurious roots because the squared equation is also consistent with a plus sign on the right hand side) and then invoke the trigonometric identity \( 1 + \cot^2 \theta = \sin^{-2} \theta \) to find that

\[
s^2 \cot^2 s = s^2(\sin^{-2} s - 1) = c^2 - s^2 \quad \implies \quad \sin s = \pm \frac{s}{c} \tag{14.24}
\]

We can be confident that all solutions of Eq. (14.23) will satisfy Eq. (14.24), but we cannot be sure that all solutions of Eq. (14.24)—a potentially larger set—will satisfy Eq. (14.23). Thus, we must in the end remember to sort from all the roots of Eq. (14.24) only those that also satisfy Eq. (14.23).

While we might (see exercises) be interested in the way the allowed energies change as the depth and width of the well change (i.e., as \( c \) changes), we shall here illustrate the techniques by supposing a particular well, namely one for which \( c = 25 \). Then, we seek solutions specifically to

\[
\sin s = \pm 0.04s \quad \text{or} \quad \sin s \mp 0.04s = 0 \tag{14.25}
\]

We suppose we seek roots of this function in the interval \( s \geq 0 \). The graphs in Fig. 14.15 reveal these solutions in several ways. The lower graph in Fig. 14.15(a) shows the function \( \sin s - 0.04s \) (upper sign in Eq. (14.25)), and its roots lie where this graph crosses the \( s \) axis; there are eight roots in this group. Similarly, the upper graph in Fig. 14.15(a) shows the function \( \sin s + 0.04s \) (lower sign in Eq. (14.25)), and its roots appear where the graph crosses the \( s \) axis; there are nine roots in this group. In Fig. 14.15(b), which shows the functions \( \sin s, +0.04s, \) and \( -0.04s \), the roots appear at the values of \( s \) where one or the other of the straight lines intersects the sine curve. From either of these graphs, we conclude that, for the \textit{upper} sign in Eq. (14.25) the eight roots are bounded—crudely—by

\[
\begin{array}{lll}
\text{root 1u} & -0.5 < s < 0.5 & \text{root 5u} \quad 12.5 < s < 13.5 \\
\text{root 2u} & 2.5 < s < 3.5 & \text{root 6u} \quad 14.5 < s < 15.5 \\
\text{root 3u} & 6.0 < s < 7.0 & \text{root 7u} \quad 19.0 < s < 20.0 \\
\text{root 4u} & 8.5 < s < 9.5 & \text{root 8u} \quad 20.5 < s < 21.5 \\
\end{array} \tag{14.26}
\]

and that, for the \textit{lower} sign, the nine roots are bounded—again crudely—by

\[
\begin{array}{lll}
\text{root 1l} & -0.5 < s < 0.5 & \text{root 6l} \quad 16.0 < s < 17.0 \\
\text{root 2l} & 3.0 < s < 4.0 & \text{root 7l} \quad 17.5 < s < 18.5 \\
\text{root 3l} & 5.5 < s < 6.5 & \text{root 8l} \quad 22.5 < s < 23.5 \\
\text{root 4l} & 9.5 < s < 10.5 & \text{root 9l} \quad 23.5 < s < 24.5 \\
\text{root 5l} & 11.5 < s < 12.5
\end{array} \tag{14.27}
\]

\(^{5}\)Text books in quantum mechanics usually treat the finite-depth well for which \( V(x) = -V_0 \) in \(-a \leq x \leq a\) and \( V(x) = 0 \) outside that interval. Nevertheless, the strategy for deriving the result in Eq. (14.23) is described in almost every intermediate level text on quantum mechanics. See, for example, Section 2.6 in David J. Griffiths, \textit{Introduction to Quantum Mechanics} (Prentice Hall, Inc., Upper Saddle River, NJ, 1995). Actually, the condition we choose for illustration gives results identical to those for the \textit{odd} states in the more conventional well.
Figure 14.5: Graphs to reveal solutions to Eq. (14.25). In each frame, the graph labeled ‘up’ corresponds to the upper sign in Eq. (14.25) and the graph labeled ‘low’ corresponds to the lower sign in that equation.

14.2 Symbolic Approaches

Symbolic approaches to finding roots always take advantage of specific features of the equation or system of equations for which roots are sought. The roots of at least low order polynomials can be found symbolically. Most of us learned in high school algebra, for example, that the (single) root of a linear polynomial is given by

\[ f(x) = ax + b = 0 \implies x = -\frac{b}{a} \quad (14.28) \]

and that the quadratic formula

\[ f(x) = ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2c}{-b \mp \sqrt{b^2 - 4ac}} \quad (14.29) \]

gives the (two) roots of a quadratic polynomial. Similar—though more complicated—expressions exist for the roots of cubic and quartic polynomials. Roots of a polynomial of fifth or higher order cannot be found symbolically unless the polynomial happens to factor into a product of polynomials, each of which individually is of order no higher than quartic. Further, most learned in high school trigonometry that

\[ f(x) = \sin(kx) = 0 \implies x = \frac{n\pi}{k}, \quad n = 0, \pm 1, \pm 2, \ldots \quad (14.30) \]
Occasionally, we will encounter an equation that looks intractable but that can be converted into a tractable case with an appropriate variable transformation. The roots of the expression

$$f(x) = \frac{a + x}{b + x^2} - c$$

(14.31)

for example, can be found symbolically because, so long as \( b + x^2 \neq 0 \), the simple recasting

$$\frac{a + x}{b + x^2} - c = 0 \quad \Rightarrow \quad a + x - c(b + x^2) = -cx^2 + x + a - cb = 0$$

(14.32)

converts the problem into one involving a quadratic polynomial. Beyond these few cases, very few roots can be found symbolically.

### 14.4 Finding Roots Symbolically with MAPLE

The MAPLE command for solving a wide variety of equations is \texttt{solve}. It takes two arguments, the first giving the equation to be solved (or the function whose roots are desired) and the second specifying the variable for which a solution is desired. Thus, the statement

```maple
> solve(a*x + b = 0, x);
\frac{b}{a}
```

returns the solution \( x = -b/a \) and the statement

```maple
> solve(a*x^2 + b*x + c , x);
\frac{1}{2} \frac{-b + \sqrt{b^2 - 4ac}}{a}, \frac{1}{2} \frac{b + \sqrt{b^2 - 4ac}}{a}
```

in which MAPLE assumes the omitted ‘\( = 0 \)' at the end of the first argument, returns the sequence

$$\frac{1}{2} \frac{-b + \sqrt{b^2 - 4ac}}{a}, \frac{1}{2} \frac{b + \sqrt{b^2 - 4ac}}{a}$$

(14.33)

containing two solutions. The command \texttt{solve} actually also knows how to deal with cubic and quartic polynomials, though the result in the most general case is likely to be extremely involved and will be useful only if, once obtained, it is quickly converted to floating point form. The command can solve higher order polynomials only if it recognizes a factorization into polynomials, no one of which is of order higher than quartic.

Sometimes (e.g., for roots of polynomials of order greater than three), \texttt{solve} may be unable to find explicit solutions. In those cases, \texttt{solve} returns the root in the form \texttt{RootOf(...)}, e.g.,

```maple
> solve(a*x^6-b*x^5 + c = 0, x);
\text{RootOf}(a.Z^6 - b.Z^5 + c)
```

(Here, \( Z \) is a MAPLE-generated generic variable.) Basically, this response constitutes an admission by MAPLE that it can’t solve the specified equation. Note also that the command \texttt{solve} is affected by several environment variables, including

- \texttt{EnvExplicit}, which controls the extent to which irrational solutions will be returned by \texttt{solve}. By default, this variable is undefined, which results in the display of all rational solutions and some irrational solutions—those that aren’t too complicated. To display all irrational solutions (that MAPLE can find), we would set this variable to \texttt{true}; set to \texttt{false}, the variable causes all irrational solutions to be returned as \texttt{RootOfs}.
• \texttt{EnvDropMultiplicity} which controls the multiple display of multiple roots. Set the variable to \texttt{true} to suppress repeated display of multiple roots.

• \texttt{MaxSols}, which specifies the number of solutions to be found. This variable is undefined by default.

• \texttt{EnvAllSolutions}, which we would set to \texttt{true} if we wanted MAPLE to try to find and display \textit{all} solutions to the specified equation. This variable is undefined by default.

Fuller descriptions of these variables and of other embellishments of the command \texttt{solve} will be displayed in response to the command \texttt{?solve}.

14.4.1 Classical Turning Points

The turning points for the potential energy in Eq. (14.3) are readily found symbolically with the statements

\begin{verbatim}
> V := x^3/10000 + x^2/200 - x/500 - 1/2:
> soln := solve( V=0 , x );
\end{verbatim}

\begin{verbatim}
soln := mess, mess, mess
\end{verbatim}

where the indicated messes, which—because of the presence of $i = \sqrt{-1}$ here and there—will appear superficially to be complex, are too long and too unfathomable to reproduce here. We can, however, convert this output directly to a (complex) floating point form with the statement\footnote{Remember that really small values obtained in this way are subject to significant computer round-off and may well differ significantly from version to version and platform to platform.}

\begin{verbatim}
> evalf( soln );
9.34870420 + 0.I,
-48.26826758 + 2.67949192 \times 10^{-10} I,
-11.08043664 - 3.732050808 \times 10^{-9} I
\end{verbatim}

thereby reducing the messes to quantities that are more easily interpreted. The real parts of the roots here obtained are certainly consistent with the bounds given in Eq. (14.4). Further, the assertion that the imaginary parts of the roots are all zero is not unreasonable, given that, by default, the precision of the command \texttt{evalf} is on the order of one in the tenth digit. Indeed, we can support this understanding of the imaginary part by evaluating the roots to more decimal places with the statements

\begin{verbatim}
> Digits := 20:
> evalf( soln );
9.34870419760052270 - 1. \times 10^{-18} I,
-48.268267566751634131 - 7.392304845413263761 \times 10^{-19} I,
-11.08043663084848418141 + 1.3392304845413263761 \times 10^{-18} I
\end{verbatim}

\begin{verbatim}
> Digits := 10:
\end{verbatim}

Even at this precision, the assertion that the imaginary parts are all zero is not unreasonable, given that the precision of the command \texttt{evalf} is on the order of one in the twentieth digit when the environment variable \texttt{Digits} has the value 20.
14.4.2 Equilibrium Points

Finding the equilibrium points for the potential energy of Eq. (14.3) is easier. We proceed from the above dialog with the statements

\[
\begin{align*}
> & \text{dVdx} := \text{diff}( V, x ); \\
> & \text{solve}( \text{dVdx} = 0, x ); \\
& \quad \frac{-50}{3} + \frac{16}{3}\sqrt{10}, \quad \frac{-50}{3} - \frac{16}{3}\sqrt{10} \\
> & \text{soln} := \text{evalf}( \% ); \\
& \quad 0.19881418, \quad -33.53214752
\end{align*}
\]

finding first \(dV/dx\) and then finding the values of \(x\) at which \(dV/dx = 0\). These results are consistent with the bounds obtained in Eq. (14.7). Finally, to assess the stability of each equilibrium, we evaluate the second derivative at each equilibrium point with the statements

\[
\begin{align*}
> & \text{d2Vdx2} := \text{diff}( \text{dVdx}, x ); \\
> & \text{eval}( \text{d2Vdx2}, x=\text{soln}[1] ); \\
& \quad 0.01011928851 \\
> & \text{eval}( \text{d2Vdx2}, x=\text{soln}[2] ); \\
& \quad -0.01011928851
\end{align*}
\]

concluding that the first root \(x = 0.19881418\) locates a stable equilibrium (\(d^2V/dx^2 > 0\); local minimum in the potential energy) while the second root \(x = -33.53214752\) locates an unstable equilibrium (\(d^2V/dx^2 < 0\); local maximum in the potential energy).

14.4.3 Natural Frequencies

To find the natural frequencies for the coupled oscillators described in Section 14.1.3, we seek roots of the function \(D(\omega)\) defined in Eq. (14.12). Since \(D(\omega)\) is, in fact, quadratic in \(\omega^2\), we solve first for \(\omega^2\)—though we must substitute a single variable \(\lambda\) for \(\omega^2\) before doing so—and then we take the square root of that solution with the statements\(^7\)\(^8\)

\[
\begin{align*}
> & \text{d} := \omega^4 - 2*\omega^2*(1+kappa) + 1 + 2*kappa: \\
> & \text{subs}(\omega=\text{sqrt}(\lambda), \text{d} ); \\
> & \quad [\text{solve}( \%=0, \lambda )]; \\
& \quad [1,1 + 2\kappa] \\
> & \text{freqs} := \text{map}( \text{sqrt}, \% ); \\
& \quad [1,\sqrt{2\kappa+1}]
\end{align*}
\]

Note—as must on physical grounds be the case—that the solutions obtained for \(\lambda = \omega^2\) are both positive, so the square roots will be real. (We ignore the negative square roots, since they don’t have the physical significance of the positive square roots.) Note also that the first of the two frequencies is the same for all \(\kappa\) but that the second increases steadily as \(\kappa\)—the strength of the coupling—increases.

To make the point at the end of the last paragraph even more explicitly, we generate a graph of the two frequencies as functions of \(\kappa\) with the statement

\(^7\)At this point, for simplicity, we drop the overbar on \(\pi\).

\(^8\)The square brackets around the command \texttt{solve} result in the solution being returned as a list rather than a sequence—necessary so that the function \texttt{sqrt} can subsequently be mapped over the elements of the list. If the result is accepted as a sequence, the \texttt{map} statement involving the function \texttt{sqrt} will misinterpret the second item in the sequence. For details, see the help message \texttt{?sqrt}.
Figure 14.6: Natural frequencies for coupled oscillators. The horizontal coordinate is $\kappa = k'/k$ and the vertical coordinate is the frequency in units of $\omega_0 = \sqrt{k/m}$.

The resulting graph is shown in Fig. 14.6.

### 14.4.4 Range of Projectile in Viscous Medium

While the problem of finding the range of a projectile in a viscous medium is not effectively addressed by symbolic methods, certain limits of the behavior of that projectile are readily obtained by invoking MAPLE. We begin by defining the trajectory as given by Eqs. (14.15) and (14.16) with the statements

```maple
> x := (m*v0*cos(theta)/b) * (1 - exp(-b*t/m));
> y := -m*g*t/b+(m/b)*(v0*sin(theta)+m*g/b) * (1 - exp(-b*t/m));
```

In many instances, the damping constant $b$ is small. Thus, we can sometimes be satisfied with a Taylor expansion of these quantities about $b = 0$, an expansion we obtain with the MAPLE statements

---

9To facilitate visualization, some of the output in the following dialog with MAPLE has been recast from the actual form presented by MAPLE.
14.4. FINDING ROOTS SYMBOLICALLY WITH MAPLE

\[ xb := \text{taylor}( x, b=0, 3 ); \]
\[ xb := v_0 \cos(\theta) t - \frac{1}{2} \frac{v_0 \cos(\theta) t^2}{m} b + O(b^2) \]
\[ yb := \text{taylor}( y, b=0, 4 ); \]
\[ -\frac{1}{2} g t^2 + v_0 \sin(\theta) t + \left( \frac{1}{6} \frac{g t^3}{m} - \frac{1}{2} \frac{v_0 \sin(\theta) t^2}{m} \right) b + O(b^2) \]

We notice first—reassuringly—that the terms that are zeroth-order in \( b \), i.e., \( x = v_0 t \cos \theta \) and \( y = -\frac{1}{2} g t^2 + v_0 t \sin \theta \), are exactly what we would expect for the projectile in the absence of air resistance. More generally, to find the range when \( b \) is small, we begin by converting the expression to a polynomial, removing the root at \( t = 0 \), and solving for the roots of the Taylor expansion of \( y \) with the statements

\[ yb := \text{convert}( yb, \text{polynom} ); \]
\[ yb := \text{expand}( yb/t ); \]
\[ \text{soln} := \text{solve}( yb=0, t ); \]
\[ \text{soln} := \text{mess, mess} \]

To sort out which of these two roots is the physically significant one, we evaluate the limit of this expression as \( b \to 0 \) with the statements

\[ \text{interface}( \text{showassumed}=0 ); \]
\[ \text{assume}( b>0, m>0, g>0 ); \]
\[ \text{series}( \text{soln[1]}, b=0, 2 ); \]
\[ \frac{3m}{b} + \frac{v_0 \sin \theta}{g} + O(b) \]
\[ \text{series}( \text{soln[2]}, b=0, 2 ); \]
\[ \frac{2}{g} \frac{v_0 \sin \theta}{g} + O(b) \]

Since the first root becomes arbitrarily large as \( b \) becomes small, we must reject it on physical grounds. Only the second root, which we can display more fully with the statement

\[ \text{expand}( \text{soln[2] } ); \]
\[ \frac{3 m}{2 b} + \frac{3 \frac{v_0 \sin(\theta)}{g}}{g} - \frac{1}{2} \frac{\sqrt{9g^2 m^2 - 6v_0 b g m \sin \theta + 9b^2 v_0^2 \sin^2 \theta}}{b g} \]

is of interest. Finally, for consistency with approximations already made, we find this root to first order in \( b \) with the statement

\[ \text{tim} := \text{taylor}( \text{soln[2]}, b=0, 3 ); \]
\[ \text{tim} := \frac{2}{g} \frac{v_0 \sin \theta}{g} - \frac{2}{3} \frac{v_0^2 \sin^2 \theta}{g^2 m} b + O(b^2) \]

and find the range by substituting this result into the first order expression for the horizontal coordinate with the statements
Note in particular that, in the absence of viscous resistance ($b = 0$), this result reduces to the known result $(v_0^2/g) \sin 2\theta$.

### 14.6 Algorithms for Finding Roots Numerically

In this section we describe several methods for determining a root of a general function numerically.

#### 14.6.1 The Method of Bisection

Suppose, for example, that we know that a single root of $f(x)$ lies between $x_{\text{min}}$ and $x_{\text{max}}$. We can, of course, calculate $f_{\text{min}} = f(x_{\text{min}})$ and $f_{\text{max}} = f(x_{\text{max}})$. With this input, we can refine our knowledge of the interval in which the root lies by

1. calculating
   \[
   x_{\text{mid}} = \frac{1}{2} (x_{\text{min}} + x_{\text{max}}) \quad \text{and} \quad f_{\text{mid}} = f(x_{\text{mid}})
   \] (14.34)

2. calculating $f_{\text{min}} f_{\text{mid}}$, which will be positive if $f_{\text{min}}$ and $f_{\text{mid}}$ have the same sign (and the root then lies in the upper half of the original interval) and negative if $f_{\text{min}}$ and $f_{\text{mid}}$ have opposite signs (and the root then lies in the lower half of the original interval). Note that we have here assumed the root to be a single root (or at least a root of odd multiplicity), since the criterion invoked depends on the function having opposite signs on opposite sides of the root. (For a root of even order, the function has the same sign on opposite sides of the root, and the criterion here described will not identify the half of the interval in which the root lies. Without embellishment, bisection will fail in this case.)

3. refocusing our attention on the interval $x_{\text{min}} < x < x_{\text{mid}}$ (i.e., replacing $x_{\text{max}}$ with $x_{\text{mid}}$) or on the interval $x_{\text{mid}} < x < x_{\text{max}}$ (i.e., replacing $x_{\text{min}}$ with $x_{\text{mid}}$), depending on the outcome of the test at step (2).

4. returning to step (1).

The process is illustrated in Fig. 14.7. In the two cases illustrated, the root lies in the upper half of the original interval, so the second iteration will apply the same procedure to the interval from $x_{\text{mid}}$ to $x_{\text{max}}$. With each successive iteration, the interval within which we know the root to lie is shrunk to half of its size at the start of that iteration. This method of bisection is guaranteed to converge provided only that there is a root in the interval, though it will not work if the root is a root of even order and it may be confused if the original interval happens to contain several roots. The iteration is continued until the interval has been reduced to a size that we are willing to accept as a tolerance or, though it happens rarely, if $f_{\text{mid}}$ actually is zero at some point in the process.

#### 14.6.2 Newton’s Method

A second—more efficient but also less stable—algorithm requires a single starting value rather than a pair of values that bracket a root. Suppose that $x_n$ is the current estimate of the position of the desired root, and let $f_n = f(x_n)$. In Newton’s method, we calculate the next iterate $x_{n+1}$ by
14.6. ALGORITHMS FOR FINDING ROOTS NUMERICALLY

Figure 14.7: The method of bisection. The two parts show the positioning of critical points (a) when the function increases as \( x \) increases and (b) when the function decreases as \( x \) increases.

\[ f \]

\[ x_{\text{mid}} \]

\[ x_{\text{min}} \]

\[ x_{\text{max}} \]

Figure 14.8: Newton’s method. The intersection of a tangent line drawn to the curve at the current estimate of the root with the horizontal axis provides the next estimate of the root.

\[ f(x) \]

\[ f(x_n + 1) \]

\[ x \]

\[ x_{n+1} \]

\[ x_n \]

1. calculating the derivative of the function at \( x_n \), i.e., \( df(x)/dx \big|_{x_n} = f'_n \).

2. extrapolating the tangent line to the graph of the function—a line whose slope is \( f'_n \)—to the point at which it intersects the horizontal axis, i.e., finding \( x_{n+1} \) by requiring it to satisfy

\[
\frac{\Delta f}{\Delta x} = \frac{0 - f_n}{x_{n+1} - x_n} = f'_n \quad \implies \quad x_{n+1} = x_n - \frac{f_n}{f'_n}
\]

(14.35)

The relevant geometry is illustrated in Fig. 14.8. Given an initial “guess”, Newton’s method will converge more rapidly than the method of bisection, though it will have difficulties if the initial guess—or, for that matter, the root itself—is too close to a point at which the derivative of the function is zero. With a poor initial guess, the method may diverge altogether or may converge on a root remote from the one sought.

14.6.3 Other Methods

Numerous other methods for finding roots, some of them restricted to polynomials, have been developed. Because available routines in some programs sometimes use methods other than the two described above in detail, we include here a brief outline of the main idea in each of several other methods:

- The secant method starts from two approximations to the root, say \( x_1 \) and \( x_2 \), calculates \( f_1 = f(x_1) \) and \( f_2 = f(x_2) \), fits a straight line through the points \((x_1, f_1)\) and \((x_2, f_2)\), finds
the intersection point $x_3$ of that line with the $x$ axis, and then repeats the process with the two approximations $x_2$ and $x_3$. The method is similar to Newton’s method, except that it uses the values of the function at two points to estimate the slope of the tangent line to the function $f(x)$. It does not require explicit knowledge of the derivative of $f(x)$.

- **Müller’s method** is mildly more sophisticated than the secant method but involves a similar idea. It starts with three estimates of the root, say $x_1$, $x_2$, and $x_3$, calculates $f_1 = f(x_1)$, $f_2 = f(x_2)$, and $f_3 = f(x_3)$, fits a parabola to the points $(x_1, f_1)$, $(x_2, f_2)$, and $(x_3, f_3)$, finds the roots of that parabola using the form of the quadratic formula given second in Eq. (14.29), and finally takes as $x_4$—which replaces $x_1$ for the next iteration—the one root that emerges when the ambiguous sign in Eq. (14.29) is chosen so that the denominator has the larger of the two possible absolute values.

- **Laguerre’s method**, which is limited to polynomials, (1) recognizes that, in terms of its roots $x_i$, a polynomial scaled so that the coefficient of its highest order term is 1 (which has no effect on its roots) can be expressed in the form

$$f(x) = \prod_{i} (x - x_i) \quad (14.36)$$

(2) finds a couple of relationships satisfied by polynomials in this form, (3) assumes with only weak justification *a priori* that the root sought is isolated from all the others (which are clustered together), and (4) deduces that the next iterate $x_{n+1}$ for the root sought should be determined from the current guess $x_n$ by

$$x_{n+1} = x_n - \frac{N}{G \pm \sqrt{(N - 1)(NH - G^2)}} \quad (14.37)$$

where the sign in the denominator is chosen so that the denominator has the larger of the two possible absolute values, $N$ is the order of the polynomial (equal to the number of roots), and $G$ and $H$ are defined by $G = f'/f$ and $H = (f'/f)^2 - f''/f$, each evaluated at $x = x_n$.

### 14.6.4 Assessing Accuracy

As with all numerical operations, assessing the accuracy of the roots found by an algorithm is essential before we can have confidence in the roots. We can, of course, always substitute the root we have found into the function whose root we seek and simply notice how close to zero the value of the function at the proposed root actually is. In the end, that comparison may provide the most important test of accuracy, though whether the value $f(x_{\text{root}}) = 0.0001$, say, is “close enough” to zero requires a judgment that would take into account the magnitude of $f(x)$ over the important domain of $x$ and, even more, the magnitude of the derivative of $f(x)$ evaluated at the root.\(^\text{10}\) Certainly, that criterion provides the most accessible test we might apply. It is also a criterion that is easily implemented in a computer program that monitors convergence and stops automatically when the absolute value of the function has been reduced below some specified tolerance.

We would, however, be more interested in the accuracy of the root itself, i.e., in the amount $|x_{\text{exact}} - x_{\text{approx}}|$ by which the (unknown) exact root differs from the root on which a particular algorithm converges. Only the method of bisection supports a clear assessment of that difference since, at any particular step in the progress of that algorithm towards a root, we know that the root is “trapped” between two values whose separation is halved with each step in the iteration. Continuing until the difference $|x_{i+1} - x_i|$—sometimes called the residual—between consecutive iterates is less than some specified tolerance guarantees that we have located the root to within that tolerance. Implemented in a computer program, an algorithm using the method of bisection can monitor the

\(^{10}\)The less steeply sloped the function at the root, the harder it is to obtain an accurate root by using the value of the function as a guide.
separation of consecutive iterates and stop when that separation, either as an absolute value or as a fraction of its current value, is reduced below a specified absolute or relative tolerance, respectively.

Given appropriate initial bounds, the method of bisection is guaranteed to converge on a root, but the rate of convergence is slow by comparison with other methods. Assessing the accuracy of the root itself for those other algorithms is more difficult. If, however, the convergence of the algorithm in use is fairly rapid (and Newton’s method will usually satisfy this expectation), taking the (absolute) accuracy of a particular iterate to be on the order of the difference between it and the next iterate, i.e., on the order of the residual, is reasonable. For these algorithms, as with the method of bisection, a computer implementation of a method in the category of this paragraph can also monitor the residual and stop when it has been reduced below a specified (absolute or relative) tolerance. For these methods, however, convergence is not guaranteed, and computer implementations of these methods should include an alternate criterion for stopping the iteration. Such an implementation might, for example, limit the number of iterations and—to keep the user fully informed—display a warning message if the iteration is stopped because this limit is exceeded rather than because the residual has been made sufficiently small. Without some such fail-safe stopping criterion, these methods are in danger of iterating forever.

Beyond monitoring the value of the function or the residual, seeking a particular root by more than one method may give some insight into the accuracy of that root. Different methods have different strengths, weaknesses, and quirks. When they agree to some number of digits, we can have more confidence in the result than we would have if we had obtained it by only one method. When they disagree, we have at least a hint that the function at hand possesses some pathology that we should perhaps attempt to understand before accepting the root we have found.

14.10 Finding Roots Numerically with PYTHON

Note: All PYTHON program (.py) files referred to in this chapter are available in the directory $HEAD/python, where (as defined in the Local Guide) $HEAD must be replaced by the appropriate path for your site. At some sites, this directory or some other directory containing these files may also have been placed in PYTHON’s default search path. If so, the files can be found by PYTHON without explicit specification of a path. Otherwise, you will have to use the full path to copy them into your default directory to access them.

The PYTHON module numpy contains a command for finding the roots of a polynomial and the module scipy.optimize contains numerous routines for optimizing functions, finding minima of functions, and for finding roots of single functions and systems of functions.11 To simplify illustrating statements invoking these functions throughout this section, we assume that the modules have been imported with the statement

```python
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as so
```

and we will not repeat these statements. Commands for finding roots of a function of a single variable include

- **np.roots**, which finds all roots of a polynomial if given the coefficients in the polynomial. It is invoked with a statement like

  ```python
 q = np.roots(coeff)
  ```

where \textit{coeffs} is a list that provides the coefficients of the powers of the variable in the polynomial, with the highest power as \texttt{p[0]}. This command admits no keywords.

- **so.bisect**, which is invoked with a statement like

\[
q = \text{so.bisect}( \textit{func}, \texttt{xlb}, \texttt{xub} )
\]

where \textit{func} is a string giving the name of a function py-file that returns the value of the function whose roots are sought and \texttt{xlb} and \texttt{xub} give the lower and upper bounds on an interval containing the desired root. The command also admits a number of keywords (with defaults), including

- **\texttt{args=}()**, which provides a tuple containing values to be passed as arguments to \textit{func}.
- **\texttt{xtol=}2e-12 and \texttt{rtol=}8.88178419...e-16**, which specify the target absolute and relative tolerances in the returned root. The solver strives to make the difference between the exact root and the returned estimate be less than \texttt{xtol + rtol \times q}.
- **\texttt{maxiter=}100**, which provides an upper limit on the number of iterations before a message of non-convergence will be displayed.

As always with the method of bisection, the function whose root is sought must have opposite signs at the ends of the range specified by \texttt{xlb} and \texttt{xub}. Further, the method may be confused if that interval contains more than one root.

- **\texttt{newton}**, which finds the root near a specified starting point either by the secant method or by Newton’s method. The command is invoked with a statement like

\[
q = \text{so.newton}( \textit{f}, \texttt{x0}, \texttt{fprime} )
\]

where \textit{f} and the optional \texttt{fprime} are the names of functions that return the value and first derivative of the function whose root is sought and \texttt{x0} is the initial guess, presumably close to the desired root. (If \texttt{fprime} is not specified, \texttt{newton} invokes the secant method; otherwise, \texttt{newton} invokes Newton’s method.) The command also admits a number of keywords (with defaults), including

- **\texttt{args=}()**, which provides a tuple containing values to be passed as arguments to \textit{f} and \texttt{fprime}.
- **\texttt{tol=}1.48e-08**, which specifies the allowable error in the returned root.
- **\texttt{maxiter=}50**, which provides an upper limit on the number of iterations before a message of non-convergence will be displayed.

14.10.1 Classical Turning Points

We might, for example, find the turning points for the potential energy in Eq. (14.3) with the PYTHON statements

\[
A = [ 1.0/10000.0, 1.0/200.0, -1.0/500.0, -0.5 ]
q = \text{np.roots}( A )
\text{print} ( q )
\]

\[
[-48.26826757 -11.08043663 9.3487042 ]
\]

All three roots have turned out to be real.

Other methods for finding the required roots all require that the function be defined in a py-file. For this example, we might construct the file
def turnpts(x):
    # TURNPTS: returns values for a particular potential energy.
    fct = x**3/10000.0+x**2/200.0-x/500.0 - 0.5
    return fct

which we can store in the default directory with the name turnpts.py. Alternatively, we can provide
these statements interactively at the PYTHON prompt in either the command window or the Python
Shell.

To invoke the method of bisection, we also need some information about the location of each
root in order to start the process. Basing our input on the information extracted from Fig. 14.1, we
would find the roots of the defined polynomial with the PYTHON statements

execfile('turnpts.py') or exec(open('turnpts.py).read() )
q1 = so.bisect( turnpts, -50.0, -40.0 )
q2 = so.bisect( turnpts, -12.0, -10.0 )
q3 = so.bisect( turnpts, 9.0, 10.0 )
print([q1, q2, q3 ])
[-48.26826756675132, -11.080436630849363, 9.348704197598636]

We can invoke the secant method with only one starting value for each root, in which case the
statements

q1 = so.newton( turnpts, -50.0 )
q2 = so.newton( turnpts, -10.0 )
q3 = so.newton( turnpts, 10.0 )
print([q1, q2, q3 ])
[-48.26826756675163, -11.080436630848418, 9.348704197600052]

will yield the desired results.

Finally, to invoke Newton’s method, we must provide also the function turnptsp defined with
the statements

def turnptsp( x ):
    fctp = 3*x**2/10000.0+2*x/200.0-1/500.0
    return fctp

to return the derivatives of this function. The statements

execfile('turnptsp.py') or exec(open('turnptsp.py).read() )
q1 = so.newton( turnpts, -50.0, turnptsp )
q2 = so.newton( turnpts, -10.0, turnptsp )
q3 = so.newton( turnpts, 10.0, turnptsp )
print([q1, q2, q3 ])
[-48.268267566751625, -11.080436630848418, 9.348704197600052]

then yield the desired roots.

The results obtained by different methods are all the same to within about $\pm 1 \times 10^{-8}$ but differ
in the digits beyond that point, a conclusion entirely consistent with the default absolute errors
described at the beginning of Section 14.10.
14.10.2 Natural Frequencies

Because the natural frequencies of the coupled oscillator described in Section 14.1.3 are roots of a polynomial [Eq. (14.12)], we invoke roots. We seek the roots as functions of \( \pi \), which we shall represent by the variable \( \text{kvals} \) in our statements to PYTHON. To set a definite objective, we suppose that, ultimately, we would like to have a graph of each of the two roots as a function of \( \pi \) over the interval \( 0.0 \leq \pi \leq 4.0 \), and we elect to divide that interval into 40 steps of length 0.1 each. The coefficients of the polynomial are, of course, different for each value of \( \pi \). Let us therefore begin by creating two lists, the first of which contains the 41 values of \( \pi \) and the second of which—an array with 3 columns and 41 rows—contains in each row the coefficients of the polynomial (seen as a quadratic polynomial in \( \omega^2 \)) for the corresponding value of \( \pi \). These ends are achieved with the statements

\[
\begin{align*}
kvals &= \text{np.linspace}(0.0,4.0,41) \\
coeff1 &= -2.0*(1.0+kvals) \\
coeff2 &= 1.0+2.0*kvals
\end{align*}
\]

which set the values of \( \pi \) and then create two 41-element lists, each containing the 41 value as of one of the coefficients. Finally, we find the roots and concatenate them into a single array with the statements

\[
\begin{align*}
s &= [] \\
\text{for } i \text{ in np.arange(41):} \\
& \quad s = \text{np.append}(s, [1,coeff1[i], coeff2[i] ] ) \\
s &= s\text{.reshape(41,3) } \\
s1 &= [] \\
\text{for } i \text{ in np.arange(41):} \\
& \quad s1 = \text{np.append}( s1,\text{np.roots}( s[i] ) )
\end{align*}
\]

The result is a 2 column \( \times \) 41 row array of real values, the first column containing the first root for each value of \( \pi \) and the second column containing the second root. Finally, since the roots we have at the moment are values of \( \omega^2 \), we take the square root to find the values of \( \omega \) and then plot a graph of each of the roots—one contained in the first column of the array \( \text{roots} \) and the other contained in the second column—with the statements

\[
\begin{align*}
\text{rts} &= \text{np.sqrt}( s1\text{.reshape(41,2) } ) \\
\text{plt.plot} (kvals, rts, \text{linewidth=3, color='black'} ) \\
\text{plt.xlabel( '$\kappa$', fontsize=14 ) } \\
\text{plt.ylabel( '$\omega$', fontsize=14 ) } \\
\text{plt.grid()} \\
\text{plt.ylim( [0.0,3.0] ) } \\
\text{plt.tick_params(labelsize=12) } \\
\text{plt.show()}
\end{align*}
\]

The resulting graph is shown in Fig. 14.9.

14.10.3 Range of Projectile

As laid out in Section 14.1.4, finding the range of a projectile moving in a viscous medium begins with finding the time at which a projectile launched at some angle \( \theta \) in a medium characterized by a (dimensionless) viscous damping coefficient \( \alpha = \frac{b\nu_0}{mg} \) returns to its initial altitude. In other words, we must find the one non-zero root of the function \( f(\tau) \) defined in Eq. (14.18). Central to
Figure 14.9: Natural frequencies as a function of coupling strength. Two normal modes exist. For one, the natural frequency is constant; for the other, the natural frequency increases as the coupling strength increases.

Table 14.1: The PYTHON function proj.py.

```python
def proj(tau, alpha, theta):
 # PROJ: Evaluates function involved in projectile motion.
 # The function proj returns the value of a dimensionless
 # function that plays a role in determining the range of
 # a projectile fired at an elevation theta into a medium
 # whose viscosity is characterized by the dimensionless
 # parameter alpha. These parameters must be provided using
 # the keyword args.
 tmp = 1.0+alpha*np.sin(theta) # Calculate coefficient
 fct = tau - tmp*(1-np.exp(-tau)) # Return value of f(tau)
 return fct
```

the entire calculation is the py-file listed in Table 14.1, which we store in the default directory in a file named proj.py. For example, the upper left frame in Fig. 14.4 could have been created by setting several preliminary variables with the statements

```python
thetavals = np.pi*np.linspace(0.0,6.0,7)/12.0 # Set $\theta = 0^\circ, 15^\circ, \ldots, 90^\circ$ in radians.
tau=np.linspace(0.0, 2.0, 201) # Set values of τ.
```

and then executing the statements
execfile('proj.py') or exec(open('proj.py').read() )
for i in np.arange(0,7):
    plt.plot( tau, proj( tau, 0.1, thetavals[i] ), \
        color='black', linewidth=3.0 );
plt.xlim( [0.0,0.25] )
plt.ylim( [-0.006,0.006] )
plt.tick_params(labelsize=12)
plt.grid()
plt.show()  

The remaining frames in Fig. 14.4 were produced with similar statements.

For this example, we choose PYTHON’s built-in routine newton, stipulating no function for
the derivative in calling the function so the secant method will be used for finding roots. Starting
with a fresh PYTHON session, choosing \( \alpha = 0.4 \), setting \( \theta = 30^\circ \) (in radians), referring to Fig. 14.4
to support the initial guess \( \tau = 0.5 \), and accepting (for the moment) all defaults, we find the
corresponding time of return to the initial altitude by invoking the statements\(^{12}\)

\[
\begin{align*}
\alpha &= 0.4; \quad \theta = \frac{\pi \cdot 30.0}{180.0} \\
\tau &= 0.2 \\
q &= \text{so.newton}(\text{proj}, \tau_0, \text{args}=(\alpha, \theta) ) \\
\text{print}(q) \\
0.37643799724946136
\end{align*}
\]

The corresponding range is then given by Eq. (14.19), which we evaluate and display for the specific
case of this paragraph with the statements

\[
\text{range} = \cos(\theta) \cdot \left( 1 - \exp(-q) \right) / \alpha
\]

\[
0.6791768095163329
\]

This result is expressed in units of \( v_0^2/g \).

To find the angle of fire to attain maximum range, we need to repeat the sample calculation of the
previous paragraph for values of \( \theta \) ranging from \( 0^\circ \) to \( 90^\circ \), choosing increments of \( 1^\circ \) between
consecutive values of \( \theta \). Continuing in the same session with PYTHON, we prepare for a calculational
loop with the statements\(^{13}\)

\[
\begin{align*}
\text{thetadeg} &= \text{np.linspace}(0.0, 90.0, 91 ) \\
\text{thetarad} &= \text{np.pi*thetadeg/180.0}
\end{align*}
\]

Then, choosing \( \alpha = 0.4 \) and noting from the first frame in Fig. 14.4 that all roots lie between \( \tau = 0.1 \) and \( \tau = 1.0 \), we continue with the statements

\[
\begin{align*}
\text{soln} &= [] \\
\alpha &= 0.4 \\
\tau &= 0.4 \\
\text{for i in np.arange}(0,91): \\
\quad \theta &= \text{thetarad}[i] \\
\quad \text{rt} &= \text{so.newton}(\text{proj}, \tau_0, \text{args}=(\alpha, \text{thetarad}[i]) ) \\
\quad \text{soln} &= \text{np.append}(\text{soln}, \text{rt} ) \\
\quad \text{range4} &= \text{np.cos(\text{thetarad})*(1-\exp(-\text{soln}))/\alpha}
\end{align*}
\]

\(^{12}\)Over the initially specified interval in which the root is to be sought, the function must change sign. Consequently, for this function (see Fig. 14.4), we cannot specify a range that begins at 0.0, since the function does not have opposite signs at the two ends of that interval.

\(^{13}\)Because the roots for the lowest few values of \( \theta \) are difficult to find, a bit of exploration was necessary before discovering that a successful evaluation would emerge only if the evaluations were started at \( \theta = 10^\circ \).
14.10. FINDING ROOTS NUMERICALLY WITH PYTHON

Figure 14.10: Range versus $\theta$ for $\alpha = 0.1$ (highest graph), $\alpha = 0.2$, $\alpha = 0.4$, and $\alpha = 0.8$ (lowest graph).

Repeating this process with $(\alpha = 0.1, \tau_0 = 0.4)$, with $(\alpha = 0.2, \tau_0 = 0.3)$, and with $(\alpha = 0.8, \tau_0 = 0.7)$, storing the results in range1, range2, and range8, respectively, we obtain the data to plot Fig. 14.10 with the statements

```python
plt.plot(thetadeg, range1, color='black', linewidth=3.0)
plt.plot(thetadeg, range2, color='black', linewidth=3.0)
plt.plot(thetadeg, range4, color='black', linewidth=3.0)
plt.plot(thetadeg, range8, color='black', linewidth=3.0)
plt.grid()
plt.xlabel('θ (deg)', fontsize=16)
plt.ylabel('$R(\theta)$', fontsize=16)
plt.xlim([0.0, 90.0]); plt.ylim([0.0, 1.0])
plt.tick_params(labelsize=12)
plt.show()
```

As $\alpha$ increases ($b$ increases, $v_0$ increases, $m$ decreases, or some combination), the maximum range (measured in units of $v_0^2 / g$) decreases and the angle of fire to achieve that range becomes shallower and shallower.

Even more specifically, we can examine the values in the four variables range*n to find the maximum range and the approximate firing angle to achieve it in each case. For example, the statements

```python
tmp = [np.argmax(range1), np.argmax(range2),
 np.argmax(range4), np.argmax(range8)]
print(tmp)
[44, 43, 40, 37]
```

reveal the index of the maximum value in each of the four ranges (which are also the angles of launch to achieve that range), and the statement
then displays the maximum value and the values on either side of that maximum in \texttt{range1}. Fitting a parabola to the three points and finding the coordinate of its maximum yields the angle 43.71°.\textsuperscript{14} Similar statements applied to the other three values of $\alpha$ yield that the maximum range (in units of $v_0^2/g$) and firing angle are

\begin{align*}
0.91384 \text{ and about } 44° \ (43.71°) \text{ for } & \alpha = 0.1, \\
0.84133 \text{ and about } 43° \ (42.53°) \text{ for } & \alpha = 0.2, \\
0.72602 \text{ and about } 40° \ (40.43°) \text{ for } & \alpha = 0.4, \text{ and} \\
0.56957 \text{ and about } 37° \ (37.01°) \text{ for } & \alpha = 0.8.
\end{align*}

\section*{14.10.4 Energy Levels in Quantum Well}

Finally, we turn to addressing the energy levels for the finite-depth quantum well discussed in Section 14.1.5. We seek solutions to the equations in Eq. (14.25), so we begin by creating the function \texttt{qmupper} containing the lines

\begin{verbatim}
def qmupper( s ):
    # QMUPPER: Returns the value of sin(s)-0.04*s
    return np.sin(s) - 0.04*s
\end{verbatim}

and the function \texttt{qmlower} containing the lines

\begin{verbatim}
def qmlower( s ):
    # QMLOWER: Returns the value of sin(s)+0.04*s
    return np.sin(s) + 0.04*s
\end{verbatim}

and storing the two function definitions in the file \texttt{qm.py} in the default directory. Then, taking the limits as given in Eqs. (14.26) and (14.27), we find the roots in each category with the PYTHON statements

\begin{verbatim}
upper=np.zeros(8)
upper[0] = so.bisect( qmupper, -0.5, 0.5 )
upper[1] = so.bisect( qmupper, 2.5, 3.5 )

lower= np.zeros(9)
lower[0] = so.bisect( qmlower, -0.5, 0.5 )
lower[1] = so.bisect( qmlower, 3.0, 4.0 )
\end{verbatim}

and display them with the statements

\textsuperscript{14}See an exercise towards the end of the chapter(s) on specific symbol manipulating programs.
14.10. FINDING ROOTS NUMERICALLY WITH PYTHON

print( `upper` )
[ 0. 3.02047766 6.54820492 9.05418582 13.11879409 15.06138916
  19.7610887 20.99428643]

print( `lower` )
[ 0. 3.27284942 6.03920377 9.8288367 12.06284802 16.42478429
  18.04325707 23.1777839 23.86494949]

Remember, however, that physically acceptable solutions must satisfy not Eq. (14.25), which we have solved, but Eq. (14.23). To determine which of these roots are physically meaningful, we substitute each into Eq. (14.23), remembering that \( c = 25 \) for the case we have treated. The appropriate statements to PYTHON are

print( upper*np.cos(upper)/np.sin(upper) + np.sqrt(25.0**2-upper**2))
[ nan -3.72452291e-10 4.82543682e+01 7.26387839e-11
  4.25627650e+01 5.19736337e+01 -1.52233781e-12]

print( lower*np.cos(lower)/np.sin(lower) + np.sqrt(25.0**2-lower**2))
[ nan 4.95696772e+01 7.44648787e-11 4.59736433e+01 -1.76214598e-12
  3.76949047e+01 -5.17594856e-11 1.87393264e+01 -2.59428035e-11]

Only those roots of Eq. (14.25) that give zero (within the precision of our determination of the root) on substitution into Eq. (14.23) can be accepted. We therefore must reject as spurious the values upper[2], upper[4], upper[6], lower[1], lower[3], lower[5], and lower[7]. We also reject upper[0] and lower[0]; they correspond to evaluation of Eq. (14.23) at \( s = 0 \) and, because \( \lim_{s \to 0} s \cot s = 1 \) while \( -\sqrt{25^2 - s^2} = -25 \) when \( s = 0 \), these roots don’t satisfy the original equation. Thus, we can assemble a single vector containing the physically meaningful roots with the PYTHON statements

\[
s = lower[1:9] \\
\text{Discard first root in lower.}
\]

for i in [1,3,5,7]: s[i-1]=upper[i]
\[
\text{Replace “bad” roots in } s \text{ with “good” ones in } upper
\]

print( `s` )
  18.04325707 23.1777839 23.86494949]

Finally, remembering that we are interested not so much in the values of \( s \) but in the associated energies, we exploit the equation \( E/V_0 = -(1-s^2/c^2) \) to find the allowed energies with the statements

energy = -( 1 - s**2./25.0**2 )

print( `energy` )
[ -0.98540274 -0.94164483 -0.86883475 -0.76718032 -0.63704729
  -0.4791054 -0.2947839 -0.08877741]

The statements

for i in np.arange(8):
    plt.plot([0.2, 1.0], [energy[i], energy[i]], color='black',
            linewidth=2.0)
plt.box(on=None)
plt.plot([0.0,1.2,1.2,1.5], [-1.0,-1.0,0.0,0.0], color='black')
plt.plot([0.0,0.0], [-1.5,0.5], color='black')
plt.ylabel('$E/V_0$', fontsize=16)
plt.tick_params(axis='x', which='both', bottom=False, top=False, 
                labelbottom=False)
plt.tick_params(labelsize=14)
CHAPTER 14. FINDING ROOTS

Figure 14.11: Energy level diagram for the one-dimensional quantum well when \( c = 25.0 \). The heavy lines show the energies, measured in units of \( V_0 \); the light lines show the energies of the bottom \((-1)\) and the top \( (0)\) of the well.

will produce the energy level diagram of Fig. 14.11. The for-loop opens the plot window and draws the energy levels, plt.box turns off the enclosing box, and the remaining statements draw the potential well and arrange for there to be only a labeled vertical axis.

14.12 Finding Roots Numerically with MAPLE

When MAPLE is unable to find an analytic solution for the roots of an equation of interest, we must resort to numerical methods. MAPLE’s workhorse for this purpose is the command \texttt{fsolve}, which invokes a variation of Newton’s method. Its syntax is essentially identical to that used with the command \texttt{solve}. In its simplest form, we merely invoke the function with a specification of the equation \( \text{Eqn} \) to be solved and the variable \( \text{Var} \) to be found, for example,

\[
\text{fsolve( Eqn, Var )}
\]

More specifically, the statement

\>
\texttt{fsolve( \cos(x)=0, x );}
\>
1.570796327

returns a value we recognize as \( \pi/2 \). If \( \text{Eqn} \) is a polynomial, \texttt{fsolve} returns all real roots.\footnote{If the option complex is added to the argument of \texttt{fsolve}, the command will return complex roots of the polynomial as well.} For non-polynomials, \texttt{fsolve} searches for a single root. In the form so far illustrated, the command makes its own judgment about the interval in which to search. We can, however, stipulate the interval in which \texttt{fsolve} is to search for a root by specifying an additional argument, e.g.,
14.12. FINDING ROOTS NUMERICALLY WITH MAPLE

\[ \text{fsolve}( \cos(x) = 0, x, \text{Pi..}2 \cdot \text{Pi} ); \]
\[ 4.712388980 \]

a value we recognize as \(3\pi/2\). This additional argument provides bounds for the search and permits us to select a particular root from the many that we know \textit{a priori} exist. In all cases, the accuracy of the value returned is controlled by the environment variable \textit{Digits}. Note, of course, that \textit{fsolve} cannot return roots for any equation that contains variables to which no numeric value has been assigned.

Out of curiosity, let us test \textit{fsolve} with a polynomial that has a multiple root. We execute the statements

\[ \text{p1 := expand( (x-1)^2*(x+3)*(x-4) );} \]
\[ \text{fsolve( p1, x );} \]
\[ -3.000000000, 1.0, 1.0, 4.000000000 \]

Clearly, \textit{fsolve} has returned all four roots of the given polynomial even though one of the three distinct roots is a double root.

14.12.1 Classical Turning Points

To find the turning points for the potential energy in Eq. (14.3), we simply define the polynomial and invoke \textit{fsolve} with the statements

\[ \text{V := x^3/10000+x^2/200-x/500-1/2;} \]
\[ \text{fsolve( V, x );} \]
\[ -48.26826757, -11.08043663, 9.348704198 \]

These results are certainly consistent with the bounds identified in Section 14.1.1.

14.12.2 Range of Projectile

As laid out in Section 14.1.4, finding the range of a projectile moving in a viscous medium begins with finding the time at which a projectile launched at some angle \(\theta\) in a medium characterized by a (dimensionless) viscous damping coefficient \(\alpha = bv_0/(mg)\) returns to its initial altitude. In other words, we must find the one non-zero root of the function \(f(\tau)\) defined in Eq. (14.18). Finding that root and then the range for a particular choice of \(\alpha\) and \(\theta\) is quickly accomplished in MAPLE with the statements

\[ \text{rang := cos(theta)*(1-exp(-tau))/alpha;} \]
\[ \text{fct := tau - (1+alpha*sin(theta))*(1-exp(-tau));} \]
\[ 0.4; \theta := \text{Pi*30.0/180.0;} \]
\[ \text{fsolve( fct, tau, 0.2..0.5);} \]
\[ \text{evalf( eval( rang, tau=%));} \]

This result is expressed in units of \(v_0^2/g\).

To find the angle of fire to attain \textit{maximum} range, we need to repeat the sample calculation of the previous paragraph for values of \(\theta\) ranging from \(0^\circ\) to \(90^\circ\), choosing, say, increments of \(1^\circ\) between consecutive values of \(\theta\). To this end, we define an appropriately sized array and then accomplish all of these operations in a single loop with the statements
> rng := Array( 1..91 ):
> for i from 0 to 90 do
> theta := Pi*i/180.0:
> tmp := fsolve( fct, tau, 0.005..0.8 ):
> rng[i+1] := [ i, evalf( eval( rang, tau=tmp ) ) ]:
> end do:

(Remember that $\alpha$ was set to 0.4 in the previous paragraph.) The range within which roots are sought has been set with reference to Fig. 14.4, with the lower limit set so that the root $\tau = 0$ will not be found for any of the angles. Unfortunately, the only root for $\theta = 0$ is $\tau = 0$. Thus, to have the correct values in all elements of rng, we must execute the statement

> rng[1] := [0,0.0]:

after the above loop has terminated. Finally, we produce the graph in Fig. 14.12 with the statements

> rng1 := convert( rng, list ):
> plots[listplot]( rng1, color='black', labels=["theta","R(theta)"],
> thickness=3, labelfont=[TIMES,ROMAN,16], axesfont=[TIMES,ROMAN,14],
> labeldirections=[HORIZONTAL,VERTICAL] );

Further, by noting the three values,

> [ rng1[40][2], rng1[41][2], rng1[42][2] ];

[0.7251742824, 0.7259485662, 0.7258889382]

we conclude that the maximum range for $\alpha = 0.4$ occurs near $\theta = 40^\circ$ (or, with parabolic interpolation to find the maximum, $\theta = 40.43^\circ$), rather lower than the $45^\circ$ angle at which that maximum range occurs when $\alpha = 0$ (no viscous damping).

Had we started with some other value of $\alpha$, of course, statements identical to those in the previous paragraph would produce a graph corresponding to that other value of the viscous damping.

### 14.12.3 Energy Levels in Quantum Well

Finally, we turn to addressing the energy levels for the finite-depth quantum well discussed in Section 14.1.5, seeking solutions to the equations in Eq. (14.25). In preparation, we first creating lists of the lower and upper bounds given in Eqs. (14.26) and (14.27). To that end we execute the statements

> ulb := [ -0.5, 2.5, 6.0, 8.5, 12.5, 14.5, 19.0, 20.5 ]:
> uub := [ 0.5, 3.5, 7.0, 9.5, 13.5, 15.5, 20.0, 21.5 ]:
> llb := [ -0.5, 3.0, 5.5, 9.5, 11.5, 16.0, 17.5, 22.5, 23.5 ]:
> lub := [ 0.5, 4.0, 6.5, 10.5, 12.5, 17.0, 18.5, 23.5, 24.5 ]:

Then, we find the roots in each category with the simple loops

---

16 Remember that the index of the two-component entries in rng1 is one larger than the angle in degrees to which that entry corresponds.

17 We use a three-character variable name, where the first character will be u or l for the upper or lower sign in Eq. (14.25) and the remaining characters will be lb or ub for the lower or upper bounds on the root. Thus, for example, ulb will contain the lower bounds for the roots associated with the upper sign.
> rootu := Array( 1..8 ): rootl := array( 1..9 ):
> for i from 1 to 8 do
> rootu[i] := fsolve( sin(s)-0.04*s, s, ulb[i]..uub[i] ):
> end do:
> for i from 1 to 9 do
> rootl[i] := fsolve( sin(s)+0.04*s, s, llb[i]..lub[i] ):
> end do:

Next, we concatenate the elements into lists and display them with the statements

> rtu := convert( rootu, list );
rtu := [0., 3.020477661, 6.548204921, 9.054185825, 13.11879409,
15.06138916, 19.76108870, 20.99428643]
> rtl := convert( rootl, list );
rtl := [0., 3.272884921, 6.039203770, 9.828836697, 12.06284802,
16.42478429, 18.04325707, 23.1777839, 23.86449494]

Remember, however, that physically acceptable solutions must satisfy not Eq. (14.25), which we have solved, but Eq. (14.23). To determine which of these roots are physically meaningful, we substitute each into Eq. (14.23), remembering that \( c = 25 \) for the case we have treated. The appropriate statements to MAPLE are
\[ f := x -> x \cdot \cot(x) + \sqrt{25^2 - x^2} : \]
\[ \text{map( } f, \text{ rtu }); \]
\[ [\text{Float(undefined)}, 9 \times 10^{-8}, 48.25436814, -1 \times 10^{-8}, 42.56276498, -2.0 \times 10^{-7}, 30.62674473, -1.4 \times 10^{-7}] \]
\[ \text{map( } f, \text{ rtl }); \]
\[ [\text{Float(undefined)}, 49.56967714, -4 \times 10^{-8}, 45.97364326, 2.5 \times 10^{-7}, 37.69490481, 3 \times 10^{-8}, 18.73932650, -1.35 \times 10^{-7}] \]

Only those roots of Eq. (14.25) that give zero (within the precision of our determination of the root) on substitution into Eq. (14.23) can be accepted. We therefore must reject as spurious the values \text{rtu}[1], \text{rtu}[3], \text{rtu}[5], \text{rtu}[7], \text{rtl}[1], \text{rtl}[2], \text{rtl}[4], \text{rtl}[6], \text{and} \text{rtl}[8]. Thus, we assemble a single list containing the eight physically meaningful roots with the MAPLE statements

\[ s := \text{Array}(1..8) ; \]
\[ \text{for } i \text{ from 1 to 8 do} \]
\[ s[i] := \text{rtl}[i+1] : \text{end do} ; \]
\[ \text{for } i \text{ from 1 by 2 to 7 do} \]
\[ s[i] := \text{rtu}[i+1] : \text{end do} ; \]
\[ \text{print( } s ) ; \]

Finally, remembering that we are interested not so much in the values of \text{s} as in the associated energies, we exploit the equation \( E/V_0 = - (1 - s^2/c^2) \) to find the allowed energies with the statement

\[ \text{energy} := \text{map( } x \rightarrow -(1 - x^2/25.0^2), \text{ s } ); \]
\[ \text{energy} := [ -0.9854027435, -0.9416448285, -0.8688347505, -0.7671803162, -0.6370472906, -0.4791053989, -0.2947838997, -0.0887774101 \]

Then, the statement

\[ \text{plot( } \text{energy}, x=0.2..0.8, \text{ color='black'}, \text{ view=[0.0..1.0,-1.5..0.5]}, \text{ thickness=3, labels=['"","E/VO"'], tickmarks=[0,5], gridlines=true, axesfont=[TIMES,ROMAN,14], labelfont=[TIMES,ROMAN,16], labeldirections=[HORIZONTAL,VERTICAL] ) ; \]

will produce the energy level diagram of Fig. 14.13.
14.14 Finding Roots Numerically with FORTRAN

Note: Except for files explicitly flagged as from the Numerical Recipes library, all FORTRAN programs (*.f) in this chapter can be copied from the directory $HEAD/fortran, where (as defined in the Local Guide) $HEAD must be replaced by the appropriate path for your site.

FORTRAN programs to find roots numerically can be constructed in several ways. In this section, we describe how we can implement one or another algorithm directly in a program that we write from scratch—a task that is tedious and difficult except for the simplest of algorithms. In addition, we describe how we can make use of available standard subroutines—we here focus on those in the Numerical Recipes library—and devote our efforts solely to the easier task of writing a driving program to invoke the features of whatever root-finding subroutine we choose to use.

14.14.1 FORTRAN Programs from Scratch

The very simplest method for finding a root is to keep the person desiring the root in the loop and write a program that asks that person for a proposed root, then calculates and displays the value of the function at the proposed root, and finally returns to ask for a new proposal. For the polynomial of Eq. (14.3), whose roots give the turning points for a classical particle experiencing a particular potential energy, we might, for example, use the program listed in Table 14.2. After storing this program in the file guessroot.f, we compile, link, and run it with the two statements

\[ \text{f77 -o guessroot.xf guessroot.f} \]

To be specific, both here and throughout this section, we illustrate with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. In particular, preceding the program name with ./ is necessary in UNIX but may not be necessary with other operating systems. Details will be found in the Local Guide.
CHAPTER 14. FINDING ROOTS

Table 14.2: The FORTRAN program GUESSROOT.F.

PROGRAM GUESSROOT

WRITE(*, '(1X, A)') 'First guess = '
READ(*,*) X

DO WHILE (X .NE. 9999)
  F = x**3/10000.0 + x**2/200.0 - x/500.0 - 0.5
  WRITE(*, '(1X, A, F12.6)') 'F(X) = ', F
  WRITE(*, '(1X, A)') 'Next guess = '
  READ(*,*) X
ENDDO
END

./guessroot.xf

We know for the illustrative function used in the above program that there is a root in the vicinity of \( x = -50.0 \), the lowest turning point for the potential energy of Eq. (14.3). To find that root, we might then use this program to evaluate the function repeatedly for a succession of judicious guesses, each guided by the results of all previous trials. We might, for example, find this root with the “conversation”\(^\text{19}\)

```
./guessroot.xf
First guess = -50.0 F(X) = -0.400000
Next guess = -49.0 F(X) = -0.161900
Next guess = -48.0 F(X) = 0.056800
Next guess = -48.5 F(X) = -0.050163
Next guess = -48.25 F(X) = 0.003911
Next guess = -48.375 F(X) = -0.022978
Next guess = -48.3125 F(X) = -0.009496
Next guess = -48.2813 F(X) = -0.002794
Next guess = -48.2656 F(X) = 0.000573
Next guess = -48.2735 F(X) = 0.001121
Next guess = -48.2695 F(X) = 0.000264
Next guess = -48.2676 F(X) = 0.000144
Next guess = -48.2685 F(X) = -0.000050
Next guess = 9999
```

Starting at a point we suspect to be below the root, we scan upwards until the function changes sign. In that way, we discover that the root lies between \( x = -49.0 \) and \( x = -48.0 \). From this point, we carry out a binary search, repeatedly halving the interval and deciding on the basis of the signs at each step which half of the current interval to refine further. By the time we stopped, we had concluded that the root lies somewhere between \( x = -48.2676 \) and \( x = -48.2685 \), i.e., that the root is \( x = -48.268 \) to three places after the decimal.

An algorithm to implement the method of bisection in a FORTRAN program merely automates the decision making process that was explicit in the previous paragraph. A full listing of a possible program, which we have named bisect.f, is presented in Section 14.A. This program (1) defines the function whose roots will be sought with the lines

\(^{19}\)The prompts, entered values, and returned values have been displayed on the same line to save space.
FUNCTION FUNC(X)
    FUNC = X**3/10000.0 + X**2/200.0 - X/500.0 - 0.5
END

(2) sets the tolerance and reads the initial bounds for the root with the lines

    TOL = 0.0001
    WRITE(*, '(1X, A)' ) 'Lower bound = '
    READ(*,*) XA
    WRITE(*, '(1X, A)' ) 'Upper bound = '
    READ(*,*) XB

and finally (3) evaluates the function at the two bounds, verifies that a root exists in the specified interval (and terminates execution if not), refines the estimate of the root, and displays the final value of the root, its final bounds, and the function at the declared root with the lines

    FA = FUNC(XA)
    FB = FUNC(XB)
    IF ( FA*FB .GE. 0.0 ) THEN
        WRITE(*,'(1X,A)' ) 'No root in interval'
        GOTO 99
    ENDIF
    FM = FA
    DO WHILE ( (XB-XA) .GE. TOL .AND. (FM .NE. 0.0) )
        XM = 0.5*(XB+XA)
        FM = FUNC(XM)
        IF (FA*FM .GE. 0.0) THEN
            XA = XM
        ELSE
            XB = XM
        ENDIF
    END DO

    WRITE(*, '(1X, A, E15.6)') 'ROOT = ', XM
    WRITE(*, '(1X, A, E15.4)') 'XB-XA = ', XB-XA
    WRITE(*, '(1X, A, E15.6)') 'FUNCTION = ', FM

99 END

The loop continues as long as the interval within which the root lies is larger than the desired tolerance and the value at the midpoint hasn't happened to be exactly zero. Using this program, which we compile, link, and run with the statements

    f77 -o bisect.xf bisect.f
    ./bisect.xf

we have the conversation
and find that the lowest root of our sample polynomial is \( x = -48.2682 \pm 0.0001 \). If we instead use the lower and upper bounds \(-15.0\) and \(-5.0\), this program converges to \( x = -11.0804 \pm 0.0001 \). Finally, with lower and upper bounds \(5.0\) and \(15.0\), the program converges to \( x = 9.3487 \pm 0.0001 \).

### 14.14.2 Using Numerical Recipes

Numerical Recipes provides several subroutines for finding roots of user-defined functions of a single variable, including \texttt{rtbis} (bisection), \texttt{rtnewt} (Newton’s method), and \texttt{rtsafe} (combination of bisection and Newton’s method to achieve greater stability). For the sake of a specific example, suppose we seek non-negative values of \( s \) satisfying Eq. (14.25), i.e., we seek energy eigenvalues for the quantum particle in a finite depth well. The graph of this function in Fig. 14.5 supported the identification of the brackets shown in Eqs. (14.26) and (14.27) for the non-negative roots of this function.

The \textit{method of bisection} is implemented in the function \texttt{rtbis.f}, which is invoked with a statement of the form

\[
\text{ROOT} = \text{RTBIS}( \text{FUNC, SLB, SUB, EPS})
\]

where \texttt{FUNC} defines the univariate function whose roots are to be found, \texttt{SLB} and \texttt{SUB} specify the bounds within which the desired root is known to lie, and \texttt{EPS} specifies the desired absolute accuracy.

A FORTRAN driving program using \texttt{RTBIS} must be written by the user and will have the general form shown in Table 14.3. This program defines the function whose roots are desired, establishes the bounds and the desired error for a given root, invokes \texttt{rtbis}, and displays the value obtained. The steps in finding this root then are

1. Create the driving program, either (1) by copying the demonstration program \texttt{xrtbis.f} to the default directory from the directory \$\text{NRHEAD}/recipes/demo/src, giving it the name \texttt{sinrtbis.f}, and editing it appropriately or (2) by creating the file \texttt{sinrtbis.f} with an available text editor.

2. Copy the recipe \texttt{rtbis.f} from the directory \$\text{NRHEAD}/recipes\frecipes to the default directory.

3. Compile and link the executable module with the statement

\[
f77 -o sinrtbis.xf sinrtbis.f rtbis.f
\]

4. Run the program with the statement \texttt{./sinrtbis.xf}.

The lowest two and the highest non-negative roots of the sample function would then be found with the statements\textsuperscript{20}

\[
\text{./bisect.xf} \\
\text{Lower bound} = -50.0 \\
\text{Upper bound} = -40.0 \\
\text{ROOT} = -0.482682E+02 \\
\text{XB-XA} = 0.7629E-04 \\
\text{FUNCTION} = 0.131130E-04
\]

\textsuperscript{20}To save space, prompting messages and values input are shown on the same line.
14.14. FINDING ROOTS NUMERICALLY WITH FORTRAN

Table 14.3: The FORTRAN program sinrtbis.f. A more elaborate demonstration program named xrtbis.f can be found in the directory $NRHEAD/recipes_f/demo/src.

```
PROGRAM SINRTBIS

EXTERNAL FUNC ! Alert compiler that FUNC is a user-defined
 ! procedure that will appear as an argument
 ! to a subroutine

WRITE(*, '(1X,A)') 'Lower bound on root = ' ! Get lower bound
READ(*,*) SLB

WRITE(*, '(1X,A)') 'Upper bound on root = ' ! Get upper bound
READ(*,*) SUB

WRITE(*, '(1X,A)') 'Error limit = ' ! Get error limit
READ(*,*) EPS

ROOT = RTBIS(FUNC, SLB, SUB, EPS) ! Find root
WRITE(*,'(1X, A, F15.6)') 'Root is ', ROOT ! Display root

END

FUNCTION FUNC(S) ! Define function
 FUNC= SIN(S) - 0.04*S
END
```

An alternative algorithm uses Newton’s method and is implemented in rtnewt.f. While the method of bisection requires an upper and lower bound in order to locate a root, Newton’s method starts with a single zeroth-order “guess”. Even so, rtnewt still requires bounds for each root. The bounds are used to determine the necessary initial guess—a value at the midpoint of the bounded interval—and, since Newton’s method has some instabilities, they are also used as a way to assess whether Newton’s method is stepping out of the interval in which a root is known to exist. The function rtnewt is invoked with a statement of the form

```
./rtnewt.xf
Lower bound on root = -0.5
Upper bound on root = 0.5
Error limit = 0.0001
Root is 0.000000
```

```
./rtnewt.xf
Lower bound on root = 2.5
Upper bound on root = 3.5
Error limit = 0.0001
Root is 3.020508
```

```
./rtnewt.xf
Lower bound on root = 20.5
Upper bound on root = 21.5
Error limit = 0.0001
Root is 20.994324
```

An alternative algorithm uses Newton’s method and is implemented in rtnewt.f. While the method of bisection requires an upper and lower bound in order to locate a root, Newton’s method starts with a single zeroth-order “guess”. Even so, rtnewt still requires bounds for each root. The bounds are used to determine the necessary initial guess—a value at the midpoint of the bounded interval—and, since Newton’s method has some instabilities, they are also used as a way to assess whether Newton’s method is stepping out of the interval in which a root is known to exist. The function rtnewt is invoked with a statement of the form
ROOT = RTNEWT( FUNC, SLB, SUB, EPS)

where **FUNC** defines a subroutine that returns both the function whose roots are to be found and its first derivative, **SLB** and **SUB** specify the bounds within which the desired root is known to lie, and **EPS** specifies the desired absolute accuracy. A suitable driving program to use **rtnewt** to find the roots of our test function differs from **sinrtbis** in only a few respects:

- The first line would name the program **sinrtnewt**.
- The line invoking **RTBIS** should invoke **RTNEWT** instead.
- The user-defined function must be replaced with a subroutine that returns both the value of the function and the value of its derivative. Thus, the function **FUNC** in **sinrtbis** must be replaced with the subroutine

```fortran
SUBROUTINE FUNC(S, F, DFDX)
 F = SIN(S) - 0.04*S
 DFDX = COS(S) - 0.04
RETURN
END
```

The steps in finding this root then are

1. Create the driving program, either (1) by copying the demonstration program **xrtnewt.f** from the directory `$NRHEAD/recipes_f/demo/src`, giving it the name **sinrtnewt.f** and editing it appropriately or (2) by creating the file **sinrtnewt.f** with an available text editor.

2. Copy the recipe **rtnewt.f** from the directory `$NRHEAD/fortran/recipes_f/recipes` to the default directory.

3. Compile and link the executable module with the statement

   ```bash
 f77 -o sinrtnewt.xf sinrtnewt.f rtnewt.f
   ```

4. Run the program with the statement `./sinrtnewt.xf`.

The lowest two and the highest non-negative roots of the sample function would then be found with the statements\(^\text{21}\)

```bash
./sinrtnewt.xf
Lower bound on root = -0.5
Upper bound on root = 0.5
Error limit = 0.0001
Root is 0.000000
```

\(^{21}\)To save space, the prompting messages and the responses are shown on the same line.
As we have already mentioned, Newton’s method converges quite rapidly when it works but the price paid for that more rapid convergence is occasional instability. The Numerical Recipe \texttt{rtsafe} finds roots by a combination of Newton’s method and the method of bisection, thereby achieving an element of stability that Newton’s method alone lacks. Exploration of this alternative to \texttt{rtbis} and \texttt{rtnewt} is left to the exercises at the end of the chapter.

Finally, we mention an auxiliary subroutine \texttt{zbrak}, whose function is to find bracketing intervals for any roots in a given interval. This routine is valuable in helping to find the positions of roots prior to invoking \texttt{rtbis}. It is called with the statement

\begin{verbatim}
CALL ZBRAK( FUNC, A, B, N, SLB, SUB, NROOTS )
\end{verbatim}

When called, \texttt{zbrak} divides the interval $A \leq X \leq B$ into $N$ equal segments, scans through those segments, identifies any in which the function \texttt{FUNC} changes sign, and stores the lower and upper bounds of each such segment in \texttt{SLB()} and \texttt{SUB()}. On input \texttt{NROOTS} specifies the maximum number of such segments that can be stored; on return, \texttt{NROOTS} stores the actual number of such segments found in the specified interval. A suitable driving program must dimension \texttt{SLB()} and \texttt{SUB()} appropriately, invoke \texttt{zbrak}, and then invoke \texttt{rtbis} in a loop whose index steps from one bracket to the next. The demonstration programs \texttt{$NRHEAD/recipes_f/demo/src/rtbis.f}, \ldots/rtnewt.f, and \ldots/xrtsafe.f all illustrate this strategy. Note that \texttt{zbrak} will—erroneously—conclude that a root exists at a point on one side of which the function diverges to $+\infty$ and on the other side of which the function diverges to $-\infty$, so we must be cautious in using \texttt{zbrak} on functions that have singularities in the interval in which roots are sought.

\section*{14.15 Finding Roots Numerically with C}

\textit{Note:} Except for files explicitly flagged as from the Numerical Recipes library, all C programs (*.c) in this chapter can be copied from the directory \texttt{$HEAD/cc}, where (as defined in the \textit{Local Guide}) \texttt{$HEAD} must be replaced by the appropriate path for your site.

C programs to find roots numerically can be constructed in several ways. In this section, we describe how we can implement one or another algorithm directly in a program that we write from scratch—a task that is tedious and difficult except for the simplest of algorithms. In addition, we describe how we can make use of available standard subroutines—we here focus on those in the \textit{Numerical Recipes} library—and devote our efforts solely to the easier task of writing a driving program to invoke the features of whatever root-finding subroutine we choose to use.
CHAPTER 14. FINDING ROOTS

Table 14.4: The C program guessroot.c.

/* PROGRAM guessroot.c */
#include <stdio.h> /* Load standard i.o routines */
#include <math.h> /* Load standard math routines */

main()
{
  float x, f; /* For trial root, function */
  printf( "First guess : "); scanf( "f", &x );
  while( x != 9999 ){
    f = pow(x,3)/10000.0 + pow(x,2)/200.0 - x/500.0 - 0.5;
    printf( "f(x) = %15.6f\n", f );
    printf( "Next guess : "); scanf( "f", &x );
  }
}

14.15.1 C Programs from Scratch

The very simplest method for finding a root is to keep the person desiring the root in the loop and write a program that asks that person for a proposed root, then calculates and displays the value of the function at the proposed root, and finally returns to ask for a new proposal. For the polynomial of Eq. (14.3), whose roots give the turning points for a classical particle experiencing a particular potential energy, we might, for example, use the program listed in Table 14.4. After storing this program in the file guessroot.c, we compile, link, and run it with the two statements

```
cc -o guessroot.xc guessroot.c -lm
./guessroot.xc
```

We know for the illustrative function used in the above program that there is a root in the vicinity of $x = -50.0$, the lowest turning point for the potential energy of Eq. (14.3). To find that root, we might then use this program to evaluate the function repeatedly for a succession of judicious guesses, each guided by the results of all previous trials. We might, for example, find this root with the “conversation”

```
./guessroot.xc
 First guess : -50.0 f(x) = -0.400000
 Next guess : -49.0 f(x) = -0.161900
 Next guess : -48.0 f(x) = 0.056800
 Next guess : -48.5 f(x) = -0.050163
```

---

22To be specific, both here and throughout this section, we illustrate with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. In particular, preceding the program name with ./ is necessary in UNIX but may not be necessary with other operating systems. Details will be found in the Local Guide.

23The final argument -lm is needed so that compiler will know to include the C math libraries, some pieces of which are used by this program.

24To be specific, both here and throughout this section, we illustrate these steps with the statements that would be used in UNIX to compile, link, and run the program. Other operating systems probably accomplish the same end with different statements. In particular, preceding the program name with ./ is necessary in UNIX but may not be necessary with other operating systems. Details will be found in the Local Guide.

25The prompt, the entered values, and the returned values have been displayed on the same line to save space.
14.15. FINDING ROOTS NUMERICALLY WITH C

Next guess : -48.25  f(x) = 0.003911
Next guess : -48.375 f(x) = -0.022977
Next guess : -48.2813 f(x) = -0.002794
Next guess : -48.2656 f(x) = 0.000572
Next guess : -48.2735 f(x) = -0.001121
Next guess : -48.2695 f(x) = -0.000264
Next guess : -48.2676 f(x) = 0.000143
Next guess : -48.2685 f(x) = -0.000050
Next guess : 9999

Starting at a point we suspect to be below the root, we scan upwards until the function changes
sign. In that way, we discover that the root lies between \( x = -49.0 \) and \( x = -48.0 \). From this point,
we carry out a binary search, repeatedly halving the interval and deciding on the basis of the signs
at each step which half of the current interval to refine further. By the time we stopped, we had
concluded that the root lies somewhere between \( x = -48.276 \) and \( x = -48.268 \), i.e., that the root
is \( x = -48.268 \) to three places after the decimal.

An algorithm to implement the method of bisection in a C program merely automates the
decision making process that was explicit in the previous paragraph. A full listing of a possible
program, which we have named \texttt{bisect.c}, is presented in Section 14.B. Beyond incorporating
the necessary header files, this program (1) defines the function whose roots will be sought with the
lines

\begin{verbatim}
def func( float x )
{
    return pow(x,3)/10000.0 + pow(x,2)/200.0 - x/500.0 - 0.5;
}
\end{verbatim}

(2) declares floating variables \texttt{tol}, \texttt{xa}, \texttt{xm}, \texttt{xb}, \texttt{fa}, \texttt{fm}, and \texttt{fb} for the tolerance, the lower, middle,
and upper values of the interval, and the values of the function at \texttt{xa}, \texttt{xm}, \texttt{xb}; (3) sets the tolerance
and reads the initial bounds for the root with the lines

\begin{verbatim}
tol = 0.0001
printf( "\nLower bound = "); scanf( "%f", &xa );
printf( "\nUpper bound = "); scanf( "%f", &xb );
\end{verbatim}

and finally (4) evaluates the function at the two bounds, verifies that a root exists in the specified
interval (and terminates execution if not), refines the estimate of the root, and displays the final
value of the root, its final bounds, and the function at the declared root with the lines

\begin{verbatim}
fa = func(xa); fb = func(xb); fm = fa;
if (fa*fb >= 0.0) { printf( "No root in interval\n" ); return; };
while( (xb-xa) >= tol & fm != 0.0 ){
    xm = 0.5*(xb+xa);
    fm = func(xm);
    if (fa*fm >= 0.0) xa = xm; else xb = xm;
}
printf( "root = %15.6f\n", xm );
printf( "xb - xa = %15.6f\n", xb-xa );
printf( "function = %15.6f\n", func( xm ) );
\end{verbatim}

(We must, of course, remember to declare the main program \texttt{void} in order to get away with the
simple statement \texttt{return} to terminate execution and return to the operating system.) The loop
continues as long as the interval within which the root lies is larger than the desired tolerance and
the value at the midpoint hasn’t happened to be \textit{exactly} zero. Using this program, which we compile,
link, and run with the statements
we have the conversation

```bash
./bisect.xc
Lower bound = -50.0
Upper bound = -40.0
root = -48.268204
xb - xa = 0.000076
function = 0.000014
```

and find that the lowest root of our sample polynomial is $x = -48.2682 \pm 0.0001$. If we instead use the lower and upper bounds $-15.0$ and $-5.0$, this program converges to $x = -11.0804 \pm 0.0001$. Finally, with lower and upper bounds $5.0$ and $15.0$, the program converges to $x = 9.3487 \pm 0.0001$.

14.15.2 Using Numerical Recipes

Numerical Recipes provides several subroutines for finding roots of user-defined functions of a single variable, including `rtbis` (bisection), `rtnewt` (Newton’s method), and `rtsafe` (combination of bisection and Newton’s method to achieve greater stability). For the sake of a specific example, suppose we seek non-negative values of $s$ satisfying Eq. (14.25), i.e., we seek energy eigenvalues for the quantum particle in a finite depth well. The graph of this function in Fig. 14.5 supported the identification of the brackets shown in Eqs. (14.26) and (14.27) for the non-negative roots of this function.

The *method of bisection* is implemented in the function `rtbis.c`, which is invoked with a statement of the form

```c
root = rtbis(func, slb, sub, eps)
```

where `func` defines the univariate function whose roots are to be found, `slb` and `sub` specify the bounds within which the desired root is known to lie, and `eps` specifies the desired absolute accuracy.

A C driving program using `rtbis` must be written by the user and will have the general form shown in Table 14.5. This program incorporates necessary include files and headers, defines the function whose roots are desired, establishes the bounds and the desired error for a given root, invokes `rtbis`, and displays the value obtained. The steps in finding this root then are

1. Create the driving program, either (1) by copying the demonstration program `xrtbis.c` to the default directory from the directory `\$NRHEAD/recipes_c-ansi/demo/src`, giving it the name `sinrtbis.c`, and editing it appropriately or (2) by creating the file `sinrtbis.c` with an available text editor.

2. Copy the file `rtbis.c` from the directory `\$NRHEAD/recipes_c-ansi/recipes` to the default directory.

3. Copy the header files `nr.h` and `nrutil.h` to the default directory from the directory `\$NRHEAD/recipes_c-ansi/include`.

4. Copy the utility subroutine `nrutil.c` to the default directory from the directory `\$NRHEAD/recipes_c-ansi/recipes`.

---

26 Alternatively, at some sites, the language directory may be `recipes_c-kr` rather than `recipes_c-ansi`. 
Table 14.5: The C program *sinrtbis.c*. A more elaborate demonstration program named *xrtbis.c* can be found in the directory $NRHEAD/recipes.c-ansi/demo/src.

/* PROGRAM sinrtbis.c */

#include <stdio.h>        /* Load standard i/o routines */
#include <math.h>         /* Load standard math routines */
#include "nr.h"           /* Load necessary recipes headers */
#include "nrutil.h"

float func( float s )   /* Define function */
{
    return sin(s) - 0.04*s;
}

main()
{
    float eps, slb, sub;      /* For tolerance, for bounds */
    float root;               /* For root */

    printf( "Lower bound on root = " ); /* Get lower bound */
    scanf( "%f", &slb );
    printf( "Upper bound on root = " ); /* Get upper bound */
    scanf( "%f", &sub );
    printf( "Error limit = " ); /* Get error limit */
    scanf( "%f", &eps );

    root = rtbis( func, slb, sub, eps ); /* Find root */

    printf( "Root is %15.6f\n", root );
}

5. Compile and link the executable module with the statement

```
cc -o sinrtbis.xc sinrtbis.c rtbis.c nrutil.c -lm
```

6. Run the program with the statement ./*sinrtbis.xc*.

The lowest two and the highest non-negative roots of the sample function would then be found with the statements\(^{27}\)

```bash
./sinrtbis.xc
Lower bound on root = -0.5
Upper bound on root = 0.5
Error limit = 0.0001
Root is 0.000000
```

\(^{27}\)To save space, prompting messages and values input are shown on the same line.
An alternative algorithm uses Newton’s method and is implemented in rtnewt.c. While the method of bisection requires an upper and lower bound in order to locate a root, Newton’s method starts with a single zeroth-order “guess”. Even so, rtnewt still requires bounds for each root. The bounds are used to determine the necessary initial guess—a value at the midpoint of the bounded interval—and, since Newton’s method has some instabilities, they are also used as a way to assess whether Newton’s method is stepping out of the interval in which a root is known to exist. The function rtnewt is invoked with a statement of the form

\[
\text{root} = \text{rtnewt}(\text{func, slb, sub, eps});
\]

where func defines a procedure that returns both the function whose roots are to be found and its first derivative, slb and sub specify the bounds within which the desired root is known to lie, and eps specifies the desired absolute accuracy. A suitable driving program to use rtnewt to find the roots of our test function differs from sinrtbis in only a few respects:

- The first line would name the program sinrtnewt.
- The line invoking rtbis should invoke rtnewt instead.
- The user-defined function must be replaced with a procedure that returns both the value of the function and the value of its derivative. Thus, the function func in sinrtbis must be replaced with the procedure

```c
/* Define function and derivative */
void func(float s, float *f, float *dfdx)
{
 *f = sin(s) - 0.04*s;
 *dfdx = cos(s) - 0.04;
}
```

The steps in finding this root then are

1. Create the driving program, either (1) by copying the demonstration program xrtnewt.c to the default directory from the directory $NRHEAD/recipes_c-ansi/demo/src, giving it the name sinrtnewt.c, and editing it appropriately or (2) by creating the file sinrtnewt.c with an available text editor.

2. Copy the file rtnewt.c from the directory $NRHEAD/recipes_c-ansi/recipes to the default directory.

3. If they aren’t still in the default directories, copy the header files nr.h and nrutil.h and the utility subroutine nrutil.c to the default directory as for rtbis.c.
4. Compile and link the executable module with the statement

```
cc -o sinrtnewt.xc sinrtnewt.c rtnewt.c nrutil.c -lm
```

5. Run the program with the statement `./sinrtnewt.xc`.

The lowest two and the highest non-negative roots of the sample function would then be found with the statements

```
./sinrtnewt.xc
Lower bound on root = -0.5
Upper bound on root = 0.5
Error limit = 0.0001
Root is 0.000000
```

```
./sinrtnewt.xc
Lower bound on root = 2.5
Upper bound on root = 3.5
Error limit = 0.0001
Root is 3.020478
```

```
./sinrtnewt.xc
Lower bound on root: 20.5
Upper bound on root: 21.5
Error limit : 0.0001
Root is 20.994286
```

As we have already mentioned, Newton’s method converges quite rapidly when it works but the price paid for that more rapid convergence is occasional instability. The *Numerical Recipe rtsafe* finds roots by a combination of Newton’s method and the method of bisection, thereby achieving an element of stability that Newton’s method alone lacks. Exploration of this alternative to *rtbis* and *rtnewt* is left to the exercises at the end of the chapter.

Finally, we mention an auxiliary subroutine *zbrak*, whose function is to find bracketing intervals for any roots in a given interval. This routine is valuable in helping to find the positions of roots prior to invoking *rtbis*. It is called with the statement

```
zbrak(func, a, b, n, slb, sub, &nroots)
```

When called, *zbrak* divides the interval $a \leq x \leq b$ into $n$ equal segments, scans through those segments, identifies any in which the function *func* changes sign, and stores the lower and upper bounds of each such segment in *slb[]* and *sub[]*. On input *nroots* specifies the maximum number of such segments that can be stored; on return, *nroots* stores the actual number of such segments found in the specified interval. A suitable driving program must dimension *slb* and *sub* appropriately, invoke *zbrak*, and then invoke *rtbis* in a loop whose index steps from one bracket to the next. The demonstration programs `$NRHEAD/recipes.c-ansi/demo/src/rtbis.c`, ...`/rtnewt.c`, and ...`/rtesafe.c` all illustrate this strategy. Note that *zbrak* will—erroneously—conclude that a root exists at a point on one side of which the function diverges to $+\infty$ and on the other side of which the function diverges to $-\infty$, so we must be cautious in using *zbrak* on functions that have singularities in the interval in which roots are sought.

---

28To save space, the prompting messages and the responses are shown on the same line.
14.16 Solving Simultaneous Equations

To this point in this chapter, we have limited ourselves to solving a single equation for a single unknown quantity—though the single equation has frequently exhibited numerous distinct roots. In many contexts, however, the task of finding (one or more) roots will require solving a system of \(n\) simultaneous equations for \(n\) unknowns.\(^{29}\) As with a single equation determining a single unknown, a system of \(n\) equations determining \(n\) unknowns may exhibit more than one solution, each consisting of \(n\) values, one for each of the unknowns. In this section, we merely enumerate a few contexts in which systems of equations arise and outline the strategies for addressing their solution. Fuller discussion can be found in any number of books on linear algebra and/or numerical methods.\(^{30}\)

14.16.1 Systems of Linear Equations

By far the simplest situation occurs when the equations in the system are all linear, i.e., when the unknowns in the system occur only to the first power and never in product with one another. As illustrated in the exercises at the end of this chapter, Kirchoff's laws in DC circuit theory, least squares fitting of polynomials to experimental data, and some boundary value problems are among the contexts in which systems of equations arise.

Whatever their physical origin, systems of linear equations can most conveniently be presented in matrix form, e.g.,

\[
\begin{pmatrix}
  a_{11} & a_{12} & a_{13} \\
  a_{21} & a_{22} & a_{23} \\
  a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
  x_1 \\
  x_2 \\
  x_3
\end{pmatrix}
= 
\begin{pmatrix}
  b_1 \\
  b_2 \\
  b_3
\end{pmatrix}
\]  

(14.38)

where, with \(i\) and \(j\) independently assuming the values 1, 2, and 3, the quantities \(x_i\) are the unknowns, the quantities \(b_j\) are the inhomogeneties, and the quantities \(a_{ij}\) are the coefficients defining the equations. Here, we have three equations and three unknowns. More generally, for a system of \(n\) equations and \(n\) unknowns, we would have an \(n \times n\) matrix \(A\) of coefficients, an \(n\) element vector \(\mathbf{x}\) of unknowns and an \(n\) element vector \(\mathbf{b}\) of inhomogeneties, we would write the equations compactly in the form

\[
A\mathbf{x} = \mathbf{b}
\]

(14.39)

and we would write their solution formally as

\[
\mathbf{x} = A^{-1}\mathbf{b}
\]

(14.40)

Less compactly but more usefully (at least occasionally), we might remember Cramer's rule and write the solution in terms of determinants in the form

\[
\begin{align*}
  x_1 &= \frac{\begin{vmatrix}
    b_1 & a_{12} & a_{13} \\
    a_{21} & a_{22} & a_{23} \\
    a_{31} & a_{32} & a_{33}
  \end{vmatrix}}{\begin{vmatrix}
    a_{11} & a_{12} & a_{13} \\
    a_{21} & a_{22} & a_{23} \\
    a_{31} & a_{32} & a_{33}
  \end{vmatrix}} ; \\
  x_2 &= \frac{\begin{vmatrix}
    a_{11} & b_1 & a_{13} \\
    a_{21} & a_{22} & a_{23} \\
    a_{31} & a_{32} & a_{33}
  \end{vmatrix}}{\begin{vmatrix}
    a_{11} & a_{12} & a_{13} \\
    a_{21} & a_{22} & a_{23} \\
    a_{31} & a_{32} & a_{33}
  \end{vmatrix}} ; \\
  x_3 &= \frac{\begin{vmatrix}
    a_{11} & a_{12} & b_1 \\
    a_{21} & a_{22} & a_{23} \\
    a_{31} & a_{32} & a_{33}
  \end{vmatrix}}{\begin{vmatrix}
    a_{11} & a_{12} & a_{13} \\
    a_{21} & a_{22} & a_{23} \\
    a_{31} & a_{32} & a_{33}
  \end{vmatrix}}
\end{align*}
\]  

(14.41)

In this rule, which can be readily extended to \(n\) equations, the denominator in the expression for the \(i\)-th unknown is the determinant of the coefficient matrix and the numerator is the determinant of the matrix created from the coefficient matrix by replacing its \(i\)-th column with the column of

\(^{29}\)Actually, systems will sometimes be underdetermined (\(n\) equations with \(m\) unknowns, \(n < m\)) or overdetermined (\(n\) equations with \(m\) unknowns, \(n > m\)), but we shall not consider these cases at all.

14.16. SOLVING SIMULTANEOUS EQUATIONS

inhomogeneities. Cramer’s rule provides a direct, symbolic, and exact solution to the system of \( n \) simultaneous linear equations. Note, however, that the rule gives problems if the determinant of the coefficient matrix happens to be zero or, equivalently, if the inverse \( A^{-1} \) of the coefficient matrix fails to exist. When \( |A| = 0 \), the equations are said to be singular and will either have no solution (equations inhomogeneous; \( \mathbf{b} \neq \mathbf{0} \)) or an infinite number of solutions (equations homogeneous; \( \mathbf{b} = \mathbf{0} \)).

While compact, Cramer’s rule is not particularly useful for numerical solution of even modest sized systems, since the most direct approach to evaluating determinants is vulnerable to round off error.\(^{31}\) We can, however, invent alternative methods that are computationally more satisfactory. The simplest algorithm to describe involves Gaussian elimination, in which one variable at a time is systematically eliminated to yield a simpler system whose solution is readily found by a process called backsubstitution. We illustrate with Eq. (14.38), but the schema is readily extended to \( n \) equations. The process of Gaussian elimination entails

- dividing each equation by the coefficient of \( x_1 \), obtaining\(^{32}\)

\[
\begin{pmatrix}
1 & a'_{12} & a'_{13} \\
1 & a'_{22} & a'_{23} \\
1 & a'_{32} & a'_{33}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
= 
\begin{pmatrix}
b'_1 \\
b'_2 \\
b'_3
\end{pmatrix} \tag{14.42}
\]

- keeping the first equation and replacing the second and third with the result of subtracting the first from each in turn, obtaining

\[
\begin{pmatrix}
1 & a'_{12} & a'_{13} \\
0 & a''_{22} & a''_{23} \\
0 & a''_{32} & a''_{33}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
= 
\begin{pmatrix}
b'_1 \\
b'_2 \\
b'_3
\end{pmatrix} \tag{14.43}
\]

- dividing the second and third equations by the coefficient of \( x_2 \), obtaining

\[
\begin{pmatrix}
1 & a''_{12} & a''_{13} \\
0 & 1 & a''_{33} \\
0 & 1 & a''_{33}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
= 
\begin{pmatrix}
b''_1 \\
b''_2 \\
b''_3
\end{pmatrix} \tag{14.44}
\]

- keeping the first and second equations but replacing the third with the result of subtracting the second from the third, obtaining

\[
\begin{pmatrix}
1 & a''_{12} & a''_{13} \\
0 & 1 & a''_{23} \\
0 & 0 & a''_{33}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
= 
\begin{pmatrix}
b''_1 \\
b''_2 \\
b''_3
\end{pmatrix} \tag{14.45}
\]

In essence, Gaussian elimination converts the original system of equations with a general coefficient matrix into an equivalent system whose coefficient matrix is upper triangular. In that form, however, the solution is readily obtained by backsubstitution. The third equation tells us directly that \( x_3 = b''_3/a''_{33} \). Then, knowing \( x_3 \), we find from the second equation that \( x_2 = b''_2 - a''_{23}x_3 \) and, knowing \( x_3 \) and \( x_2 \), we find from the first equation that \( x_1 = b'_1 - a'_{12}x_2 - a'_{13}x_3 \). The job is done!

Unfortunately, in a computer whose arithmetic is done to finite precision, the order in which the equations are treated in this process and the order in which the variables are placed can have a significant impact on the quality of the solution obtained. Thus, while Gaussian elimination

\(^{31}\)The most direct approach involves sums and differences of products of \( n \) elements taken so that each column and each row is represented once and only once in each product. The result is a combination of terms that are individually large, some of which are positive and some negative. We end up trying to evaluate a difference between two large numbers, an operation that invites round off error.

\(^{32}\)For the sake of simplicity, we will not bother to keep track of the relationship between the original coefficients and those generated along the way. The nature of the algorithm will be clear even without that knowledge.
with backsubstitution provides a starting point, it requires sophisticated embellishment to choose
the optimum equation and variable to be the focus of each step in the process. Effecting that
embellishment entails a process called pivoting, in which at each step we examine the coefficients in
the remaining equations and reorder either the equations (partial pivoting) or the equations and the
variables (full pivoting) to optimize the accuracy of the solution. Gaussian elimination with pivoting
(alternatively called Gaussian elimination with pivotal condensation) yields a more involved program
but also increases the likelihood of useful results.

A similar strategy exploits the property that, under appropriate (and not too restrictive) conditions,
the coefficient matrix \(A\) can be factored into a product of two matrices \(L\) and \(U\), the first of
which has non-zero elements only on and below the main diagonal (and the elements on the main
diagonal are all ones) and the second of which has non-zero elements only on and above the main
diagonal, and the two matrices are unique.\(^{33}\) That is, we can write

\[
A = LU \quad \text{where} \quad L = \begin{pmatrix}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1 \\
\end{pmatrix} \quad \text{and} \quad U = \begin{pmatrix}
u_{11} & u_{12} & u_{13} \\
u_{22} & u_{23} & u_{24} \\
0 & 0 & u_{33} \\
\end{pmatrix}
\] (14.46)

This so-called \(LU\) decomposition allows us to seek the solution of the original equation in steps.
First, we view the equation in the form

\[
Ax = b \implies LUx = b \implies Ly = b \quad \text{where} \quad y = Ux
\] (14.47)

Since the first equation in the (matrix) equation \(Ly = b\) tells us \(y_1\) directly, the second tells us \(y_2\)
directly once \(y_1\) is known, and the third tells us \(y_3\) directly once \(y_1\) and \(y_2\) are known, the equation
\(Ly = b\) is readily solved for \(y\). Then, however, once \(y\) is known, a similar process that starts with
\(x_3\), then moves to \(x_2\) and finally to \(x_1\) directly solves the equation \(Ux = y\) for the original unknowns
in \(x\).

The methods outlined in the previous paragraphs will all work for (almost) any system of linear
equations. Sometimes, however, the coefficient matrix may have special properties that can be
exploited to simplify the algorithm or—important for large systems—reduce the requirements on
memory for storage of matrices and intermediate results. The coefficient matrix may be symmetric
\((a_{ij} = a_{ji})\) or it may be sparse (only a small fraction of its elements differing from zero). In the
latter category, the matrix may be tridiagonal (non-zero elements only on the main diagonal, on the
diagonal immediately above the main diagonal, and on the diagonal immediately below the main
diagonal). Special savings in storage can be achieved if the matrix happens to be both symmetric
and tridiagonal, since in that case the only elements that need be stored are those on the main
diagonal and those on the diagonal immediately above the main diagonal, \(2n - 1\) elements rather
than \(n^2\) elements.

The methods outlined in the previous paragraphs are also all direct methods, i.e., each leads
directly to the desired solution in a finite number of steps. Except for round off error, each would
yield an exact solution to the equations at hand. When the coefficient matrix is sparse, an iterative
approach may be computationally more efficient. Such approaches entail finding a means by which
an initial guess can be repeatedly refined until some criterion of convergence has been met. Among
the most common such procedures applies to Laplace’s equation. As judiciously as possible, we
“guess” a solution at a regular grid of points laid over the domain of the problem. Then, to carry
out the first iteration, we step systematically through that grid, replacing the value at each grid
point with the average of the values at its nearest neighbors. Then, we repeat the process with the
results of the first iteration as input, generating the second iteration, and continuing until—say—no
value changes by more than some specified tolerance. The only drawback to an iterative method
is that we have added the uncertainties associated with convergence to those potentially generated

\(^{33}\)The proof of this assertion is beyond the scope of this book. See, for example, S. D. Conte, Elementary Numerical
Analysis (McGraw-Hill, New York, 1965), pg. 178ff, or William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
2.3 for a proof by construction.
14.16. SOLVING SIMULTANEOUS EQUATIONS

by computer round-off. In terms of computational labor, however, the sacrifice is often worth the gains.

Finally, we merely mention the more sophisticated approach—*singular value decomposition*—we must adopt if the system of equations confronting us happens to be nearly singular, in which case the presence of computer roundoff introduces instabilities in the simpler methods.\(^{34}\)

Each of the software packages described in this book makes available a spectrum of commands to solve simultaneous linear equations. We here merely enumerate those commands and indicate the general strategy each implements. We leave the descriptive details to the vendor-supplied documentation, and we leave illustrative applications to the exercises at the end of the chapter.

**MAPLE:** Within MAPLE, solving systems of linear equations is accomplished with the same commands—`solve` and `fsolve`—that we have used for solving single equations symbolically and numerically. Essentially, for *systems* of equations, the first argument to `solve` or `fsolve` becomes a set containing the equations to be solved and the second argument becomes a set containing the variables for which solutions are sought.

**NUMERICAL RECIPES in FORTRAN:** For numerical solution of systems of linear equations, the FORTRAN subroutines in the *Numerical Recipes* library include `gaussj.f`, which uses Gauss-Jordan elimination (similar to Gaussian elimination); `ludcmp.f` and `lubksb.f`, which effect the LU decomposition of the coefficient matrix and the solution of the associated system; `tridag.f`, which is especially adapted to tridiagonal systems; and `svdcmp.f` and `svbksb.f`, which effect the singular value decomposition of the coefficient matrix and the solution of the associated system. All of these routines use direct methods.

**NUMERICAL RECIPES in C:** For numerical solution of systems of linear equations, the C subroutines in the *Numerical Recipes* library include `gaussj.c`, which uses Gauss-Jordan elimination (similar to Gaussian elimination); `ludcmp.c` and `lubksb.c`, which effect the LU decomposition of the coefficient matrix and the solution of the associated system; `tridag.c`, which is especially adapted to tridiagonal systems; and `svdcmp.c` and `svbksb.c`, which effect the singular value decomposition of the coefficient matrix and the solution of the associated system. All of these routines use direct methods.

**PYTHON:** The simplest route in PYTHON to find a numerical solution to a system of linear equations was illustrated in Section 5.3.7 and invokes either (1) the command `numpy.linalg.inv`, which returns the inverse of a matrix supplied as its argument and then provides the solution to the equation \(Ax=b\) as \(x = numpy.linalg.inv(A) * b\) or (2) the command `numpy.linalg.solve(A, b)` which returns the solution to that same equation.

### 14.16.2 Systems of Nonlinear Equations

When one or more of the equations in a system to be solved is nonlinear, the task is much more difficult. Occasionally, systematic elimination of one variable at a time, followed by back-substitution, will yield a solution. More often, the system is not amenable to such a simple approach. We must resort to more involved approaches. Fitting experimental data by the method of least squares to functions in which the parameters do not appear linearly and finding the points of equilibrium in a system with more than one independent variable are common sources of such problems.

Since numerical methods for finding the root (or roots) of a nonlinear system of equations are all iterative, possession of a good starting guess is imperative. In two dimensions, where the equations to be solved are

\[
f_1(x_1, x_2) = 0 \quad ; \quad f_2(x_1, x_2) = 0
\]

Figure 14.14: Zero contours for the two functions in Eq. (14.49). The function $f_1(x_1, x_2)$ is shown with solid lines; $f_2(x_1, x_2)$ is shown with dashed lines. The dashed curve actually intersects the solid curve in two points near the labels A; the two curves *almost* intersect near the labels B.

we might begin by drawing a map in the $(x_1, x_2)$ plane showing the zero contours of each function. The map in Fig. 14.14, for example, shows the zero contours for the two functions

$$f_1(x_1, x_2) = \sin \left( \frac{x_1^2}{20} \right) - \cos \left( \frac{x_2}{5} \right) ; \quad f_2(x_1, x_2) = x_1 \tanh(x_2) - 5.0 \quad (14.49)$$

The actual intersections of the dashed and solid curves near the labels A reveal two roots. In addition, the dashed and solid curves pass close to one another—but do not actually intersect—in the vicinity of the labels B. The roots near A can probably be found relatively easily by an iterative search procedure. That there are “almost” roots near B may confuse some algorithms and, if those points are close enough to the real roots near A, they might even cause difficulties in finding the real roots.

As the number of independent variables increases, the search described in the previous paragraph would move from intersection points of curves in a plane to intersection points of three surfaces in three-space to intersection points of four hypersurfaces in four-space to ... Sometimes it may be possible (and wise) to solve for some of the variables in terms of the others and temporarily eliminate some variables (i.e., reduce the dimensionality of the search). The task is complicated and, beyond the simple suggestion of striving to reduce the dimensionality, no general guidelines can be given. Any means, however devious, that can be exploited to give clues as to the existence of roots and, even better, to their whereabouts should be exploited as fully as possible before actually embarking on a numerical search.

Once a root has been located approximately, we might adopt a brute force technique, writing a program that

1. Accepts a guessed solution, one value for each unknown,
2. Evaluates the functions and displays the result, and
3. Returns to step 1 for a new guess.
14.16. SOLVING SIMULTANEOUS EQUATIONS

On first pass, we enter the initial guess. Then, after seeing how well that guess works, we make a second (informed or, maybe, random) guess, repeating the process until the values of all functions have been reduced to acceptably small levels. Depending on the dimensionality of the search, we will usually develop a feel for the effect of changes in each member of the guessed solution. Fairly quickly, we may develop a skill at narrowing in on an acceptable solution.

More systematic searches in multi-dimensional parameter spaces are harder to design. One route in particular expands Newton’s method. Suppose, to be specific, we seek solutions to the three nonlinear equations

\[ f_1(x_1, x_2, x_3) = 0 ; \quad f_2(x_1, x_2, x_3) = 0 ; \quad f_3(x_1, x_2, x_3) = 0 \]  (14.50)

Suppose, further, that we have examined the equations and determined that there does indeed exist a root in the immediate vicinity of the point \((x_1^{(0)}, x_2^{(0)}, x_3^{(0)})\). We might then suppose that the actual root differs from this guess by a small amount, say,

\[ x_1 = x_1^{(0)} + \delta x_1 ; \quad x_2 = x_2^{(0)} + \delta x_2 ; \quad x_3 = x_3^{(0)} + \delta x_3 \]  (14.51)

and demand that the “corrections” satisfy the equations

\[ 0 = f_1(x_1^{(0)} + \delta x_1, x_2^{(0)} + \delta x_2, x_3^{(0)} + \delta x_3) \]
\[ 0 = f_2(x_1^{(0)} + \delta x_1, x_2^{(0)} + \delta x_2, x_3^{(0)} + \delta x_3) \]  (14.52)
\[ 0 = f_3(x_1^{(0)} + \delta x_1, x_2^{(0)} + \delta x_2, x_3^{(0)} + \delta x_3) \]

These equations are, of course, not really any more tractable as they stand than were the original equations. Because the corrections are all presumed small, however, we should be able to approximate these equations by expanding each in a three dimensional Taylor series. Keeping only the linear terms, we find—at least approximately—that

\[ 0 = f_1 + \left( \frac{\partial f_1}{\partial x_1} \right) \delta x_1 + \left( \frac{\partial f_1}{\partial x_2} \right) \delta x_2 + \left( \frac{\partial f_1}{\partial x_3} \right) \delta x_3 \]
\[ 0 = f_2 + \left( \frac{\partial f_2}{\partial x_1} \right) \delta x_1 + \left( \frac{\partial f_2}{\partial x_2} \right) \delta x_2 + \left( \frac{\partial f_2}{\partial x_3} \right) \delta x_3 \]  (14.53)
\[ 0 = f_3 + \left( \frac{\partial f_3}{\partial x_1} \right) \delta x_1 + \left( \frac{\partial f_3}{\partial x_2} \right) \delta x_2 + \left( \frac{\partial f_3}{\partial x_3} \right) \delta x_3 \]

Here, \(f_1, f_2, f_3\), and all the derivatives are evaluated at \((x_1^{(0)}, x_2^{(0)}, x_3^{(0)})\) and are known. In effect, we have converted the problem of finding \(\delta x_1, \delta x_2\) and \(\delta x_3\) into one of solving a set of simultaneous linear equations! Once that solution is in hand, we take \(x_1^{(1)} = x_1^{(0)} + \delta x_1, \ldots\) as a refined approximation to the desired solution and repeat the process to obtain \(x_1^{(2)}, \ldots\), continuing until some chosen convergence criterion is satisfied.

Each of the software packages described in this book makes available a spectrum of commands to solve simultaneous nonlinear equations. We here merely enumerate those commands and indicate the general strategy each implements. We leave the descriptive details to the vendor-supplied documentation, and we leave illustrative applications to the exercises at the end of the chapter.

**MAPLE:** Within MAPLE, solving systems of nonlinear equations is accomplished with the same commands—**solve** and **fsolve**—that we have used for solving single equations symbolically and numerically, though **solve** is more likely to fail when the equations to be solved are nonlinear. Essentially, for systems of equations, the first argument to **solve** or **fsolve** becomes a set containing the equations to be solved and the second argument becomes a set containing the variables for which solutions are sought.
NUMERICAL RECIPES in FORTRAN: For numerical solution of systems of nonlinear equations, the primary FORTRAN subroutines in the Numerical Recipes library are mnewt.f, which implements a simple Newton’s method; newt.f, which adopts an embellished Newton’s method with improved convergence; and broydn.f, which implements a multidimensional secant method described for one variable in Section 14.6.3.

NUMERICAL RECIPES in C: For numerical solution of systems of nonlinear equations, the primary C subroutines in the Numerical Recipes library are mnewt.c, which implements a simple Newton’s method; newt.c, which adopts an embellished Newton’s method with improved convergence; and broydn.c, which implements a multidimensional secant method described for one variable in Section 14.6.3.

PYTHON: The package scipy.optimize includes two solvers (newton_krylov and anderson) for solving large-scale nonlinear systems, two general nonlinear solvers (broyden1 and broyden2), and three solvers (excitingmixing, linearmixing, and diagbroyden) using simple iterations. Details on these solvers can be found in the PYTHON manuals.\textsuperscript{35}

14.17 Exercises

14.17.1 . . . using Symbolic Methods

14.1. Derive both forms of the quadratic formula as given in Eq. (14.29) for the roots of the polynomial $ax^2 + bx + c$. Hint: Start by completing the square, i.e., by adding and subtracting the right amount so that the polynomial can be expressed in the form $a(x - \alpha)^2 + \beta$.

14.2. Find the value of $x$ at which $f(x) = ax^2 + bx + c$ has an extremum and determine a criterion involving the coefficients (or some of them) for deciding whether the extremum is a maximum or a minimum. Assume that $a$, $b$, and $c$ are real.

14.3. Find the points at which the function $f(x) = ax^3 + bx^2 + cx + d$ has (local) extrema and find a criterion involving the coefficients (or some of them) that will assure that the function has three real roots. Assume that $a$, $b$, $c$, and $d$ are real.

14.4. In some quantum calculations, the need to solve the equation $x(x + 1) = l(l + 1)$ for $x$ arises. Find those roots, noting particularly that, since the equation is quadratic, there are two roots. The obvious root $x = l$ is not the only one.

14.5. Each of the three blades of a lawn mower has radius $a$. As shown in Fig. 14.15, the center blade is invariably mounted somewhat in front of the two outside ones so that the areas cut by each blade can overlap without risking collision of the blades with one another. What must be the minimum offset $x$ of the center of the middle blade from the line joining the centers of the two outer blades so that their cutting paths will overlap by an amount $y$ without collision of the blades?

14.6. For the projectile discussed in Section 14.1.4, generate a family of graphs showing $\tau(\theta)$ as a function of $\theta$ for selected fixed values of $\alpha$.

14.7. In Section 14.1.4, we deduced that the range of a projectile of mass $m$ launched with speed $v_0$ at an angle $\theta$ up from the horizontal in a medium characterized by a (linear) viscous damping coefficient $b$ could be found by (1) finding the non-zero root of the equation

$$f(\tau) = \tau - (1 + \alpha \sin \theta)(1 - e^{-\tau}) = 0$$

where $\alpha = bv_0/(mg)$, and then (2) evaluating the range from the expression

$$R(\theta, \alpha) = \frac{v_0^2}{2g} e^{\cos \theta(1 - \tau)} \alpha = \frac{\tau \cos \theta}{\alpha(1 + \alpha \sin \theta)}$$

\textsuperscript{35}See particularly the URL docs.scipy.org/doc/scipy/reference/optimize.nonlin.html.
14.17. EXERCISES

14.17.1 Figure 14.15: The three-bladed lawnmower described in Exercise 14.5.

We could view the first of these equations as defining the function $\tau(\theta)$ implicitly. In principle, for a given $\alpha$, we could imagine solving the first equation explicitly for $\tau$ as a function of $\theta$ and substituting that solution into the second equation to find an expression for the range—again for a given $\alpha$—explicitly as a function of $\theta$ alone. If we had that expression in hand, we would find the maximum range by solving the equation $dR(\theta)/d\theta = 0$ for $\theta$ and then evaluate the range at that specific value of $\theta$. In the absence of that expression, we can still differentiate $R(\theta)$ implicitly, recognizing the (hidden) dependence of $\tau$ on $\theta$, and we can differentiate $f(\tau)$. The resulting equations together might then be combinable in a way that would lead to a determination of the maximum range more directly than the route described in the text. Pursue this idea, using a symbolic manipulating program as much as possible to simplify the calculation. The ultimate objective would be to deduce and test a procedure that leads to a numerical value for the maximum range of this projectile when $\alpha$ is given. Note: This exercise is almost certainly difficult and potentially frustrating. The author has no idea whether success awaits the persistent in this endeavor.

14.8. Find the natural frequencies for the three modes of oscillation characterizing the system that results when the system shown in Fig. 14.2 is extended to contain three objects coupled in a line. Take the four springs all to have the same spring constant but allow for the possibility that the middle object may have a mass $m'$ different from the mass $m$ of the two outside objects. In particular, measure frequencies in units of $\sqrt{k/m}$ and seek a graph showing the frequency of each of the modes as a function of $\beta = m'/m$. Hint: To help you get started and to facilitate focusing on the solution of the ODEs rather than on deriving them, note that, for three masses, the equations of motion will be

\[
\begin{align*}
md^2x_1/dt^2 &= -kx_1 + k(x_2 - x_1) \\
m'd^2x_2/dt^2 &= -k(x_2 - x_1) + k(x_3 - x_2) \\
md^2x_3/dt^2 &= -k(x_3 - x_2) - kx_3
\end{align*}
\]

14.9. In dimensionless units, the energy shifts $E$ that occur in the states of hydrogen for $n = 3$ when an external constant electric field is turned on are given by the roots of the ninth-order polynomial

\[
f(E) = E^9 - \frac{243}{2}E^7 + \frac{59049}{16}E^5 - \frac{531441}{16}E^3
\]

Find the distinct roots of this polynomial and the multiplicity of each root.

14.10. If, when divided by a single line into a square and a rectangle, the resulting smaller rectangle has the same aspect ratio as the original rectangle, the rectangle is called a golden rectangle and the ratio of the longer to the shorter side is called the golden ratio. Rectangles having that ratio are considered to be particularly aesthetic and can be found in many places, including ancient Greek architecture and, intriguingly, in standard, present-day plastic credit cards. Express the above defining criterion to find a quadratic equation for the golden ratio and then solve the equation to find that ratio.
14.17.2 . . . using Numerical Methods

14.11. Use numerical methods to solve Eq. (14.6) for the equilibrium points in the potential energy in Eq. (14.3).

14.12. One way to find the square root of a (positive) number $a$ is to find the root of the function $f(x) = x^2 - a$. (a) Apply Newton’s method symbolically to show that $x_{n+1} = (x_n + a/x_n)/2$. (b) Using a pocket calculator and starting with the guess $x_0 = 2$, work out the first few iterates by hand and note how quickly this algorithm converges to $\sqrt{2} = 1.41421$. (This algorithm is the algorithm that most pocket calculators invoke when the square root key is pressed.) (c) Using whatever computational tool appeals to you, write a program that asks for the value of $a$, an initial guess for $\sqrt{a}$, and a tolerance and then implements Newton’s method to find $\sqrt{a}$, printing out each iterate along the way and stopping automatically when successive iterates differ by less than the specified tolerance.

14.13. For the first six Legendre polynomials $L_n(x)$, find all roots lying in the interval $-1 \leq x \leq 1$. Those polynomials are

$$L_0(x) = 1 \quad L_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$
$$L_1(x) = x \quad L_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$$
$$L_2(x) = \frac{1}{2}(3x^2 - 1) \quad L_6(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$$

14.14. The natural frequencies for the transverse vibrations of a bar of uniform cross section that has length $L$ and is free at both ends are given by

$$\omega_n = \frac{4K}{L^2} \sqrt{\frac{E}{\rho}} \alpha_n^2$$

where $K$ is the radius of gyration of the cross section of the bar, $E$ is Young’s modulus for the material of the bar, $\rho$ is the density (mass/unit volume) of the material of the bar, and $\alpha_n$ is a solution to the equation

$$\tan \alpha = \pm \tanh \alpha$$

Find the lowest half dozen natural frequencies for this bar. [A detailed discussion of this exercise can be found in N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments, Second Edition (Springer-Verlag, New York, 1991), pp. 57ff.]

14.15. If the bar of the previous exercise is clamped at one end and free at the other, then the natural frequencies are given by the same expression except that $\alpha_n$ is instead a solution to the equation

$$\cot \alpha = \pm \tanh \alpha$$

Find the lowest half dozen natural frequencies for this bar. [A detailed discussion of this exercise can be found in N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments, Second Edition (Springer-Verlag, New York, 1991), pp. 57ff.]

14.16. The natural frequencies of the air in a spherical cavity are determined from the roots of the function $dj_n(x)/dx$, where $j_n(x)$ is the $n$-th order spherical Bessel function, the first three of which are

$$j_0(x) = \frac{\sin x}{x} \quad j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x} \quad j_2(x) = \frac{3}{x^3} - \frac{1}{x} \sin x - \frac{3}{x^2} \cos x$$

Obtain graphs of these three functions versus $x$, find the lowest several roots of $j_0(x)$, $j_1(x)$, and $j_2(x)$, and find also the lowest several roots of $dj_0(x)/dx$, $dj_1(x)/dx$, and $dj_2(x)/dx$.

14.17. Explore the way the energy levels of the well described in Section 14.1.5 change as the parameter $c$, which is determined by the depth and the width of the well, increases. At base, changing $c$ changes the slopes of the straight lines in Fig. 14.5. As $c$ increases and the well becomes deeper, the lines become more and more nearly horizontal and the number of energy levels increases. Seek ultimately to generate a graph that shows the energy of each allowed level on the vertical axis as a function of the parameter $c$ along the horizontal axis.
14.18. The intensity $I(x)$ in the diffraction pattern produced by a single slit is given by

$$\frac{I(x)}{I_0} = \frac{\sin^2 x}{x^2}$$

where $I_0$ is the intensity in the center and $x$ is related to the position of the observation point away from the central maximum. The zeros in this pattern are easy to locate (they occur at $x = n\pi$, $n = 0, \pm 1, \pm 2, \ldots$). Careful location of the maxima, however, is more complicated. They don’t occur where $\sin^2 x = 1$ because of the influence of the denominator that steadily increases as $x$ increases. Locate the positions of the first half dozen maxima in this pattern, which—basically—is a request to find the roots of the derivative of the function (though note that not all roots correspond to maxima). Use at least three different methods and at least two different computational tools, and compare the results. Do your results confirm that the roots approach odd multiples of $\frac{1}{2}\pi$ as they become large? Optional: You might also find it interesting to approximate the function with a power series expansion for $\sin x$, keeping quite a few terms but converting the root finding problem into that of finding the roots of a polynomial. Then, use methods for finding roots of polynomials and see if you can come to understand how accuracy depends on how many terms you keep and which root you seek.

14.19. Using at least three different methods and at least two different computational tools, find the first half dozen roots of the zeroth-order Bessel function $J_0(x)$. Note that these roots are related to the radii of circular nodes in some of the vibrations of a circular membrane. The values of these roots tabulated in Abramowitz and Stegun[36] are 2.4048255577, 5.5200781103, 8.6537279129, 11.7915344391, 14.9309177086, 18.0710639679. Hint: Most computational tools have built-in capabilities for evaluating the Bessel functions. Consult the appropriate vendor manuals.

14.20. Suppose a particle moves in one dimension under the influence of the potential energy

$$V(x) = -\frac{V_0 a^2 (a^2 + x^2)}{8a^4 + x^4} \quad \Rightarrow \quad \frac{V(x)}{V_0} = \frac{(1 + \frac{x^2}{a^2})}{8 + \frac{x^4}{a^4}}$$

where $x = x/a$. Using at least three different methods and at least two different computational tools, find the coordinates $x$ of all turning points when the total energy $E$ of the particle is $E = -0.2V_0$ and also when the total energy is $E = -0.1V_0$. Optional: Obtain graphs of the position of each turning point as a function of particle energy over the allowed range of energies for bound states.

14.21. Generate a graph showing the turning points of the potential energy given by Eq. (14.3) as a function of the energy of the particle.

14.22. Suppose a straight railroad track of length 1 mile (5280 ft) is held absolutely immovable at its two ends. On a hot summer day, the track expands in length by 1 ft. If the track bows upward from the earth in a circular arc, how high above the earth will the track rise at its midpoint? Hint: The geometry of this exercise is shown in the accompanying figure, where $l$ is the original length of the track, $d$ is the rise at the center, and $a$ is the length, $R$ the radius, and $\theta$ half the subtended angle of the circular arc. Thus, $R\theta = a/2$, $\sin \theta = l/(2R)$, and $R - d = R \cos \theta$. The task is to find $\theta$ and $R$ from the first two of these equations and then use the third to find $d$. The only quantities known a priori are $l$ and $a$.

14.23. A particle of mass $m$ moves in a potential energy given as a function of position by $V(x) = V_0 \cosh(x/a)$. Because this potential energy is an even function of $x$, the upper and lower turning points have the same absolute value but opposite sign. Find the upper turning point as a function of energy and generate a graph showing that turning point as a function of energy. Hint: Measure position in units of $a$ and energy in units of $V_0$.

---

14.24. A particular problem—see Problem 3-19 in the fourth edition of Fluid Flow by Rolf H. Sabersky, Allan J. Acosta, Edward G. Hauptmann, and E. M. Gates (Prentice-Hall, Upper Saddle River, NJ, 1999)—in fluid flow leads to the need to find the roots of the fourth-order polynomial $12x^4 - 12x^3 + 4x - 1$. Use graphical methods to find bounds on the roots and at least three different computational approaches to find all real roots of this polynomial.

14.25. Write and test a FORTRAN program paralleling bisect.f but using Newton’s method to find the roots of $f(x)$. Your program, which you might call newton.f, should

- use the functions FUNC and FUNCD to return $f(x)$ and $df(x)/dx$, respectively.
- request a tolerance, an initial guess, a maximum number of iterations, and a flag—0 or 1—to be entered when run.
- find the root, terminating iteration either when successive iterates differ by less than the specified tolerance or when the specified maximum number of iterations is exceeded.
- print the final iterate only (flag = 0) or all iterates along the way (flag = 1).
- print a warning if iteration is terminated because the maximum number of iterates was exceeded.
- print the root and the value of the function at that root.

14.26. Write and test a C program paralleling bisect.c but using Newton’s method to find the roots of $f(x)$. Your program, which you might call newton.c, should

- use the functions FUNC and FUNCD to return $f(x)$ and $df(x)/dx$, respectively.
- request a tolerance, an initial guess, a maximum number of iterations, and a flag—0 or 1—to be entered when run.
- find the root, terminating iteration either when successive iterates differ by less than the specified tolerance or when the specified maximum number of iterations is exceeded.
- print the final iterate only (flag = 0) or all iterates along the way (flag = 1).
- print a warning if iteration is terminated because the maximum number of iterates was exceeded.
- print the root and the value of the function at that root.

14.27. The image of a distant object produced on a viewing screen by a small aperture is actually a diffraction pattern. When the aperture is a circle of diameter $d$ and light from the object strikes the screen containing the aperture at normal incidence, the intensity in the diffraction pattern at angle $\theta$ from the normal is given by

$$I(\theta) = \frac{I_0}{\left[\frac{2J_1(\pi d \sin \theta / \lambda)}{\pi d \sin \theta / \lambda}\right]^2}$$

where $I_0$ is the intensity at the center of the pattern, $\lambda$ is the wavelength of the light illuminating the aperture, and $J_1(x)$ is the first order Bessel function. Using the Bessel function routine that is assuredly built in to your computational tool (see the appropriate manuals), find the angle $\theta$ at which the first zero in the diffraction pattern lies, expressing that result as a multiple of $\lambda/d$. The resulting angle expresses the angular separation of two nearby objects such that the maximum in the diffraction pattern produced by one lies on top of the first minimum away from the maximum of the other. That separation is universally taken as a measure of the resolution of the optical system creating the images, and the condition requiring this positioning of the two maxima is called the Rayleigh criterion. Hint: The angle will be small, so you can safely use the approximation $\sin \theta \approx \theta$.

14.28. The Lennard-Jones potential energy $V_{LJ}$, which is given in terms of the coordinate $r$ by the expression

$$V_{LJ} = 4\epsilon \left[ \frac{\sigma^{12}}{r^{12}} - \frac{\sigma^6}{r^6} \right]$$

or

$$\frac{V_{LJ}}{\epsilon} = 4 \left[ \frac{1}{r^{12}} - \frac{1}{r^6} \right]$$
14.17.3 ... using Numerical Recipes

Note: Numerical recipes can, of course, also be used for any of the exercises in Section 14.17.2.

14.29. Study the demonstration programs \texttt{xrtbis.f} and \texttt{xrtnewt.f}, each of which is written so as to be able to find all roots of a given function in a specified range. Then recast each of these programs to produce a program that will find all of the positive roots of the equation for each sign in Eq. (14.25). Write your program so that the value of \( c \) and the boundaries of the region in which roots are to be sought are entered from the terminal at the time the program is run. Finally, test your program with \( c = 25 \), comparing your results with those obtained in the text, and then examine other values of \( c \), seeking ultimately to obtain a graph showing each root as a function of \( c \).

14.30. Study the demonstration programs \texttt{xrtbis.c} and \texttt{xrtnewt.c}, each of which is written so as to be able to find all roots of a given function in a specified range. Then recast each of these programs to produce a program that will find all of the positive roots of the equation for each sign in Eq. (14.25). Write your program so that the value of \( c \) and the boundaries of the region in which roots are to be sought are entered from the terminal at the time the program is run. Finally, test your program with \( c = 25 \), comparing your results with those obtained in the text, and then examine other values of \( c \), seeking ultimately to obtain a graph showing each root as a function of \( c \).

14.31. Read the Numerical Recipes books about the recipe \texttt{rtsafe.f} and the example program \texttt{xrtsafe.f}. Then recast the program \texttt{sinrtbis.f} (or \texttt{sinrtnewt.f}) to use \texttt{rtsafe.f} and test your program with a couple of functions of your choice.

14.32. Read the Numerical Recipes books about the recipe \texttt{rtsafe.c} and the example program \texttt{xrtsafe.c}. Then recast the program \texttt{sinrtbis.c} (or \texttt{sinrtnewt.c}) to use \texttt{rtsafe.c} and test your program with a couple of functions of your choice.

14.17.4 Finding More than One Unknown

14.33. In a global positioning system, the raw data from which the position is determined consists of distances from various reference points together with knowledge of the location of those reference points. In two dimensions, for example, we might try to locate our position \((x, y)\) in a plane from knowledge that we are a distance \( r_1 \) from the point \((x_1, y_1)\) and a distance \( r_2 \) from the point \((x_2, y_2)\). Not all values we might assign are physically meaningful. For example, there is no point that is simultaneously 20 miles from point 1 and 30 miles from point 2 if points 1 and 2 are, in fact, 100 miles apart. Depending on the circumstances, there may be no points, one point, or—most often—two. Develop an algorithm for finding your location in two dimensions when you know your distance from each of two reference points whose coordinates are known, implement your algorithm in a program using whatever computational tool seems appropriate, solve two or three test problems that you invent, and—in particular—try to describe and defend the conditions under which two, one, or no solutions exist. Optional: Extend your entire consideration into three dimensions, which will require knowledge of distance from each of (at least) three known locations. Hint: Quite a bit of information is available on the website \url{www.trimble.com/gps}. There is also an article in the January, 1994, issue of Physics Today ("Where I Stand" by Daniel Kleppner, page 9).

14.34. Given the three points \((x_i, y_i), i = 1, 2, 3\), (a) find symbolic expressions for the coefficients \(a\), \(b\) and \(c\) of the parabola \(y = ax^2 + bx + c\) that passes through these three points and then (b) find a symbolic expression for the value of \(x\) at which the extremum point of the parabola occurs. Finally, (c) determine numerically the angle at which the maximum range of a projectile occurs if the ranges at \(\theta = 30^\circ, 40^\circ\), and \(41^\circ\) are 0.7251744, 0.7250484, and 0.7258887, respectively.
14.35. Kirchhoff’s laws in DC circuit theory contend that the net current flowing into any node must be zero and that the net voltage drop around any closed path in the circuit must be zero. Remembering that the voltage drop $\Delta V$ across a resistor $r$ carrying current $i$ is given by $\Delta V = ir$ and using the symbols defined in Fig. 14.16, apply these laws to each of the circuits in the figure to generate a set of simultaneous, inhomogeneous linear equations for the unknown currents. Then, using symbolic methods solve each case for the unknown currents. Finally, determine the effective resistance defined by $R_{\text{eff}} = V/I$ for each circuit. Assume that all batteries and resistors have known values and that quantities represented in the figures with the same symbol have the same value. *Warning:* For even simple circuits, Kirchhoff’s laws provide more equations than unknowns. Correctly written, these equations are guaranteed to be consistent. The subset to be solved, however, must be carefully chosen to make sure its members are linearly independent of one another.

14.36. The file `$HEAD/data/freefall.dat` contains 31 lines, the $i$-th of which contains one numerical value—the value of the position $x_i$ in cm of a particle at time $t_i = (i-1)/60$ s. You have reason to believe that the set of data $(t_i, x_i)$ with $i = 1, 2, 3, \ldots, n$ is described by the parabolic relationship

$$x = at^2 + bt + c$$

The method of least squares identifies the optimum values of the coefficients $a$, $b$, and $c$ as the particular values that minimize the residual

$$R(a, b, c) = \sum_{i=1}^{n} \left( x_i - (at_i^2 + bt_i + c) \right)^2$$

Using whatever language you choose, write a program that reads the positions from the file into a vector, generates a second vector containing the corresponding times and then enters a loop in which it asks for entry of trial values of $a$, $b$, and $c$, calculates and displays $R(a, b, c)$, and returns to ask for a new set of trial values. Using this program, conduct a manual search for the values of $a$, $b$, and $c$. \[\text{Figure 14.16: Circuits for Exercise 14.35.}\]
b, and c which make \( R(a, b, c) \) as small as possible. \textit{Hint}: Think carefully about the initial guesses for \( a, b, \) and \( c \). A graph of \( x \) versus \( t \) may be useful.

14.37. The file \$HEAD/data/freefall.dat\ contains 31 lines, the \( i \)-th of which contains one numerical value—the value of the position \( x_i \) in cm of a particle at time \( t_i = (i-1)/60 \) s. You have reason to believe that the set of data \((t_i, x_i)\) with \( i = 1, 2, 3, \ldots, n \) is described by the parabolic relationship

\[
x = at^2 + bt + c
\]

The method of least squares identifies the optimum values of the coefficients \( a, b, \) and \( c \) as the particular values that minimize the residual

\[
R(a, b, c) = \sum_{i=1}^{n} \left( x_i - \left(at_i^2 + bt_i + c \right) \right)^2
\]

i.e., as the particular values satisfying the three equations

\[
\frac{\partial R}{\partial a} = 0 ; \quad \frac{\partial R}{\partial b} = 0 ; \quad \frac{\partial R}{\partial c} = 0
\]

These equations will turn out to be linear in \( a, b, \) and \( c \), with coefficients and inhomogeneities determined by sums of various products of the measured independent and dependent variables. Derive the three equations symbolically but then find the numerical values of the coefficients and inhomogeneities for the data in the file \$HEAD/data/freefall.dat\ and use at least two different numerical approaches to find the solution for \( a, b, \) and \( c \). Finally, generate a graph in which each measured point is represented by a simple symbol and the least squares parabola is shown by a solid line so you can judge the adequacy of your fit.

14.38. A particle of mass \( m \) moves along the \( x \) axis under the action of a time-dependent force \( F(t) \). We observe that \( x(0) = 0 \) and \( x(t_f) = a \). The detailed motion therefore is described by the solution to the boundary value problem

\[
m \frac{d^2x}{dt^2} = F(t) , \quad x(0) = 0 , \quad x(t_f) = a
\]

To predict the detailed motion numerically, we might divide the interval \( 0 \leq t \leq t_f \) into \( n \) segments of size \( \Delta t = t_f/n \), let \( x_i = i \Delta t \) with \( i = 0, 1, 2, \ldots, n \), evaluate the differential equation at \( t = t_i \), and introduce a finite difference approximation for the derivative to conclude that

\[
x_{i-1} - 2x_i + x_{i+1} = \frac{F(t_i)}{m} \Delta t^2
\]

which is valid for \( i = 1, 2, \ldots, n - 1 \). For the two end points, we remember the boundary values and require that

\[
x_0 = 0 , \quad x_n = a
\]

In total, we have \( n + 1 \) equations determining the \( n + 1 \) unknowns \( x_0, x_1, x_2, \ldots, x_n \). Cast these equations in the matrix form

\[
\begin{pmatrix}
? & ? & ? & \ldots & ? \\
? & ? & ? & \ldots & ? \\
? & ? & ? & \ldots & ? \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
? & ? & ? & \ldots & ? \\
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{pmatrix}
= \begin{pmatrix}
? \\
? \\
? \\
\vdots \\
? \\
\end{pmatrix}
\]

and note that the coefficient matrix is tridiagonal (and symmetric). Then, using at least two different computational tools, design and describe a general approach and implement that approach to determine the detailed motion for the cases

(a) \( t_f = 1 \) s, \( a = 10 \) m, \( F(t)/m = 8 \) N/kg (constant force), and \( n = 10 \);
(b) same as (a) but with \( n = 100 \);
Verify that the exact analytic solution in the two cases is

(a) and (b): \( x(t) = 4t^2 + 6t \);  
(c) and (d): \( x(t) = e^{-t} - 1 + (11 - e)t \)

and compare the numerical results with the exact solution in each case. (To save you a hunt, remember that the numerical value of \( e \) is 2.71828459045.)

14.39. The electrostatic potential on the boundary of the square region in a plane shown in Fig. 14.17 is maintained at the value zero along its bottom and right edges but increases linearly from zero along the left edge, then decreases linearly back to zero along the top edge. The potential in the interior region satisfies Laplace’s equation. One approach to finding an approximate solution involves imposing a regular grid on the region and then requiring that the value of the potential at each interior point be the average of the values at its four nearest neighbors, e.g.,

\[
V_{12} = \frac{1}{4} \left( V_{11} + V_7 + V_{13} + V_{17} \right) \quad ; \quad V_{15} = \frac{1}{4} \left( V_{14} + V_{10} + 0.0 + V_{20} \right)
\]

(a) Write out the twenty-five equations implied by this requirement, (b) cast them in the matrix form

\[
\begin{pmatrix}
? & ? & ? & \ldots & ? \\
? & ? & ? & \ldots & ? \\
? & ? & ? & \ldots & ? \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
? & ? & ? & \ldots & ?
\end{pmatrix}
\begin{pmatrix}
V_1 \\
V_2 \\
V_3 \\
\vdots \\
V_{25}
\end{pmatrix}
= \begin{pmatrix}
? \\
? \\
? \\
\vdots \\
?
\end{pmatrix}
\]

figuring out the value represented by each question mark, and (c) solve the system for the unknowns. Then (d) structure the boundary values and solution in a 7 \( \times \) 7 matrix and create a surface plot of that solution.

14.40. In Ruchardt’s experiment, a steel ball bounces up and down in a vertical tube that ends in a gallon (or larger) jug. Ultimately, the ball falls into the jug, but it may bounce up and down many times before doing so. The file $\$\text{HEAD}/data/ruchardt.dat contains 170 lines, the \( i \)-th of which contains one numerical value—the position \( x_i \) in cm of the steel ball at time \( t_i = 0.05(i - 1) \) s. A quick graph of the data (you should make it) suggests that the motion might be described by an exponentially decaying cosine curve on which is superimposed a linear sinking of the “equilibrium” position, i.e., by a function of the form

\[
x(t) = Ae^{-bt} \cos(\omega t + \phi) + Ct + D
\]
where the parameters $b$, $A$, $\omega$, $\phi$, $C$, and $D$ are to be determined. Develop a means to find optimal values of these six parameters by seeking values that minimize the quantity

$$R = \sum_{i=1}^{N} \left(x_i - Ae^{-bt_i} \cos(\omega t_i + \phi) + Ct_i + D\right)^2$$

**Warning:** This exercise is not for the faint-hearted. Some useful background will be found in Chapter 8 of *Data Reduction and Error Analysis for the Physical Sciences* (Second Edition) by Philip R. Bevington and D. Keith Robinson (McGraw-Hill, New York, 1992).
14.A  Listing of bisect.f

PROGRAM BISECT

TOL = 0.0001

! ***** READ BRACKET VALUES *****

WRITE(*, '(1X, A)') 'Lower bound = '
READ(*,*) XA
WRITE(*, '(1X, A)') 'Upper bound = '
READ(*,*) XB

! ***** EVALUATE FUNCTION AT EXTREMES *****

FA = FUNC(XA)
FB = FUNC(XB)
IF ( FA*FB .GE. 0.0 ) THEN
  WRITE(*,'(1X,A)') 'No root in interval'
  GOTO 99
ENDIF
FM = FA

! ***** HUNT FOR ROOT *****

DO WHILE ( (XB-XA) .GE. TOL .AND. (FM .NE. 0.0) )
  XM = 0.5*(XB+XA)
  FM = FUNC(XM)
  IF (FA*FM .GE. 0.0) THEN
    XA = XM
  ELSE
    XB = XM
  ENDIF
ENDDO

! ***** OUTPUT RESULTS *****

WRITE(*, '(1X, A, E15.6)') 'ROOT = ', XM
WRITE(*, '(1X, A, E15.4)') 'XB-XA = ', XB-XA
WRITE(*, '(1X, A, E15.6)') 'FUNCTION = ', FM

99 END

! ***** DEFINE FUNCTION *****

FUNCTION FUNC(X)

  FUNC = X**3/10000.0 + X**2/200.0 - X/500.0 - 0.5

END
14.B Listing of bisect.c

/* PROGRAM bisect.c

This C program asks for the lower and upper bounds of an interval in which a single root of a function is known to exist and then invokes the method of bisection to converge on that root. Refinement of the interval continues until the tolerance TOL---set early in the main program---is reached. The function can be changed by editing its definition in the first lines of code.
*/

#include <stdio.h>    /* Load standard i.o routines */
#include <math.h>     /* Load standard math routines */

float func( float x )
{
    return pow(x,3)/10000.0 + pow(x,2)/200.0 - x/500.0 - 0.5;
}

void main()
{
    float tol, xa, xm, xb;    /* For tolerance, for bounds */
    float fa, fm, fb;         /* For values of function */
    tol = 0.0001;

    printf( "Lower bound = "); scanf( "%f", &xa );
    printf( "Upper bound = "); scanf( "%f", &xb );

    fa = func(xa); fb = func(xb); fm = fa;
    if (fa*fb >= 0.0) { printf( "No root in interval\n" ); return; };

    while( (xb-xa) >= tol & fm != 0.0 )
    {
        xm = 0.5*(xb+xa);
        fm = func(xm);
        if (fa*fm >= 0.0) xa = xm; else xb = xm;
    }

    printf( "root = %15.6f\n", xm );
    printf( "xb - xa = %15.6f\n", xb-xa );
    printf( "function = %15.6f\n", func( xm ) );
}
Appendix A

Introduction to \LaTeX

Note: All \LaTeX\ source files (.tex, .template), all Windows batch files (.bat) program (.pro) files, and all UNIX command files (no file type) referred to in this chapter are available in the directory $\texttt{HEAD/tex}$, where (as defined in the \textit{Local Guide}) $\texttt{HEAD}$ must be replaced by the appropriate path for your site.

During the 1970s, when Donald Knuth (a Stanford University computer scientist) was creating his monumental, several-volume series of books on all aspects of computer science, he recognized the need for a computer-based type-setting/word-processing system tailored to the needs of authors of technical manuscripts. Interrupting his main project, he developed \TeX\ as the essential engine to support computerized technical type setting. The first version of \TeX\ was made available to the using public in 1978 and a revised (and final) version was published in 1984. Written by Leslie Lamport, \LaTeX\ is a versatile and extensive collection of macros that sit on top of \TeX\ and facilitate exploitation of \TeX\'s capabilities. Broadly, \LaTeX\ is a document preparation system that formats equations, tables, and illustrations as easily as plain text. That the whole complex (\TeX, \LaTeX, and many other components) has been deliberately placed in the public domain,\footnote{The primary site for information (history, current plans, downloads, ...) for \TeX, \LaTeX, and numerous other publicly available components of \TeX\ and its derivatives is the web site of the \TeX\ Users' Group (TUG), \texttt{www.tug.org}. This organization maintains CTAN (the Comprehensive \TeX\ Archive Network), which has a handful of backbone machines around the world and a number of mirror sites, from any of which an enormous number of files associated with the \TeX/\LaTeX\ system can be downloaded.} that carefully tested versions exist for essentially every computing platform and operating system, and that many scientific journals and an increasing number of publishers will accept manuscripts submitted as \LaTeX\ files together provide substantial incentive for learning to use this tool. Although it is not \textit{wys"{i}wyzg},\footnote{What you see is what you get.} it has powerful and sophisticated capabilities, most of which are \textit{not} described in this Appendix. We convey only the basics with, however, the hope that we will cause you to realize that essentially any desired formatting at all should be possible if only you can figure out how to achieve it. For further information, try surfing the web in your favorite browser and looking at the \LaTeX\ User's Guide and Reference Manual (which we will refer to as \textit{The \LaTeX\ Manual}), the \LaTeX\ Companion, and/or to any of the several other \TeX\ and \LaTeX\ books.\footnote{You may also find the web pages of TUG at the URL \texttt{http://www.tug.org} to be valuable. One link on that page points to an engaging description of the history of the development of \TeX.} The wisdom of taking fifteen minutes every now and then to browse in these publications cannot be overstressed; as you become more skilled, the fine print and other subtleties will gradually be more meaningful.\footnote{As per Knuth's instruction (see the first two paragraphs of Chapter 1 of \textit{The \TeX\book} as identified in Section A.18), \TeX\ is pronounced 'tech' as in 'technology'.\footnote{Here, individuals disagree on the pronunciation of the 'la', and Leslie Lamport offers no guidance. Some say lah\TeX\ while others say lay\TeX, with the emphasis on the first syllable in both cases. We simply must become accustomed to each other's preferences.}}
A.1 Creating a Simple Document

Producing a final document with \LaTeX involves a number of steps, beginning with the creation of an ASCII text file containing the \LaTeX “source code”—hereafter simply “code”—for the document. Appropriate conversion programs are then invoked to create either a PostScript or a PDF file containing the formatted document. Finally, the PostScript or PDF file will be viewed on the screen or sent to a printer. In this section, we describe how to structure the code for a very simple document and then how to carry out the remaining steps to convert that code into a displayed or printed document. The remainder of this Appendix will explain numerous embellishments that might be invoked in the code. Processing that code to produce the final document is (more or less) independent of the complexity of the code.

To keep the discussion comparatively simple, we assume initially that your document incorporates no figures, does not have internal cross references, and includes neither a table of contents or an index. Those embellishments will be described in later sections.

A.1.1 Structuring a \LaTeX Source File

As input, \LaTeX requires an ASCII file, which can be created with any text editor (xemacs, notepad, wordpad, winedt, gedit, ...) and which contains both the text of the desired document and embedded formatting commands. All of \LaTeX’s commands begin with a backslash (\). \LaTeX distinguishes upper and lower case letters; while most standard commands and parameters use exclusively lower case letters, we must nonetheless pay attention to case.

Three commands are sufficient to create the simplest document containing straight text formatted with \LaTeX’s defaults. The very first required command in the code for any \LaTeX document specifies the document class and has the form\footnote{Be aware that some of the features described in this Appendix are specific to \LaTeX2ε and will not work with the previous version (\LaTeX 2.09). \LaTeX2ε, however, will automatically enter 2.09 emulation mode if the first line in the code is the now obsolete command \texttt{\documentstyle} instead of the new command \texttt{\documentclass}.}

\begin{verbatim}
\documentclass{Class} or \documentclass[options]{Class}
\end{verbatim}

where

\begin{itemize}
  \item \textit{Class} is any one of the options shown in Table A.1 and
  \item \textit{options} may be omitted altogether if the defaults are acceptable. The most commonly used options, one or more of which may be separated by commas in a string containing no spaces, are listed in Table A.2.
\end{itemize}

The document itself must be enclosed between the second and third of the essential commands, the second marking the beginning of the document proper and having the form

\begin{verbatim}
\begin{document}
\end{verbatim}

and the third marking the end of the document and having the form

\begin{verbatim}
\end{document}
\end{verbatim}

\footnote{Other formats (HTML, ePub, ...) may also be produced, though this Appendix will not address those alternatives.}
Table A.1: Document classes valid in standard \TeX. Other available classes may be described in the Local Guide.

article This class is by far the most common. It is used for most short documents. See Sections 2.2.2 and C.5.1 in The \TeX Manual.

report This class is generally used for longer documents. See Sections 2.2.2 and C.5.1 in The \TeX Manual.

book This class is meant for actual books. See Sections 5.1 and C.5.1 in The \TeX Manual.

slides This class can be used in creating originals from which overhead transparencies to be used in presentations can be made. The type size, including the size used for mathematical symbols, is quite large, and transparencies readable from some distance will be produced. See Sections 5.2 and C.5.1 in The \TeX Manual.

letter This class facilitates creating letters. See Sections 5.3 and C.5.1 in The \TeX Manual.

Table A.2: The most common options for the documentclass command. Numerous other options are described in Section C.5.1 in The \TeX Manual and in the other references listed in Section A.18.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10pt or 11pt or 12pt</td>
<td>(default = 10pt) Specifies default type size.</td>
</tr>
<tr>
<td>letterpaper or legalpaper or a4paper or ...</td>
<td>(default depends on site but is usually letterpaper in the US) Specifies size of paper to be used.</td>
</tr>
<tr>
<td>landscape</td>
<td>(default is portrait orientation) Specifies that text is to be formatted for landscape orientation on the specified paper size.</td>
</tr>
<tr>
<td>oneside or twoside</td>
<td>(default = oneside) Specifies whether output is to be formatted for single- or double-sided printing. The twoside option allows for left and right margins and running head positions to be different on odd and even numbered pages.</td>
</tr>
<tr>
<td>onecolumn or twocolumn</td>
<td>(default = onecolumn) Specifies one- or two-column formatting on each page.</td>
</tr>
</tbody>
</table>

While there can be material in the code beyond this final command, none of that material will be read or processed by \TeX.

The three commands described in the previous paragraph are mandatory in all documents. Supplemented by the additional feature that a blank line in the code triggers a new paragraph, they are also sufficient for the creation of code for any document consisting of nothing but paragraphs of straight text to be formatted in accordance with all of \TeX’s defaults. Table A.3 shows a listing of a simple code that invokes only these commands.

Whether the code is simple (as in Table A.3) or much more elaborate, producing the final printed document involves additional steps. One first creates a printable file—PostScript and PDF are the most common—containing the formatted document and then displays that file on a screen and/or sends it to a printer.
Table A.3: A simple \LaTeX code.

\documentclass{article}
\begin{document}

This sample illustrates the simplest code containing the mandatory commands and a brief text. Since no optional formatting commands have been included, the text will be formatted using all of the built-in defaults (margins, paragraph indent, type size and font, etc.).

The blank line preceding this line in the code will trigger a new paragraph. Each paragraph is indented, but note that there is no extra space between paragraphs. Note also that the lines in the code can be quite ragged; they will be filled and justified in the processing that produces the final copy.

\end{document}

A.1.2 Creating a PostScript File

Converting the \LaTeX source file into a PostScript file describing the desired document involves two steps:

1. First, we must “compile” the code by processing the file with \LaTeX, a task accomplished either (1) by typing a command like

\texttt{latex filename} 

(\textit{Default extension for the input file is .tex.})

where \textit{filename} specifies the input file to be processed, or (2) by selecting an item from a menu in a graphical user interface (GUI).\footnote{See the \textit{Local Guide} for the precise command at your site.} However \LaTeX is invoked, it will create several output files, all of which will have the same name as the input file except for the extension: (1) a binary output file, with extension .dvi, which contains the translation of the original file into \TeX’s \textit{device independent language}; (2) an ASCII log file, with extension .log, which contains an expanded log of the messages that appear on the screen as \LaTeX works its magic on the input file; and (3) an auxiliary ASCII file, with extension .aux, which contains information that is important only if the code makes use of \LaTeX’s capabilities for generating internal cross references.\footnote{These capabilities will be described in later sections of this Appendix. For now, we may ignore messages relating to the .aux file, noting only that, when we ultimately do make use of internal references, the first pass of the document through \LaTeX writes the .aux file and a second—and occasionally a third—pass is necessary to incorporate that information in the final formatting of the pages.} The resulting .dvi file can be directly displayed on the screen (see Section A.1.4).\footnote{Remember that we have limited the present discussion to documents containing no figures. See Section A.7 for the adjustments to be made if PostScript or PDF figures are included.}

2. Second, we must translate the .dvi file into a file that can be understood by the printer on which the document is to be printed. Most often, the .dvi file will be translated into
This sample illustrates the simplest code containing the mandatory commands and a brief text. Since no optional formatting commands have been included, the text will be formatted using all of the built-in defaults (margins, paragraph indent, type size and font, etc.).

The blank line preceding this line in the code will trigger a new paragraph. Each paragraph is indented, but note that there is no extra space between paragraphs. Note also that the lines in the code can be quite ragged; they will be filled and justified in the processing that produces the final copy.

PostScript, the most common program for effecting that translation being \texttt{dvips}. The necessary translation will be achieved either (1) by typing a command like\textsuperscript{12,13}

\begin{verbatim}
dvips -o filename.ps -t letter filename
\end{verbatim}

which translates the entire file into PostScript, stores it in a file, and (with the \texttt{-o} option here used) gives the stored file the same name as the input file but with extension .\texttt{ps} and with the \texttt{-t} option forces use of letter size paper\textsuperscript{14} or (2) by selecting an item from a menu.\textsuperscript{15}

To be more explicit, the file \texttt{texsample1.tex}, contains the LATEX code in Table A.3. Once this file has been copied to the default directory, we would produce the .\texttt{dvi} and .\texttt{ps} files with statements like

\begin{verbatim}
latex texsample1
dvips -o texsample1.ps -t letter texsample1
\end{verbatim}

or equivalent selections from a menu.

\section*{A.1.3 Creating a PDF File}

PDF files can be created from the LATEX code in at least two ways:

1. Starting with LATEX source file created in Section A.1.1, one submits to the operating system the single statement\textsuperscript{16}

\begin{verbatim}
pdflatex filename
\end{verbatim}

or, for the sample above,

\begin{verbatim}
pdflatex texsample1
\end{verbatim}

\begin{footnotesize}
\footnotemark[12]Additional information about \texttt{dvips} can be found by typing the command \texttt{dvips} with no arguments. Further, the option \texttt{-pp} allows selection of specific pages from the full document, the options \texttt{-p} (first page) and \texttt{-l} (last page) allow selection of a range of pages from the full document, and the option \texttt{-t} allows printing of the output in landscape orientation rather than in the default portrait orientation. Even more detailed information is available in the on-line help for \texttt{dvips}, accessed in many systems by typing the statement \texttt{texdoc dvips} at a \textit{Shell} prompt or, in the UNIX and LINUX operating systems, the statement \texttt{man dvips} at a \textit{Shell} prompt.

\footnotemark[13]If the explicit specification of the output file is omitted, \texttt{dvips} will attempt to send the file directly to the printer—and the whole operation will probably fail. Further, the PostScript file will then not be stored for subsequent use.

\footnotemark[14]This option is often the default. The option \texttt{-t landscape} will override the default portrait orientation.

\footnotemark[15]Check the \textit{Local Guide} for more details. In particular, some sites may have implemented the shorthand command \texttt{dvip filename} for the command \texttt{dvips -o filename.ps filename}.

\footnotemark[16]The program \texttt{pdflatex} is normally installed automatically whenever LATEX is installed.
\end{footnotesize}
which will produce directly a PDF file named filename.pdf or texsample1.pdf as well as two additional files, specifically the .aux (which we can ignore for now) and the .log file containing an expanded log of the messages that appear on the screen as \texttt{latex} works its magic.

2. Starting with the .ps file produced in Section A.1.2, one executes the single statement

\begin{verbatim}
ps2pdf filename.ps
\end{verbatim}

(No default file type)
or, for the sample above

\begin{verbatim}
ps2pdf texsample1.ps
\end{verbatim}

which will produce a PDF file named filename.pdf or texsample1.pdf from the .ps file.

Exploration of other routes to a PDF file is left to the reader. In particular, the program \texttt{dvipdfm} can sometimes be used to convert the .dvi file created above directly to a PDF file without creating the PostScript file as an intermediary.

\subsection*{A.1.4 Displaying the Document on the Screen}

Numerous programs for displaying documents produced with \LaTeX\ on the screen exist. Among the more common are the following:

- (for displaying a .dvi file) \texttt{xdvi} for UNIX and LINUX platforms and \texttt{yap} (yet another previewer) for windows platforms. These programs are described more fully in Section A.14.
- (for displaying a PostScript file) \texttt{ghostview}, which is available for almost all platforms.
- (for displaying a PDF file) Adobe \texttt{acroread}, which is available for almost all platforms.

These programs are invoked by double-clicking ML on an icon for the program and then opening the desired file, by double-clicking ML on an icon for the file to be displayed, by executing an appropriate statement as a command in a \texttt{Shell} window, or by double-clicking ML on the name of the file in a directory displayed on the screen.\footnote{See the \textit{Local Guide} for specifics at your site.}

\subsection*{A.1.5 Printing the Document}

Programs (\texttt{xdvi}, \texttt{yap}, \texttt{ghostview}, \texttt{acroread}) for displaying a file on the screen often have an item in the File menu to request printing of the file on an available printer, and many times the print utility thereby invoked offers options for double-sided printing, scaling of the output, ... Often, a simple command like

\begin{verbatim}
UNIX/LINUX/MAC
lp filename.ps
\end{verbatim}

\begin{verbatim}
Windows
print filename.ps
\end{verbatim}

submitted from a \texttt{Shell} or \texttt{Command} window will request a printed copy of the file, though the destination printer must be known to the operating system and able to translate PostScript.\footnote{Printers without this capability are rare.}

In the case of the typed command, the extension must this time be explicitly present, since the programs \texttt{lp} and \texttt{print} make no assumptions about file type.\footnote{Again, check the \textit{Local Guide} for details on how to print a file.} In any case, the resulting output for our sample file is shown in Table A.4.
A.2 Specification of Global Style: The Preamble

The standard document classes have default settings for the page setup (area allocated to text, margins, paragraph indent, paragraph separation, line spacing, etc.). Only occasionally are these defaults actually appropriate for the document being prepared. Therefore, it is frequently necessary to modify the global style of the document. Commands that accomplish this end are normally placed in the preamble—the section between the command `\documentclass` and the command `\begin{document}`—and affect the entire document. The most commonly used commands in the preamble invoke the general command

```
\setlength{LengthParameter}{Value}
```

to set the length parameter identified by `LengthParameter` to the value specified by `Value`. A length can be a positive or negative value given in points (abbreviated pt), centimeters (abbreviated cm), or inches (abbreviated in or, when we wish to make the dimension immune to global changes of scale, truein). Further, to give \LaTeX{} some flexibility in placing text on the page, rubber values can be specified. For example, a value of 9pt plus 1pt minus 2pt gives \LaTeX{} authority to “cheat” on the value over the range from 7 points to 10 points. The most useful length parameters are identified in Table A.5. Thus, the commands

```
\setlength{\textheight}{9truein}
\setlength{\textwidth}{6truein}
\setlength{\oddsidemargin}{0.25truein}
\setlength{\topmargin}{-0.5truein}
\setlength{\parindent}{20pt}
\setlength{\parskip}{6pt plus 2pt minus 1pt}
```

placed in the preamble will change the defaults to specify a 6”×9” area of text centered on an 8.5”×11” page with a 20 point paragraph indent and an extra 5–8 points between paragraphs. Indeed, these are (almost\footnote{The point, which is a standard printer’s measure of length, is 1/72” (72 points per inch).}) the settings used for this book.

A few issues of global style are specified by an optional argument in the command `\documentclass`. The most common of these arguments specifies the type size. By default, the document will be set in 10 point type, which is standard for the main text in many journals. To change the size of the characters throughout a document, modify the `\documentclass` command to\footnote{The difference lies in the specification of the left margins. For this book (which uses double-sided printing), \LaTeX{}’s ability to specify one left margin (with `\oddsidemargin`) for odd-numbered pages and a different left margin (with `\evensidemargin`) for even-numbered pages has been exploited to keep the text more fully out of the binding than would otherwise be the case.}

```
\documentclass[TypeSize]{Class}
```

where, in the `article`, `book`, and `report` classes, `TypeSize` can be one of 10pt (the default), 11pt, or 12pt. The `slides` class admits these specifications of size, but ignores them. The main text in this book is set in \LaTeX{}’s 10 point type, which is also common in many technical journals.

Several other global specifications can be included in the preamble or as optional arguments in the command `\documentclass`, including specifications regarding positioning and style of page headers, definitions of new commands, more subtle changes in the global style, selection of two-column format, specifications to anticipate ultimate printing on both sides of the page, etc. For details, the reader is referred to *The \LaTeX{} Manual*.

Specific instructions for document styles can be saved in files for easy incorporation in documents as they are created. Several possibly useful *templates* are enumerated in Table A.6. Consult the

\footnote{By convention in \LaTeX{}, *optional* arguments to a command are enclosed in *square brackets* and *mandatory* arguments are enclosed in *curly braces*.}
Table A.5: Selected parameters that affect the size and positioning of the text area on a page. The given default values apply to the article style. Further information can be found in Section 6.4.1, at the very end of Section C.5.3, and in Fig. C.3 in The \LaTeX Manual.

\textwidth (default 4.75") Specifies the horizontal dimension of the region of the page occupied by text. Its value is commonly 6" for an 8.5"×11" page.

\textwidth (default 7.375") Specifies the vertical dimension of the region of the page occupied by text, excluding the head and the foot of the page. Its value is commonly 9" for an 8.5"×11" page.

\oddsidemargin (default 0.75") For all pages (single-sided output) or odd-numbered pages (double-sided output), specifies the left margin—distance from the left edge of the page to the left edge of the region occupied by text—to be 1" plus the specified value. The value 0.25" will center 6" wide text on an 8.5"×11" page.

\evensidemargin (default 0.75") Only for even-numbered pages with double-sided output, specifies the left margin—distance from the left edge of the page to the left edge of the region occupied by text—to be 1" plus the specified value. The value 0.25" will center 6" wide text on an 8.5"×11" page.

\topmargin (default 0.25") Specifies the top margin, i.e., the distance from the top edge of the page to the top edge of the header above the main region occupied by text, to be 1.0" plus the specified value. By default, the height of the header (specified by \headheight) and the separation of the header from the main text (specified by \headsep) together add to 0.5", so—if the defaults for \headheight and \headsep are accepted—we can pretend that \topmargin specifies the distance from the top edge of the page to the top edge of “real” text to be 1.5" plus the specified value. Thus, for example, the value −0.5" will center 9" high text on an 8.5"×11" page and place the header line—if any—0.5" above the first line of text.

\parindent (default 15.0 points) Specifies the paragraph indent.

\parskip (default 0.0 points) Specifies the extra space between paragraphs.

---

Table A.6: Templates in the directory $\texttt{\$HEAD/tex}$.

<table>
<thead>
<tr>
<th>Template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lu_article.template</td>
<td>Specifies a general article style, including a 6&quot;×9&quot; text area centered on an 8.5&quot;×11&quot; page.</td>
</tr>
<tr>
<td>lu_cpl.template</td>
<td>Specifies the style of CPL publications.</td>
</tr>
<tr>
<td>lu_sloan.template</td>
<td>Specifies the two-column style used for the proceedings of the Sloan/Lawrence conference, including capacity for a two-column wide title and abstract on the first page.</td>
</tr>
<tr>
<td>lu_letter.template</td>
<td>Supplies a starting format for business letters.</td>
</tr>
<tr>
<td>lu_memo.template</td>
<td>Supplies a starting format for memos.</td>
</tr>
</tbody>
</table>
Table A.7: Commands for changing type style. *Note:* Some of these commands may exhibit unexpected behaviors when used in math mode and one of them (\textsc{sc}) is invalid in math mode.

<table>
<thead>
<tr>
<th>Language</th>
<th>Command</th>
<th>Function</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeX</td>
<td>\text{\rm\textit{text}}</td>
<td>Sets text in medium, Roman, upright type.</td>
<td>Sample</td>
</tr>
<tr>
<td>TeX</td>
<td>\text{\sl\textit{text}}</td>
<td>Sets text in medium, Roman, slanted type.</td>
<td>Sample</td>
</tr>
<tr>
<td>TeX</td>
<td>\text{\it\textit{text}}</td>
<td>Sets text in medium, Roman, italic type.</td>
<td>Sample</td>
</tr>
<tr>
<td>TeX</td>
<td>\text{\tt\textit{text}}</td>
<td>Sets text in medium, typewriter, upright type.</td>
<td>Sample</td>
</tr>
<tr>
<td>TeX</td>
<td>\text{\bf\textit{text}}</td>
<td>Sets text in bold, Roman, upright type.</td>
<td>Sample</td>
</tr>
<tr>
<td>TeX</td>
<td>\text{\textsc\textit{text}}</td>
<td>Sets text in medium, Roman, small caps type.</td>
<td>SAMPLE</td>
</tr>
<tr>
<td>TeX</td>
<td>\text{\textsf\textit{text}}</td>
<td>Sets text in medium, sans serif, upright type.</td>
<td>Sample</td>
</tr>
<tr>
<td>\LaTeX{}</td>
<td>\text{\textit{text}}</td>
<td>Sets text in emphasized type.</td>
<td>(See text.)</td>
</tr>
<tr>
<td>\LaTeX{}</td>
<td>\text{\textbf{text}}</td>
<td>Sets text in emphasized type.</td>
<td>(See text.)</td>
</tr>
</tbody>
</table>

*Local Guide* for information about possible additional templates available at your site.

### A.3 In-Text Specification of Local Style

In addition to the global issues discussed in Section A.2, documents are affected locally by many less extensive changes of style. We have already mentioned the use of a blank line to trigger a new paragraph. Commands for accomplishing other common local changes are described briefly in this section.

#### A.3.1 Type Style

In the terminology of type setters, the phrase *type style* refers collectively to combinations of three independent characteristics of the type. In the most sophisticated description, type style is specified by selecting the *series* (medium, bold), *family* (Roman, sans serif, typewriter), and *shape* (upright, italic, slanted, small cap) of the desired style. Each characteristic is specified independently of the other two. Repeated selection of all three characteristics, however, is cumbersome, so—as enumerated in Table A.7—\LaTeX{} provides simpler ways to select the more common combinations. Some of these mechanisms make use of *declarations*, which change the type style until it is explicitly changed again. If, for example, we included the declaration \textbf{at} some point in our code, everything in our document from that point until we change the style with another declaration would be set in bold, Roman, upright type. To limit the scope of this declaration to some portion of the text, the text to be “emboldened”, *including the declaration*, would be enclosed in curly braces (as shown in the table). Once \LaTeX{}’s processing has passed beyond the point of the closing curly brace, the declaration is no longer in effect and the type style reverts to what it was before the opening curly brace.

Emphasis of a word or a phrase now and then would, in normal use, be achieved with *italic* type. In \LaTeX{}, the declaration \textbf{it} might be used. The declaration \textit{em}, however, is preferred because it is sensitive to the current type style. When the current type style is Roman, \textit{em} will shift to italic type; when the current type style is italic, \textit{em} will shift to Roman type. Thus, \textit{em} can be used inside a phrase that is already being emphasized. Emphasized text inside of emphasized text that is itself embedded in Roman text will be set in Roman text to contrast with the italic style of the text that immediately surrounds it.

---

23The default is medium series, Roman family, upright shape—the type style used for this book.

24Because it is sometimes difficult to remember which “commands” are commands and which are actually declarations, we index both as commands.
Note also in Table A.7 that emphasized text can be achieved not only with the declaration \em but also with the command \emph. The former form is perhaps preferable for longer phrases; the latter would be used for a word or two. Each achieves the same effect.

To be especially fastidious, we should recognize that return from italic or emphasized type to other type styles may result in too little space between the last italic or emphasized letter and the first Roman (say) letter. The command \/, inserted immediately after the last italicized or emphasized letter instructs \LaTeX{} to insert the last letter’s italic correction; use of this correction will usually improve the legibility of the final copy. Thus, the careful way to specify an emphasized word is, for example, \{\em and\}. (The italic correction is not necessary in all situations, e.g., if the following character is a period or a comma, which explains why it cannot be automatically and always inserted.)

In using one or another of these simple specifications, we are accepting particular combinations of series, family, and shape. \LaTeX{} provides two ways to take advantage of the full flexibility with separate specification of these three characteristics. For example, we might use declarations to specify bold, sans serif, upright type with the construction

\begin{verbatim}
{\bfseries\sffamily\upshape text}
\end{verbatim}

Alternatively, we might use the commands

\begin{verbatim}
\textbf{\textsf{\textup{text}}}
\end{verbatim}

to achieve the same end with a shorter phrase. The full set of available declarations and commands includes

\begin{verbatim}
\mdseries, \bfseries, \textmd{...}, \textbf{...}
\end{verbatim}

to specify medium and bold series, respectively,

\begin{verbatim}
\rmfamily, \sffamily, \ttfamily, \textrm{...}, \textsf{...}, \texttt{...}
\end{verbatim}

to specify Roman, sans serif, and typewriter families, respectively, and

\begin{verbatim}
\upshape, \itshape, \slshape, \scshape , \\
\textup{...}, \textit{...}, \textsl{...}, \textsc{...}
\end{verbatim}

to specify upright, italic, slanted, and small-cap shapes. A quick return to the default specified in the originally invoked document class is accomplished with the declaration \normalfont or the command \textnormal.

A.3.2 Type Size

Type size is independent of type style. The global type size for a particular document is specified in the command \documentclass as described in Section A.2. A local change in type size is accomplished by one or another of the declarations in Table A.8. The selected type size is determined relative to the global type size specified in the command \documentclass. Again curly braces are used to limit the scope of the change in size.

To combine a change in type style with a change in type size, place the specification of type size first, e.g., \{\Large\bf text\} to select large bold-face type.
A.3. IN-TEXT SPECIFICATION OF LOCAL STYLE

Table A.8: Commands for changing type size. Note that the actual size produced by each command is relative to the global type size (10 pt, 11 pt, or 12 pt) in use. Note also that, in some classes, adjacent members in this sequence may be assigned to the same type size.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>{tiny \text{text}</td>
<td>Sets text in tiny type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{scriptsize \text{</td>
<td>Sets text in scriptsize type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{footnotesize \text</td>
<td>Sets text in footnotesize type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{small \text</td>
<td>Sets text in small type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{normalsize \text</td>
<td>Sets text in normalsize type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{large \text</td>
<td>Sets text in large type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{Large \text</td>
<td>Sets text in Large type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{LARGE \text</td>
<td>Sets text in LARGE type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{huge \text</td>
<td>Sets text in huge type.</td>
<td>Sample</td>
</tr>
<tr>
<td>{Huge \text</td>
<td>Sets text in Huge type.</td>
<td>Sample</td>
</tr>
</tbody>
</table>

A.3.3 White Space

Some aspects of the way the components (text, tables, graphs, ...) of a document are placed in the available space are controlled by the length parameters set in the preamble and discussed in Section A.2. Additional features of \LaTeX that give control over this feature of a document include

- The command \noindent to suppress paragraph indentation for a single paragraph.
- The commands \newpage and \clearpage to force a new page. The first of these commands terminates the current page and starts a new page. The second also flushes out any accumulated tables and figures that have not yet been output.
- The length parameter \baselineskip to specify the linespacing. This parameter is set with the command \setlength described in Section A.2. The default value is 12 points, which yields single spacing. The value 18 points specifies space and a half, and the value 24 points specifies double spacing. This specification must be placed after the command \begin{document}, and it can be changed whenever appropriate to the text. See, however, Section A.3.4 for a comment about limitations of this approach to setting the linespacing.
- The commands \quad and \qquad, which insert an en space and an em space, respectively. (An en space is about the width of the letter x, and an em space is about the width of the letter M, both in the current font.)
- The command \vspace{\text{Value}} to generate vertical space. Here, \text{Value} can be any defined length parameter, e.g., \vspace{\parskip}, or a specific length, e.g., \vspace{2.0truein}. If the space happens to occur at the top of a new page, it will be omitted, but the command \vspace*{\text{Value}} will force the space to be included even if it is at the top of a page.
- The command \hspace{\text{Value}} to generate horizontal space. Here, \text{Value} can be any defined length parameter, e.g., \hspace{\parindent}, or a specific length, e.g., \hspace{36.0pt}. If the space happens to occur at the end of a line, it will be omitted, but the command \hspace*{\text{Value}} will force the space to be included even if it is at the end of a line.
- The commands \settowidth, \settoheight, and \settodepth, which return lengths for the corresponding dimensions of the box that will enclose whatever is the argument of the
command. No printed output is produced by these commands. We might, for example, define
a new length parameter \( \texttt{dblast} \) as the width of the box accommodating two asterisks with
the two commands

\begin{verbatim}
\newlength{\texttt{dblast}}
\settowidth{\texttt{dblast}}{**}
\end{verbatim}

and then insert the space for two asterisks (without actually displaying them) with the com-
mand

\hspace{\texttt{dblast}}

These commands are described in detail at the end of Sections 6.4.1 and C.13.1 in The \textit{\LaTeX} Manual.

### A.3.4 Environments

Sometimes, the formatting to be accomplished requires a more sophisticated definition of a change
than is possible within the framework of a simple declaration or command with a few arguments.
\LaTeX's \textit{environments} are more versatile and flexible than declarations and commands. For example,
to present text in a narrower paragraph, as is conventionally done with extended quotations, we
might invoke one of the constructions

\begin{verbatim}
\begin{quotation}
\begin{quote}
Text of quotation.
\end{quote}
\end{quotation}
\end{verbatim}

Normally, the command \texttt{\begin{...}} will be placed on a line by itself, the text may spread over
several lines, and the command \texttt{\end{...}} will be placed on a line by itself. Left and right margins
are indented equally. Unless the text includes its own formatting specifications, however, the first
construction will indent each new paragraph and will place \textit{no} extra space between paragraphs while
the second will place extra space between paragraphs and will \textit{not} indent each new paragraph.

For a second example, if we wished to center a line or lines, we might invoke the similar
construction

\begin{verbatim}
\begin{center}
First line \ \ Second line \ \ Third line \ ... \end{center}
\end{verbatim}

Normally, the command \texttt{\begin{...}} will be placed on a line by itself, the text may spread over
several lines, each line in the final output will in the code be separated from its predecessor with the
command \texttt{\ }, and the command \texttt{\end{...}} will be placed on a line by itself.

These two examples introduce the construction called an \textit{environment}, which in general has the
format

\begin{verbatim}
\begin{EnvironmentName} ... \end{EnvironmentName}
\end{verbatim}

We met the \texttt{document} environment early on. Beyond the \texttt{quotation}, \texttt{quote}, and \texttt{center}
environments, the most commonly used environments include \texttt{verbatim}, \texttt{flushleft}, \texttt{flushright}, \texttt{itemize},
\texttt{enumerate}, \texttt{list}, \texttt{displaymath}, \texttt{equation}, \texttt{eqnarray}, \texttt{figure}, \texttt{table}, \texttt{tabular}, \texttt{minipage}, \texttt{picture},
and \texttt{thebibliography}. Environments can be thought of as mini-documents within a document.
They have default settings, but many of them possess parameters that the user can modify to
customize the details of the environment. Further, as described in Sections 3.4 and C.8 in The
in \LaTeX\ Manual, individual users can supplement the standard set by defining additional environments suited to the circumstances of the document. Individual exercises in this book, for example, are formatted by a user-defined environment.

The length parameter \texttt{\baselineskip} interacts in interesting ways with the formatting of text contained within environments. Changing \texttt{\baselineskip} will affect only the spacing in the main text of the document, including text in \texttt{itemize}, \texttt{enumerate}, and \texttt{verbatim} environments. Footnotes, material in \texttt{tabular} environments, table and figure captions, and perhaps other components will remain single spaced unless—as described in Section C.3.2 in \LaTeX\ Manual—the parameter \texttt{\baselinestretch} is also changed with the command \texttt{\renewcommand}. This additional change, however, has interesting side effects. (For example, the spacing of lines within footnotes will be changed but the spacing between separate footnotes on the same page remains single!) Tampering with global style can at times have unintended (and unwanted) consequences. \textit{Beware}!

### A.3.5 \LaTeX\ Packages

As a publishing system, \LaTeX is infinitely extendable. Rather than incorporate all manner of special tools within the basic program, its designers provided a means by which additional features could be added through the use of \texttt{packages}, the features of which can be made available in any specific code by placing the command

\begin{verbatim}
\usepackage{ PackageName }
\end{verbatim}

in the preamble \textit{The \LaTeX\ Companion} describes numerous packages, including \texttt{amstex}, \texttt{babel}, \texttt{color}, \texttt{graphics}, \texttt{graphicx}, \texttt{graphpap}, \texttt{ifthen}, \texttt{latexsym}, \texttt{imakeidx}, \texttt{verbatim}, \texttt{pict2e}, and \texttt{showidx}. A brief description of many of these packages is included in Section C.5.2 of \LaTeX\ Manual. The statement \texttt{texdoc PackageName} at a Shell prompt also will bring up documentation on several of these packages.

In addition, some programs, especially those with notebook capabilities, have the ability to write the contents of the notebooks into \LaTeX\ source files. Usually, those programs make use of their own special \LaTeX\ commands and supply program-specific \LaTeX\ packages which must be accessible, either at the proper point in the \LaTeX\ directory structure or in the directory from which you run \LaTeX\ when processing a \LaTeX\ file produced by the programs. Details on those additional packages will be found in the manuals provided by the vendors of the programs.

### A.3.6 Miscellaneous Other Capabilities

Several additional capabilities merit particular comment:

- To force \LaTeX\ to keep words together on a single line and/or to prevent \LaTeX\ from inserting additional space as it justifies a line, use a tilde “~” instead of a space between the words. The tilde should also be used after a period that does not end a sentence. For example, we should type ‘Mr.~Cook’ rather than ‘Mr.␣Cook’ in our file so as to produce ‘Mr. Cook’ rather than ‘Mr. Cook’ in our output. In the second form, there is more space between the abbreviation and the name because \LaTeX\ automatically inserts extra space after each period (which is assumed to mark the end of a sentence). \LaTeX\ may add even more space in the second case as it justifies the line between the margins.

- To generate a dash, use ‘—’, ‘–’, or ‘\ldots’, depending on the length of the required dash. One hyphen produces a hyphen, as in two-column; two hyphens in a row produce a slightly longer

\footnote{The symbol ‘\ldots’ underscores the presence of a space at the indicated point; it is not a character explicitly present in the code.}
dash (an en dash in printers’ terminology), conventionally used to indicate ranges, e.g., 10–12; three hyphens in a row produce a still longer line (—, an em dash in printers’ terminology), sometimes called a punctuation dash and conventionally used in pairs as an alternative to parentheses. Note that none of these constructions is a minus sign −, which has yet a different length and is produced only in math mode. (See Section A.4.)

- To generate opening and closing (double) quotation marks, use ‘‘ and ’’, i.e., two opening or closing (single) tics in a row, respectively. Do not use the symbol * for either of these punctuation marks.

- To specify a footnote, use the command `\footnote{Text of footnote.}`. The specified text will be placed at the bottom of the page and keyed to the text with an automatically generated number that starts with 1 at the beginning of the document.

- To start a new section, use the command `\section{Title of Section}`. In the `article` class, section numbers start with 1 at the beginning of the document and are automatically generated and incremented; the section number is included in the printed section title, which is displayed on the page by its number in the text. Further, the command `\pageref{ReferenceName}` permits referencing the equation or symbol on which the equation occurs in the text.

- To control hyphenation, insert the command `\-` at the point in a word where \LaTeX{} is permitted to insert a hyphen as it fills and justifies lines. \LaTeX{} has its own rules for hyphenation, but they are not infallible. Sometimes \LaTeX{} needs help. Note that words containing even one indication of an optional hyphen will not be hyphenated at any other point(s) in the word.

- To suppress hyphenation of a single word altogether, place the word as the argument of an `\mbox` command, e.g., `\mbox{customize}`.

### A.4 Including Equations

Most scientific documents will have equations, all of which must be specified in \LaTeX{}’s math mode. Shifting from the default text mode to math mode can be accomplished in several ways. For short, unnumbered equations or mathematical symbols that appear in a line of text, the equation or symbol must be enclosed in one of the two constructions \(`\ldots\)` or \(`\ldots\$\$\)\$, which are equivalent. If we want one or more displayed equations, with or without automatically generated equation numbers, we need to use the form `\begin{equation}\end{equation}`. Three standard environments use this construction. The `displaymath` environment centers a single equation on a line by itself, does not number the equation, and can be specified by the shortened form `\[\]`. The `equation` environment centers a single equation on a line by itself and numbers the equation automatically. The `eqnarray` environment—see \textit{The \LaTeX{} Manual}—is used for a string of equations and for long equations that will not fit on one line; its syntax allows vertical alignment of two or more displayed and numbered equations. To facilitate references to numbered equations produced in the `equation` and `eqnarray` environments, \LaTeX{} provides the command `\label{ReferenceName}` for defining a symbolic label within the environment and the command `\ref{ReferenceName}` to permit referencing the equation by its number in the text. Further, the command `\pageref{ReferenceName}` permits referencing the page on which the equation occurs in the text.\footnote{When these references are used, the information written into the .aux file becomes important and the code must be processed by \texttt{latex} or \texttt{pdflatex} twice, once to write the correct information into that file and a second time to read and make use of that information. Other environments, such as table and figure also admit a `\label` command and can make use of this capability for symbolic internal references to those components. The \texttt{label} command can also be used inside the argument of `\part`, `\chapter`, `\section`, `\subsection`, `\subsubsection`, and `\footnote` and in the text following an `\item` command in an `enumerate` environment to facilitate reference to these components of the document.} (Warning: The `displaymath`, `equation`, and `eqnarray` environments will generate error messages if they contain blank lines.)
LaTeX also has many symbols and structures, common in mathematical formulas, that can be used only in math mode. Subscripts and superscripts, roots, Greek letters, integral signs, summation signs, the `array' environment, and many more are available.\footnote{For a complete list of all symbols and the commands that create them, see Section 3.3 on Mathematical Formulas in The \LaTeX\ Manual.} To reiterate, these symbols and structures can only be used if \LaTeX\ is in math mode. So, to insert the symbol $\Theta$ in the final output, we place the command \verb|$\Theta$| in the code.\footnote{In math mode, Greek letters can be produced by commands that simply name the letter, e.g., \verb|$\Theta$| for $\Theta$ and \verb|$\omega$| for $\omega$. Only the initial letter of the name is capitalized to produce an upper-case letter. Note, however, that commands for letters that are identical to Arabic letters, e.g., \verb|$\kappa$|, do not exist.} (Here, the first dollar sign puts \LaTeX\ in undisplayed math mode and the second returns \LaTeX\ to text mode.) Since \LaTeX\ follows its own rules about spacing when in math mode, spaces in math mode are usually ignored. (A space, however, is necessary in such contexts as $\omega t$ to separate the command \verb|$\omega$| from the character \verb|t|.) The commands \verb|\,|, \verb|\!|, \verb|\:|, and \verb|\;| can be used in math mode to fine tune the spaces between elements in the equation by adding a thin space, a negative thin space, a medium space, and a thick space, respectively. It is, for example, customary to separate a differential element from what precedes and follows with a thin space, e.g., $(x + y) \, dx \, dy$ rather than $(x + y)dx\,dy$.\footnote{Technically and officially, the differential element $dx$ should be written with a Roman $d$ and an italic $x$, i.e., $dx$, but this convention is rarely followed.}

Following the conventions for the type setting of mathematical text, all symbols in a math environment are automatically italicized. The most common departure from this convention occurs with the names of the standard mathematical functions, which are conventionally set in Roman type. Special math mode commands of the form \verb|$\cos$| and \verb|$\sin$| should be used for these functions.\footnote{See Table 3.9 in The \LaTeX\ Manual for a complete listing.} Except for \verb|$\sc$|, the declarations shown in Table A.7 can also be used in math mode to specify text in something other than italic type but, in some contexts it may be preferable to use one of the commands \verb|$\mathrm,$| \verb|$\mathit,$| \verb|$\mathbf,$| \verb|$\mathtt,$| etc. described in Section 3.3.8 of The \LaTeX\ Manual. Remember, however, that spaces are ignored in math mode, so a shift to Roman type with the command \verb|$\mathrm$|, for example, to include a two-word phrase, will result in the words running together unless the \verb|space| command \verb|\␣| is used to insert an explicit space between the words. Sometimes, the better means to insert Roman text in equations is to use the command \verb|$\mbox$| to escape temporarily to text mode.

Including bold characters in equations is especially tricky. The command \verb|$\mathbf$| “emboldens” only some characters in the processed formula and, in particular, leaves lower case Greek symbols in light face. The \verb|$\boldmath$| declaration causes everything in math mode to be bold but cannot itself be invoked in math mode. To include a bold face, lower case $\theta$, for example, we must use the construction

\begin{verbatim}
$ \ldots \mbox{ \boldmath \$\theta$ } \ldots \$ 
\end{verbatim}

where the command \verb|$\mbox$|, which \emph{is} valid in math mode, temporarily shifts to text mode so the \verb|$\boldmath$| declaration can be invoked and the math mode expression in the argument of the command \verb|$\mbox$| will then be made bold; the bold presentation is confined by the command \verb|$\mbox$| to the desired part of the total expression.

\section*{A.5 Including Lists}

Among the most commonly used environments are those that facilitate creation of lists, including the \verb|$\itemize$| environment for bulleted lists (such as the one in Section A.3.6) and the \verb|$\enumerate$| environment for lists in which the items are lettered or numbered in sequence (such as the one in Section A.17). Each environment is introduced and terminated with the standard construction \verb|$\begin \ldots \end$|. Within the environment, each new item is introduced with the command \verb|$\item$|. Thus, the structure might look like...
\begin{itemize}
\item Text of first item.
\item Text of second item.
\item Text of third item.
\end{itemize}

The bullets and the numbers are, of course, generated automatically and, within the `enumerate` environment, the numbers are automatically incremented. Details will be found in Sections 2.2.4, 6.6, C.6.2, and C.6.3 in *The \LaTeX Manual*. Note in particular

- The optional argument for the command `\item`, which provides a means to override the automatic label for that item and replace it with an explicit stipulated label. For example, the command `\item[DMC]` will cause the item to be labeled ‘DMC’ and the command `\item[]` will suppress the label altogether. Note that, if the text of the item itself begins with something enclosed in square brackets, the command introducing that item must be written `\item{}` to prevent the text in square brackets from being interpreted as the desired label.

- The length parameters `\itemsep`, `\parskip`, and `\parsep`, which provide a means to override default spacings within the environment.

- The way to change the “bullets” in the `itemize` environment. The symbols used to label the “bulleted” items in the various levels of nested `itemize` environments are created by the commands `\labelitemi`, `\labelitemii`, `\labelitemiii`, and `\labelitemiv`. The default sequence for marking items at each level is •, – *, and ·. Each of these symbols can, however, be changed by redefining the corresponding command. For example, the command

  \begin{verbatim}
  \renewcommand{\labelitemii}{$\circ$}
\end{verbatim}

executed in the preamble will change the symbol – to ◦ for the second level in nested `itemize` environments.

- The way to change the form of the labels for each item in the `enumerate` environment. The labels at the various levels of nested `enumerate` environments are determined by invoking one of the commands `\theenumi`, `\theenumii`, `\theenumiii`, and `\theenumiv`, whose action is in turn determined from the value of the corresponding one of the counters `enumi`, `enumii`, `enumiii`, and `enumiv`. The default sequence for marking items at each level is ‘1.’, ‘(a)’, ‘i.’, ‘A.’, i.e., arabic number with period, lower-case letter in parentheses, lower-case Roman number with period, and upper-case letter with period. These defaults, however, can be changed with a command like

  \begin{verbatim}
  \renewcommand{\theenumi}{(\textbf{Alph}{\textit{enumi}})}
\end{verbatim}

which will change the labels used at the first level in `enumerate` environments to upper-case arabic letters in parentheses. The command `\textbf{Alph}` could be replaced with `\textit{alph}`, `\textsc{roman}`, `\textsc{Roman}`, or `\arabic` to translate the underlying counter into lower-case arabic letters, lower-case Roman numbers, upper-case Roman numbers, or arabic numbers, respectively. As it turns out, whatever is specified in the argument of the commands translating the counters, a period will be appended by \LaTeX at the first, third, and fourth levels, and enclosing parentheses will be supplied at the second level.

### A.6 Including Tables

Creation of columnar arrangements is facilitated by \LaTeX’s `tabular` environment, the details of which are involved and are fully described in *The \LaTeX Manual*. The `tabular` environment can
Table A.9: Format for inserting a table.

\begin{table}
  \caption{...}
  \label{...}
  \begin{center}
    \begin{tabular}{clr}
      Row 1, Col 1 & Row 1, Col 2 & Row 1, Col 3 \\
      Row 2, Col 1 & Row 2, Col 2 & Row 2, Col 3 \\
      Row 3, Col 1 & Row 3, Col 2 & Row 3, Col 3
    \end{tabular}
  \end{center}
\end{table}

be invoked anywhere in the code and the resulting table will be placed at the point at which the environment appears, perhaps even in the middle of a line of text. Conventionally, however, tables are placed at the top or bottom of the page, and \LaTeX{} provides the \texttt{table} environment to facilitate proper placement of a table, though the bare \texttt{table} environment contains nothing other than its name that suggests its use for tables. Any text at all can be incorporated in the \texttt{table} environment and will be placed on the page as would a table. Most commonly, however, the \texttt{table} environment will embrace a \texttt{tabular} environment defining the table itself and will use the command \texttt{\caption} to specify the caption of the table and the command \texttt{\label} to specify a symbolic label for use in referring to the table within the document. Frequently, the \texttt{tabular} environment will itself be embraced in a \texttt{center} environment to control the horizontal placement of the table on the page. Thus, the common structure for the code defining a table would be of the form shown in Table A.9.

Here, individual elements in a row are separated from one another by ampersands, and the end of each row—except the last—is marked with the command `\('. In this example, the caption, including an automatically generated phrase and number of the form 'Table 3:', will appear above the table. Positioning the commands \texttt{\caption} and \texttt{\label} after the \texttt{center} environment would place the caption below the table. Whichever position is adopted, the command \texttt{\label} must appear after the command \texttt{\caption}. Wherever the command \texttt{\label} is positioned, it will place an entry in the \texttt{.aux} file so that the commands \texttt{\ref} and \texttt{\pageref} will function here as described for equations at the beginning of Section A.4.

The illustrative argument \texttt{clr} of the \texttt{tabular} environment requires a bit more explanation.

\begin{itemize}
  \item \texttt{\begin{table}} has an optional argument (\texttt{\begin{table}[	extit{OptArg}]}, which can assume any of the values \texttt{h}, \texttt{b}, or \texttt{t} for placement of the table at the place where the \texttt{table} environment appears (\texttt{h}, for here), or at the bottom (\texttt{b}) or top (\texttt{t}) of the page. In the absence of an explicit specification, \LaTeX{} makes its own decision about placement.
  \item If there is space on the current page when the \texttt{table} environment is encountered, the table will be placed on that page. Otherwise, the table will be placed on a subsequent page.
  \item The \texttt{\caption} and \texttt{\label} commands can be placed anywhere within the \texttt{table} environment. Captions will commonly be placed either above or below the captioned component. In some contexts (see the warning at the end of Section A.10), placing the caption above the item is preferable.
  \item \LaTeX{} automatically uses the specified caption as an entry for a list of tables. There is, however, a limit to the length of such entries. Especially long captions may generate error messages. To avoid this problem, we can—and sometimes must—exploit an optional argument to the command \texttt{\caption} which allows the user to dictate the entry made to the list of tables. Unless a list of tables is to be generated, some authors argue that we should routinely specify a null value for the optional argument by writing the command \texttt{\caption[\{}\textit{...}\texttt{\}]}{\caption}, though we shall here not follow that recommendation. See The \LaTeX{} Manual for details.
  \item See Sections 3.6 and C.10 in The \LaTeX{} Manual for much more detail on ways to line things up in columns. Note particularly (1) the command \texttt{\multicolumn}, which provides for entries that span more than one column, and (2) ways to create horizontal and vertical rulings in the table.
\end{itemize}
In general, this argument will be a string of c’s, l’s and r’s, one for each column in the table. Each specifies the position (centered, left justified, right justified), respectively, of the entry in the corresponding column. In the example, there are three columns, with entries in the first column centered, entries in the second column left justified, and entries in the third column right justified. The argument is mandatory but will, of course, be a string appropriate to the table being constructed rather than the specific string clr.

By default, tables will be produced with no vertical or horizontal rulings. See Section C.10.2 in The \LaTeX Manual for a description of the means to add these rulings.

A.7 Including Illustrations

Graphics displays frequently appear in technical documents. Within \LaTeX, means to incorporate graphics include:

- A cut and paste method (Section A.7.1).
- A method for incorporating a properly constructed PostScript or PDF file that invokes the command \texttt{\includegraphics} from the package \texttt{graphicx} (Section A.7.2).
- A method that exploits the \texttt{tikz} package of macros that facilitate describing the graphical display and its formatting in the same way that \LaTeX itself facilitates describing the text and its formatting (Section A.7.3).
- The built-in \texttt{picture} environment (Section A.7.4), which has limited capability but is sometimes just the ticket for simple displays.

Most often, commands incorporating figures will be bracketed in a \texttt{figure} environment, which facilitates locating the illustration at the top or bottom of the current (or a following) page. In most cases, we need to know the final vertical extent of the figure in order to specify the size of an appropriate space. Further, the commands \texttt{\caption} and \texttt{\label} are available to caption the figure and to place appropriate entries in the \texttt{.aux} file so that the commands \texttt{\ref} and \texttt{\pageref} will function here as described in the first paragraph of Section A.4.

A.7.1 Using Cut and Paste

The cut and paste method requires only that \LaTeX be instructed to set aside appropriately sized and positioned space into which the illustration will be placed after the document has been printed. The segment of the code that creates and labels space for a figure will have the general form

\begin{verbatim}
\begin{figure}
 \caption{ ... }
 \label{ ... }
 \vspace{ ???.?truein }
\end{figure}
\end{verbatim}

As illustrated here, the caption, including an automatically generated phrase and number of the form ‘Figure 3:’, will appear above the space left for the figure. Positioning the commands \texttt{\caption} and \texttt{\label} after the command \texttt{\vspace} would place the caption below the figure. Note also that,

\begin{itemize}
  \item We elect here to discuss only a very few of the numerous available packages, choosing those of the broadest applicability. Packages for drawing Feynman diagrams, organic molecules, musical scores, and many other displays are described in The \LaTeX Graphics Companion.
  \item The \texttt{figure} environment also admits the optional argument described in footnote 31.
\end{itemize}
whichever position is adopted, the command \label must appear after the command \caption. For this method, you need only have printed copies of your figures.\footnote{Appropriately translated, the substance of footnote 34 applies here to the entry placed automatically in the list of figures.} The format of the files used for the figures is irrelevant and the document can be produced with any of the methods described in Sections A.1.2 and A.1.3.

\section*{A.7.2 Using the graphicx Package}

Incorporation of graphic images in a \LaTeX document is viewed by \LaTeX as the responsibility of the device driver. To enable that process, \LaTeX allows the passing of commands to the device driver. Both the format of such commands and the variety of capabilities thus available depends entirely on the device driver. In essence, this process uses the \TeX (not \LaTeX) command \special, but the user is unaware of that underlying command because it is invoked behind the scenes.

The simplest means for importing graphical displays into a \LaTeX document—i.e., of commanding \LaTeX to pass the proper information on to the device driver—exploits the graphicx package\footnote{The graphics package might also be used, but the syntax of the commands it defines is marginally less convenient than the syntax of the parallel commands in the graphicx package, i.e. the extended graphics package.}, whose features are made available by including that package with the statement

\begin{verbatim}
\usepackage{graphicx}
\end{verbatim}

in the preamble of our \LaTeX code.\footnote{More generally, this statement admits an optional argument to the desired graphics driver explicitly. Frequently, that driver will be dvips and the statement would be \usepackage[dvips]{graphicx}, but numerous other drivers exist, and many may be installed at your site. See the Local Guide for more information. For ultimate flexibility in the formatting of graphics files, we elect to leave that choice to the default.}

After placing the command \usepackage{graphicx} in our preamble, we incorporate the graphical display itself by placing a statement like

\begin{verbatim}
\includegraphics[height=\textwidth]{filename}
\end{verbatim}

at the point where the PostScript or PDF figure defined in by the file \textit{filename} is to be inserted.\footnote{If you use \texttt{latex}, \texttt{dvips}, and \texttt{ps2pdf} as described in Section A.1.2 and item 2 in Section A.1.3 to produce PostScript and PDF documents, your figures must be available as .ps or .eps files, and—even if the file type is omitted in the \includegraphics command—the processing will correctly identify and incorporate the figures. If you seek to produce a PDF document directly with \texttt{pdflatex} as described in item 1 in Section A.1.3, then—even if the file type .pdf is omitted in the \includegraphics command—the processing will correctly identify and incorporate the figures. If your figures are PostScript, you must use the first route to the final document; if your figures are PDF, you must use the second route. Software to convert PostScript figures to PDF figures and \textit{vice versa} is described in Section A.11. If both PostScript and PDF files exist for all figures and you omit the file type in the \includegraphics command, then you can use either \texttt{latex} or \texttt{pdflatex} for the processing.}

In general, the image would be centered horizontally on the page by inserting this command in a \texttt{center} environment, e.g.,

\begin{verbatim}
\begin{center}
\includegraphics[height=\textwidth]{filename}
\end{center}
\end{verbatim}

For example, the code\footnote{Appropriately translated, the substance of footnote 34 applies here to the entry in the list of figures.}
Figure A.1: Mesh surface representation of the irradiance produced by a square aperture.

\begin{figure}
\caption{Mesh surface representation of the irradiance produced by a square aperture.}
\label{LATEX:irrad}
\begin{center}
\includegraphics[height=3.0truein]{diffract}
\end{center}
\end{figure}

will produce Fig. A.1 if the file \textit{diffract} is stored in the current default directory.\textsuperscript{43,44} Here, the specification of the parameter \texttt{height} in the optional argument of the command \texttt{\includegraphics} causes the figure to be scaled to the specified dimension vertically and scaled by the same fraction horizontally to preserve its aspect ratio. As in the example in Section A.7.1, the figure here has been inserted \textit{before} the command \texttt{\caption}, so that the caption will appear \textit{above} the figure. Further, the command \texttt{\label}, which must \textit{follow} the command \texttt{\caption}, defines a symbolic label that can be used within the document to refer to the figure.

\textbf{Warning for OCTAVE users:} All graphics toolkits in OCTAVE will produce proper on-screen graphs and will output PostScript files of these graphs that can be displayed with ghostview. If, however, the graph is to be incorporated in a \LaTeX document by the procedures described above, graphs produced by all toolkits will be properly incorporated in the \texttt{.dvi} file but those produced by the \texttt{qt} toolkit may not then translate with \texttt{dvips} to the subsequent PostScript file. When the latter is the objective, use \texttt{gnuplot} (or maybe \texttt{fltk}). A bit of testing may be necessary.

The command \texttt{\includegraphics} admits several optional arguments. The argument \texttt{width} can also be included. If \texttt{width} is specified \textit{instead of} \texttt{height}, the height will be scaled to preserve

\footnote{Omission of the file type in the statement including the graph prepares the way to use either \texttt{latex-dvips} to produce a PostScript file using \texttt{latex} and \texttt{dvips} (Section A.1.2), in which case the file \texttt{diffract.ps} or \texttt{diffract.epsl} will be used, or \texttt{pdflatex} to produce a PDF file (Section A.1.3), in which case the file \texttt{diffract.pdf} will be used. The appropriate file must, of course, be accessible in either case.}

\footnote{The label following the word ‘Figure’ in the output will, of course, reflect the document class in use and the unit of the document in which the figure appears.}
the aspect ratio. If both height and width are specified, each will be respected and the aspect ratio of the figure may be distorted; specification of neither will cause the display to be produced in its original size. Arguments that allow overriding of the bounding box specified in the PostScript file and arguments that permit clipping a portion of a fuller figure are described in *The \LaTeX\ Graphics Companion*.

### A.7.3 Using the \texttt{tikz} Package

The \texttt{tikz} package, which is routinely included in present-day \LaTeX\ distributions, provides an assortment of \LaTeX\ macros to facilitate the drawing of simple—and even complicated—figures. Basically, the statement \texttt{\usepackage\{tikz\}} in the preamble followed in the document itself by statements embedded in a \texttt{tikzpicture} environment will specify the desired graph and incorporate the graph in a PDF or Postscript file created as described in Sections A.1.2 and A.1.3.\footnote{\textit{Note that, when displayed on the screen with \texttt{xdvi} or \texttt{yap}—see Section A.1.4—the intermediate .dvi file produced in Section A.1.2 will not contain the correct figures.}} Be aware that the code inserted in the \texttt{tikzpicture} environment describes the picture in the same way that \LaTeX\ provides the text and its formatting. Just as one imagines the final formatted document as the \LaTeX\ coding is constructed, so one has to imagine the resulting picture as one constructs the descriptive code to create it in the final document. \texttt{Tikz} is \textit{not} a WYSIWYG drawing program like \texttt{PAINT} or \texttt{TGF}. One of its advantages over the route described in Section A.7.2, which imports figures produced in other programs, is that the route of this section guarantees that the fonts used in the figures will be identical to those used in the rest of the document.

The graphics system provided by \texttt{tikz} is impressively elaborate and versatile. As such, learning its capabilities, especially its more sophisticated capabilities, will require substantial effort. Typing the command\footnote{The designation \texttt{pgf}—Portable Graphics Format—reflects the name of the engine underlying the entire system.} \texttt{texdoc pgf}

at a \textit{Shell} window to your operating system will probably bring up links to a number of manuals, including the main—and voluminous (1100-plus pages!)—manual in the file \texttt{pgfmanual.pdf}. Further, googling \texttt{tikz} will bring up links to numerous documents, including in particular a link to \texttt{pgfmanual.pdf} and a link to the much more compact tutorial-style introduction in the file \texttt{minimaltikz.pdf}. Once you have selected any of these items, you may in some operating systems have to look in your \texttt{Downloads} folder to access the item.

This section quickly orients you to the general features of \texttt{tikz} without in any way pretending to be complete. To that end, having included the statement\footnote{Some installations may also require inclusion of the packages \texttt{pgf} and \texttt{xcolor}.} \texttt{\usepackage\{tikz\}}

in the preamble of a document, we produce Fig. A.2 by placing the coding in Table A.10 at the appropriate point in the document itself. This coding briefly illustrates some of the more elementary capabilities of \texttt{tikz}. Note specifically the following:

- Optional arguments to any \texttt{tikz} command are included in (square) brackets.

- By default, specified coordinates are expressed in centimeters, though any recognized \LaTeX\ unit of length can be specifically stipulated. The optional argument \texttt{[x=1.0in,y=1.0in]} following \texttt{\begin{tikzpicture}} changes the default to inches. Once a figure has been defined, its size can be easily altered simply by changing this optional argument.
Every statement must end with a semicolon. Any statement can be spread over several lines with only the last line so terminated.

The statement \draw [fill=black] (0,0) circle [radius=0.1]; draws a black-filled circle centered at the origin and having radius 0.1 inches, thus marking the origin of the coordinate system.\footnote{Note that the default unit—here inches—for radius can be overridden with an explicit stipulation, e.g., \[radius=0.1cm\].} Available colors include red, green, blue, cyan, magenta, yellow, and many others. You can also define your own color using a command like\footnote{The command \definecolor here used is defined within the \texttt{tikzpicture} environment and does not require use of the \LaTeX{} package \texttt{color}.}

\begin{verbatim}
definecolor{ColorName}{rgb}{r,g,b}
\end{verbatim}

where \texttt{ColorName} is the name you assign to the color and \texttt{r}, \texttt{g}, \texttt{b} specify the \texttt{r}, \texttt{g}, and \texttt{b} components that make up the color. Available shapes include \texttt{rectangle}, \texttt{ellipse}, and \texttt{arc}.\footnote{See the manuals for the details of how to specify the dimensions of these shapes.}

The statement \draw [\leftrightarrow, line width=2] (0,1.2)--(0,0)--(2.3,0); draws a line connecting the specified points in the order given, i.e., draws the axes intersecting at the origin. Any number of points can be included in the path. The optional argument \texttt{\leftrightarrow} places an arrow at both ends of the line,\footnote{The separate arguments \texttt{-} and \texttt{-->} will place an arrow at the end or the beginning of the line, respectively.} and the argument \texttt{line width} specifies the weight of the line, by default, in points.\footnote{The argument \texttt{line width=2} could be replaced, among others, by \texttt{ultra thin}, \texttt{very thin}, \texttt{thin}, \texttt{thick}, \texttt{very thick}, and \texttt{ultra thick}, and the default unit could be overridden with an argument like \texttt{line width=0.1cm}.}

Text is placed where specified with the statements \texttt{\node at (0,1.3) \{\Large\bf y\};} and \texttt{\node at (2.4,0.0) \{\Large\bf x\};}. Note that \LaTeX{} stipulations of font size and style are recognized by \texttt{tikz}. Note also that the text is, by default, \textit{centered} at the specified point. See the \texttt{TIKZ} manuals for ways to override that default positioning.

The statement \texttt{\draw [ultra thick, domain=0:2.0] plot (\x, {sin(pi*\x r)} );} illustrates how to draw a smooth curve defined by a function, many of which are available within \texttt{tikz}. Note also the availability of the irrational number \pi with the simple coding \texttt{pi}.\footnote{Another way to draw smooth curves is to use a calculational aid in another program to generate a probably long list of coordinates for many points on the curve and then to insert that list as the argument of a \texttt{\draw} command.}

The construction

\begin{verbatim}
\foreach \x in {0.0,1.0,2.0} {
    \draw (\x,0.1 )--(\x,-0.1);
    \node at (\x, -0.4){\x};
};
\end{verbatim}

creates a loop executing the statements enclosed in \{\ldots\} for each value in the list following the keyword \texttt{in}. The two loops in this code place tick marks on the axes and label those marks. Note the semicolons in this construction.

Clearly the command \texttt{\draw} is a versatile command that admits numerous embellishments through the use of keywords and/or optional arguments. Conveniently, \texttt{tikz} determines the size of the space to be used in the document to reflect the size of the picture as constructed with the measures provided in the \texttt{tikz} coding.

When features of the package \texttt{tikz} are invoked in the \LaTeX{} code, producing the formatted document must be done carefully. If there are no complications (external figures, table of contents, internal references) to be incorporated, the simple statement

\begin{verbatim}
\end{verbatim}
Figure A.2: An illustrative \texttt{tikz} figure. Note that specified colors will be converted to a gray scale unless the display device—screen or printer—can display colors.

\begin{center}
\begin{tikzpicture}[x=1.0in,y=1.0in]
  \draw [fill=black] (0,0) circle [radius=0.1];
  \draw [->, line width=2] (0,1.2)--(0,0)--(2.3,0);
  \node at (0,1.3) {\Large\bf y};
  \node at (2.4,0.0) {\Large\bf x};
  \draw [ultra thick, domain=0:2.0] plot (\x, {sin(pi*\x r)} );
  \foreach \x in {0.0,1.0,2.0} {
    \draw (\x,0.1 )--(\x,-0.1);
    \node at (\x, -0.4){\x};
  }
  \foreach \y in {0.0,0.5,1.0} {
    \draw (-0.1,\y)--(0.1,\y);
    \node at (-0.3, \y) {\y};
  }
\end{tikzpicture}
\end{center}

\texttt{pdflatex filename} \hspace{2cm} (Default file type \texttt{.tex})

will produce a PDF file and the statements

\texttt{latex filename} \hspace{2cm} (Default file type \texttt{.tex})
\texttt{dvips -o filename.ps -t letter filename} \hspace{2cm} (Default file type \texttt{.dvi})
\texttt{ps2pdf filename.ps}

will produce a PostScript and then a PDF file, though figures defined by \texttt{tikz} will not be properly
rendered in the intermediate .dvi file. If a table of contents or internal references or both are involved, two—and maybe three—passes through latex or pdflatex will be necessary. If there are PostScript figures and no PDF figures to be incorporated, only latex will work; if there are PDF figures (and no PostScript figures) or hyperlinks to be incorporated, only pdflatex will work. Finally, if there are both PostScript and PDF files defining figures, files of one type will have to be converted to the other type before either of these routes to a finished document will work.\footnote{See Section A.11 for details about that conversion.}

If you wish to short circuit learning detailed tikz code, you might wish to explore a WYSIWYG editor TikzEdt that provides a graphical interface for creating figures and translates that figure into the corresponding tikz code. This program, which is free, can be downloaded from the web site www.tikzedt.org. Documentation is also available at that site.

This section provides a woefully incomplete introduction intended more to wet your appetite than to make you an expert. The effort invested to study the manuals identified in the second paragraph of this section will be richly rewarded.

A.7.4 Using the picture Environment and pict2e Package

Finally, we merely mention the picture environment, described in Sections 7.1 and C.14.1 of The \LaTeX Manual, and the supplementary pict2e package, described in The \LaTeX Companion. These components add several commands that facilitate the detailed construction of at least simple graphical displays.

A.8 Including a Table of Contents, a List of Figures, and a List of Tables

A table of contents, a list of figures, and a list of tables can be included in the formatted document by the commands \tableofcontents, \listoffigures, and \listoftables. Each

- results in the output of an auxiliary ASCII file of information with file type .toc, .lof, and .lot, respectively,
- requires a second pass through latex or pdflatex to incorporate the list in the finished document, and
- places the list in the output at the point at which the command appears.

When these commands are invoked, each of the components of the text defined by the commands \part, \chapter, \section, \subsection, and \subsubsection will automatically generate a line in the .toc file,\footnote{Note that not all of these options are available in all document classes. For example, \part and \chapter are available only in the book class. Note also the counters \secnumdepth and \tocdepth that control the depth to which sections are numbered and the depth to which sections are catalogued in the table of contents. The default values of these counters can be overridden using \setcounter in the preamble.} each use of the \caption command in a figure or table environment will automatically generate a line in the .lof or .lot file. Then, in the second pass—which will always be necessary—through latex or pdflatex, these files are read and each line results in an entry in the corresponding list.

Two commands allow explicit entry of information into one or another of these files at the point where the command is inserted in the \LaTeX source file, specifically

- the command \addcontentsline{file}{unit}{entry}
- the command \addtocontents{file}{text}
Here, \textit{file} is one of \texttt{toc}, \texttt{lof}, and \texttt{lot}. \textit{unit} is one of \texttt{part}, \texttt{chapter}, \texttt{section}, \texttt{subsection}, or \texttt{subsubsection} if \textit{file} is \texttt{toc}, \texttt{figure} if \textit{file} is \texttt{lof}, and \texttt{table} if \textit{file} is \texttt{lot}.

These two commands have quite different effects. The first adds a \textit{bona fide} entry to the corresponding file. For example, the line

\begin{verbatim}
\addcontentsline{toc}{subsection}{Specially marked point}
\end{verbatim}

will add to the table of contents an entry that is left-justified at the subsection level, contains the text “Specially marked point”, and includes a row of dots and the appropriate page number.\footnote{If you are creating a linked document, this entry in the table of contents will also appear in the navigation panel of that document.} The second merely adds text—no dots or page number—to the corresponding file. For example, the line

\begin{verbatim}
\addtocontents{toc}{\vspace{24pt}This is a note.\vspace{24pt}}
\end{verbatim}

inserts a note preceded and followed by a bit of extra vertical space. Any textual note is left-justified as dictated by the section level at which it appears in the document.

Additional details about the issues discussed in this section are laid out in Sections 4.1 and C.4 of \textit{The \LaTeX{} Manual}. Note, in particular, the optional argument in the command \texttt{\caption} and the several sectioning commands (\texttt{\chapter}, \texttt{\section}, \ldots), which provide control over the entry each command places in the table of contents, list of figures, and list of tables.

\section{Including an Index}

Among many capabilities, \LaTeX{} is able to generate an index, though not automatically. In essence, we must place the commands\footnote{Earlier versions of \LaTeX{} used the package \texttt{makeidx}, which is still available. We here recommend using \texttt{imakeidx} because it makes available a few more features than are available in the previous package and it eliminates the need to run an auxiliary program to format the index.}

\begin{verbatim}
\usepackage{imakeidx}
\makeindex
\end{verbatim}

in the preamble and the command

\begin{verbatim}
\printindex
\end{verbatim}

at the point in the code at which the index is to be printed—usually the very end. Then, we indicate what items are to be indexed by placing commands like

\begin{verbatim}
\index{Item to be indexed}
\end{verbatim}

at appropriate points throughout the document. (The detailed structure of the argument to the command \texttt{\index} is described in Section 4.5 and Appendix A of \textit{The \LaTeX{} Manual}.) When the file \texttt{filename.tex} is processed by \texttt{latex} or \texttt{pdflatex}, the presence of these commands results in the addition of three auxiliary ASCII files named

- \texttt{filename.idx} containing one line for each index entry,
- \texttt{filename.ilg} containing a log of messages created when, behind the scenes, the idx file is automatically processed through \texttt{makeindex}, and
• `filename.ind` produced by `makeindex` and containing the formatted index that is then read by `\printindex` to create the actual index in the document.

With `imakeidx`, the index is automatically created and incorporated in the document because an execution of `makeindex` is inserted automatically at the appropriate point when `latex` or `pdflatex` is run. Errors and warnings in that step are compiled in the `.ilg` file (which should be examined because on-screen display of those glitches may well scroll by to quickly to be comprehended).

The above-described process yields an index in the default format. Numerous options can be exploited by adding optional arguments in the `\makeindex` command. For example, the command

```
\makeindex [options=-s ind_style, intoc]
```

stipulates that the style defined by the file `ind_style.ist` should be invoked and the index should be provided—argument `intoc`—with an entry in the table of contents. The construction of the style file is fully described in Section 12.4 in *The \TeX Companion* as identified in Section A.18.

To assist in constructing the index, an auxiliary package called `showidx`, which works both with `latex` and with `pdflatex`, can be invoked to print the index entries on each page as marginal notes. This package is invoked simply by including the command

```
\usepackage{showidx}
```

in the preamble, though it appears as if this command must be inserted after the `\makeindex` command described above. Unfortunately, when printing in a 6" × 9" area on 8.5" × 11" paper (letterpaper), the marginal insertions of index entries will extend outside the edges of the page and, in .ps and .pdf files, the portions that are off the page will not be displayed in ghostview or acroread. Conveneiently, if the .dvi file is displayed on the screen with xdvi (UNIX) or yap (Windows), those marginal notes will be visible in their entirety, even if they extend beyond the boundaries of the page, though that route is available only if figures are provided in .ps or .eps format. For the purposes of checking the index entries, one workaround is to shrink the area of the page in which printing of the text is allowed. For example, for this document, replacing the commands

```
\setlength{\textwidth}{6.0truein}
\setlength{\oddsidemargin}{0.5truein}
\setlength{\evensidemargin}{0.0truein}
```

in the preamble with the commands

```
\setlength{\textwidth}{4.0truein}
\setlength{\oddsidemargin}{1.0truein}
\setlength{\evensidemargin}{1.0truein}
```

will shrink the text width and reset the margins so there will be space for the marginal notes. To be sure, the pagination of the text will also change, but at least the marginal notes will be visible, even in the .ps and .pdf files. In different situations, tampering with the above illustrated length parameters and, perhaps also, tampering with the length parameters `\marginparwidth` (which sets the width of the marginal boxes) and `\marginparsep` (which sets the space between the text and the boxes) as well as seeking ways to shrink the entire output including marginal notes on each page as a unit may yield fruit.\footnote{With makeidx, a separate explicit processing of the .idx file with `makeindex` to produce the .ind file and a further pass through `latex` or `pdflatex` was necessary to include the index in the document.}
A.10 Including Hyperlinks

Properly constructed, a \LaTeX{} source file can be used to create a PDF document that includes a navigation panel and hyperlinked references for easy viewing with a compatible PDF viewer. Only a few changes need be made to the source files so far described to turn entries in the table of contents, internal references in the body of a document, and page references in an index into hyperlinks to the appropriate points in the document, though these features will appear only in PDF files created via the route described in item 1 in Section A.1.3 above. Specifically,

- the \texttt{\documentclass} statement at the beginning of the file must not specify any particular driver, i.e. should be of the form \texttt{\documentclass\{Class\}}.
- if used at all, the \texttt{\usepackage\{graphicx\}} command in the preamble must not include any options specifying a graphics driver.
- figures must be provided as PDF files or defined using the package \texttt{tikz}. PostScript descriptions of figures will not be properly rendered.
- the command \texttt{\usepackage\{hyperref\}}, perhaps with some optional arguments, must be added in the preamble and, to make sure that other included packages do not overwrite redefinitions made by \texttt{hyperref}, should be the \texttt{last} package included.

This edited source file is then processed by \texttt{pdflatex} (Section A.1.3) at least twice to include hyperlinks, and tables of contents, figures, and tables. With these simple additions, a navigation panel in the PDF file containing chapter, section, subsection, and ... subdivisions of the document will be created. Further, all entries in the tables of contents, list of figures, and list of tables, all internal references created with \texttt{\ref} commands, and all index entries will be converted into hot links within the document.

The command \texttt{\usepackage\{hyperref\}} in the preamble is the minimum necessary to create a hyperlinked PDF file. By default, hot links in the document will be displayed in a red box. To override that default, one can exploit options in the \texttt{\usepackage} command. For example, the statements,

\begin{verbatim}
\usepackage{color}
\definecolor{MyPurple}{rgb}{0.577,0.000,1.000}
\usepackage[colorlinks=true,\
linkcolor={MyPurple},bookmarksnumbered=true,linktocpage=true]{hyperref}
\end{verbatim}

in the preamble of the \LaTeX{} source file will set the stage for automatic creation of hyperlinks for all references, setting the color of those hyperlinks to \texttt{MyPurple} as specified by the RGB values in the \texttt{\definecolor} statement and removing the enclosing box, stipulating that the bookmarks in the navigation panels should include chapter and section numbers, and stipulating that page numbers rather than section titles should be the linked entries in the Table of Contents.\footnote{The default value of the \texttt{bookmarksnumbered} and \texttt{linktocpage} options is \texttt{false}.} The final PDF file is then produced by processing the source file with \texttt{pdflatex} (Section A.1.3)—at least twice and perhaps three times. To avoid error messages, all auxiliary files hanging over from a previous processing of the source file \textit{without} hyperlinks through \texttt{latex} or \texttt{pdflatex} should be deleted before processing the file with hyperlinks.\footnote{See item 25 in Section A.17 for ways to achieve this deletion.}

The files created in the user’s directory when a properly constructed \texttt{.tex} file with hyperlinks, index, and table of contents is processed through \texttt{pdflatex} to produce a linked PDF file are\footnote{We here assume you are making an index and using \texttt{imakeidx}. The sequence and auxiliary files will be different if you are not making an index and/or if you are using \texttt{makeidx}.}

\footnote{We here assume you are making an index and using \texttt{imakeidx}. The sequence and auxiliary files will be different if you are not making an index and/or if you are using \texttt{makeidx}.}
• (after first pass through pdflatex) .aux, .idx, .ilg, .ind, .log, .out, .pdf, and .toc. The .idx, .ilg, and .ind files will be present only if you are creating an index with makeidx. The .out file contains information about hyperlinks; the rest are as described in item 1 of Section A.1.3, in Section A.8, and in Section A.9. At this point, the PDF file does not have the navigation panel or the table of contents but it does have the index. All of these files are ASCII text files, though the PDF file may contain some non-printing characters. As such they can all be displayed in an available text editor and understood.

• (after the second pass and, if necessary, the third pass through pdflatex) the same as in the previous bullet, though many of those files have been updated. At this point, the navigation panel, the internal hyperlinks, and the index have all been created.

A WARNING: Links to figures and tables will point to the line containing the caption for the figure or table. Captions for these items are perhaps better placed above the item rather than below the item.

A CONVENIENCE: If the commands \documentclass and \usepackage{graphicx} are phrased without options and the files in all \includegraphics commands are presented without file type, then the file processed with latex will look for .ps and .eps graphics files and the file processed with pdflatex will look for .pdf files. All files to be sought must, of course, exist.\textsuperscript{63} This feature makes it easy to process the same source file both with latex and with pdflatex.

\section{A.11 Converting .eps and .ps Files to .pdf}

When files describing figures are created, it is often easier to output those files from the creating program as .eps or .ps files rather than as .pdf files. Unfortunately, if you desire to produce the final output with pdflatex, files describing pictures need to be .pdf. PostScript files must therefore be converted into PDF before running pdflatex. Short of asking someone who already knows how to achieve that transfer, rummaging on the web for guidance may be a frustrating experience. Once you find the right tools, however, the process is quite simple. Basically, to convert the files figure.eps and figure.ps to a useful PDF file involves the two steps

1. ps2pdf figure.eps
   ps2pdf figure.ps
   (which will yield figure.eps.pdf)
   (which will yield figure.pdf)

2. pdfcrop figure.eps.pdf
   pdfcrop figure.pdf
   (which will yield figure.eps-crop.pdf) or
   (which will yield figure-crop.pdf)

Here, step 1 creates the .pdf file and step 2 removes extraneous white space around the perimeter of the first-created .pdf file. Second arguments to both ps2pdf and pdfcrop can be used to relieve the awkwardness of the file names. To simplify the process, the MS DOS batch files listed in Section A.A.1, respectively, and the UNIX Shell scripts listed in Section A.A.2, respectively, exploit the second argument for both ps2pdf and pdfcrop to control the file names and, when executed with statements like

\begin{center}
\begin{tabular}{ll}
MS DOS & UNIX \\
ceps2pdf figure & ./ceps2pdf figure (for .eps file) \\
cps2pdf figure & ./cps2pdf figure (for .ps file) \\
\end{tabular}
\end{center}

\textsuperscript{63}See Section A.11 for a means to convert .ps and .eps files to .pdf and vice versa.
A.11. CONVERTING .EPS AND .PS FILES TO .PDF

will (1) leave in the involved directory a cropped PDF file whose name figure.pdf differs from that of the original PostScript in only the file type and (2) remove any temporary files created along the way.

The above procedure is a bit tedious if you have more than a few files to convert. If you work in a Command window (Windows) or a Shell window (UNIX), the steps

- Create a temporary directory and create the several files listed in Section A.A.1 (Windows) or A.A.2 (UNIX) and the file listed in Section A.A.3 (Windows and UNIX) into that directory. These files can be created by direct typing or they can be copied from the directory $HEAD/tex.

- Copy all .ps or all .eps files to be converted into that temporary directory. This step guards against disaster should the process to come be run in the initial directory and fail.

- Create a file containing a list of the names of the .eps or .ps files in the directory. The statements

  MS DOS
  \[ \text{dir /b *.eps > dir.txt} \]
  \[ \text{dir /b *.ps > dir.txt} \]

  UNIX
  \[ \text{ls -1 *.eps > dir.txt} \]
  \[ \text{ls -1 *.ps > dir.txt} \]

  utilizing the option /b in Windows and the option -1 (one, not el) in UNIX produce the desired file (filename, including file type).

- Strip the file type by running the python program ExtractFileName.py (Section A.A.3). Here the same code works in both Windows and UNIX. This action will create the file nameonly.txt containing only the names of the files to be converted.

- Effect the conversions by running the script rdfile with statements like

  MS DOS
  \[ \text{rdfileeps} \] (for eps files)
  \[ \text{rdfileps} \] (for ps files)

  UNIX
  \[ \text{./rdfileeps} \] (for eps files)
  \[ \text{./rdfileps} \] (for ps files)

  This action will convert each file in turn from .eps or .ps to .pdf and leave no intermediate files in the directory.

- Delete the *.eps or *.ps files in the temporary directory.

- Move the *.pdf files to the directory from which the .eps and .ps files were moved temporarily, leaving both the original .ps and .eps files intact but adding the .pdf files, so either latex or pdflatex can then be used to create the final document.

will accomplish that conversion

The reverse process of converting a .pdf file to .ps or .eps format is easier. Specifically, the statements

\[ \text{pdftops FileName.pdf FileName.ps} \]
\[ \text{pdftops -eps FileName.pdf FileName.eps} \]

will effect this conversion. The task of creating scripts to automate this process when many files are to be converted is left to the reader.
A.12 Using Conditional Expressions in \LaTeX

The \LaTeX package ifthen provides a capacity to include text and \LaTeX commands conditionally, i.e., depending on the state of a Boolean flag. If the package is to be used, the preamble of the \LaTeX source file must contain the command

\usepackage{ifthen}

Once that command has been processed, we must—also in the preamble—then define one or more Boolean flags and set their values with commands like

\newboolean{FlagName}
\setboolean{FlagName}{FlagValue}

where FlagName can be any name that does not conflict with names already used and FlagValue will be either true or false. Finally, at the point in the source file where some text is to be included conditionally, we would place the command

\ifthenelse{\boolean{FlagName}}{Text to be inserted if FlagValue is true.}{Text to be inserted if FlagValue is false.}

Either text can be null, in which case the opening and closing braces should still appear side by side (\{}\), and either text can include \LaTeX commands—which will be executed—and can spread over several lines. In particular, the text can include commands to input additional files. Indeed, the customization in CPSUP is achieved by including or excluding files depending on the state of several flags. For example, in the preamble of the \LaTeX source file for CPSUP, the command

\usepackage{ifthen}

appears and several flags are defined and set with commands like, for example,

\newboolean{LATEX} \setboolean{LATEX}{true}

Finally, the command

\ifthenelse{\boolean{LATEX}}{\input{ FileName } }{ }

is placed at the point where the file containing the \LaTeX portions of this book would be inserted. If the file identified is in the working directory, only its name need be included; otherwise, a full path—absolute or relative—must be specified. At this point, the \LaTeX Appendix will be included if the flag is true and omitted if the flag is false.

More complicated logical operations can be constructed with the operators \texttt{\&}, \texttt{\|}, and \texttt{\neg}. For example, if the Boolean flags NUMREC and FORTRAN are defined and set, then the composite statement

\ifthenelse{\boolean{NUMREC} \and \boolean{FORTRAN}}{\input{ FileName } }{ }
would include FileName only if both NUMREC and FORTRAN are true.

In the effort to render files processable with either latex or pdflatex and also to create easily either a printable document or a linked document, the package hyperref must be invoked only when a linked document is desired. In order to avoid manual editing of the source file, one can insert in the preamble the statements\footnote{Inclusion of the package ifthen can be omitted if it had been entered previously for other reasons.}

\usepackage{ifthen}
\newboolean{PRINT}
\typeout{}\typein{true (for print), false (for linked):}
\ifthenelse{ \equal{\trueorfalse}{true} \or \equal{\trueorfalse}{false}}{\setboolean{PRINT}{\trueorfalse}}{\typeout{}\typeout{Must be either "true" or "false". Try again.}\end{document}}

which define the boolean variable PRINT, ask for entry of either true or false at execution time, and terminate execution if an invalid value is entered. Then, the lines

\usepackage{color}
\ifthenelse{\boolean{PRINT}}{}{\definecolor{MyPurple}{rgb}{0.577,0.000,1.000}\usepackage[colorlinks=true, linkcolor={MyPurple}]{hyperref}}

also in the preamble, will include the package hyperref, but only if PRINT is false.

One further conditional command included in latex and pdflatex without adding a package facilitates testing whether a file exists. For example, the statement

\IfFileExists{test.tex}{\input{test.tex}{}}

inputs test.tex if it exists and simply moves on to the next statement if it doesn’t exist. This statement is useful if the file to be input is created in the first pass through latex or pdflatex and then read in a subsequent pass. The “false” clause could alternatively be used to print an error message and terminate execution, e.g.,

\IfFileExists{test.tex}{\input{test.tex}{\typeout{File not found} \end{document}}}

\section{Error Messages Generated by \LaTeX}

However carefully the code is created, sooner or later \LaTeX will generate an error message, which will have the general form

! error identification
1. number text read text not read
?

The exclamation point is followed by a message that explains the nature of the error. The lower case l (el) is followed (1) by the number of the line in the code at which the problem is detected
and (2) the text surrounding the problem.\footnote{The point at which \LaTeX{} encounters difficulty is conveyed by the downward displacement of the text after that point, though that point is not always where the offense actually occurs.} Finally, the question mark prompts for user input. A simple \texttt{\textbackslash RETURN} at the question mark will instruct \LaTeX{} to continue to read the file unless a fatal error has occurred (though \LaTeX{} may be forced to make assumptions in order to continue); entry of the character \texttt{x} (followed by \texttt{\textbackslash RETURN}) will exit immediately from the program. Many errors are caused by a missing delimiter or by failure to specify a switch to math mode \textit{before} a mathematical expression or back to text mode \textit{after} a mathematical expression. All of the reported errors must be identified and fixed (by editing the code) before \LaTeX{} will produce the desired finished product. A full description of the messages that may be produced as well as an enumeration of other user inputs at the \texttt{?} will be found in Chapter 8 in \textit{The \LaTeX{} Manual}.

\section{The Page Previewer for \texttt{.dvi} Files}

Since \LaTeX{} is not wysiwyg, we must use a page previewer to see exactly what our document looks like without printing it out many, many times. The \textit{Local Guide} describes the page previewer available at your site. UNIX systems usually provide a version of \texttt{xdvi} and Windows systems usually provide a version of \texttt{yap},\footnote{Yet Another Previewer} but many such previewers exist and, on personal computers especially, the previewer may be accessed by a mouse click in a GUI that also gives access to other components of the \LaTeX{} package. To use this previewer, we first create the \texttt{.dvi} file by running our code through \LaTeX{} as described in Section A.1. Then we enter a command like \footnote{Additional information about \texttt{xdvi} on UNIX systems can be found in the on-line help, accessed in many systems by typing the command \texttt{man xdvi}.} \footnote{If explicit specification of the input file is omitted, some implementations of \texttt{xdvi} will bring up a browser in which the desired \texttt{.dvi} file can be selected. Other versions may open the most recently displayed file, in which case the browser can be invoked by selecting 'Open' from the \texttt{FILE} menu.} \texttt{xdvi filename} or \texttt{yap filename} (The default extension for the input file is \texttt{.dvi}.)

or select an appropriate item from a menu (as described in \textit{The Local Guide}). Presently, the first page of the document will appear on the screen. Some versions of \texttt{xdvi} display an array of buttons along the right edge of the \textit{Xvdi} window; other, probably newer, versions replace those buttons with drop-down menus and icons in a toolbar. Clicking \texttt{ML} on any of the various buttons or selecting items from one of the menus effects the associated action. For \texttt{xdvi} and its clones, possible actions include the options shown in Table A.11. In addition, (1) moving the cursor to any point in the window and pressing (and holding) any of the three mouse buttons will generate a magnified version of a region whose size is determined by which button is pushed and (2) some versions of \texttt{xdvi} have a window along the left edge in which you can click \texttt{ML} on a page number to request immediate display of the selected page—though note that these numbers simply count pages from the beginning of the displayed document and may not correspond to the numbers actually printed on the pages in the document.

Beyond the controls made available through buttons and/or menus around the periphery of the \textit{Xvdi} window, \texttt{xdvi} responds to a number of keystrokes issued when the the cursor is moved into the area displaying text. Some of these are identified in Table A.12; all are described in the \texttt{xdvi} documentation, e.g., the UNIX \texttt{man} page.

In some environments, a GUI may provide an easy way to use the mouse to work on \LaTeX{} code, process it repeatedly with \LaTeX{}, and examine the changes with an on-screen previewer each time. In the absence of a GUI giving access to all of these features (text editor, \LaTeX{}, screen previewer, printer, ...), one convenient strategy for using a text editor and a page previewer simultaneously involves invoking the previewer with a command like

\texttt{xdvi filename \&} (UNIX) or \texttt{yap filename \&} (Windows)
Table A.11: Some of the features available through selection from menus (first column) in some versions of xdvi, through clicking ML on buttons in other versions of xdvi. The features actually available by these means may vary from version to version of xdvi.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Button</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>File→Reload</td>
<td>Reread</td>
<td>Rereads current .dvi file.</td>
</tr>
<tr>
<td>File→Quit</td>
<td>Quit</td>
<td>Quits previewer.</td>
</tr>
<tr>
<td>Zoom→Shrink by 1</td>
<td>100%</td>
<td>Displays text at full size (quite large).</td>
</tr>
<tr>
<td>Zoom→Shrink by 3</td>
<td>33%</td>
<td>Displays text at 33% of full size.</td>
</tr>
<tr>
<td>Zoom→Shrink by 4</td>
<td>25%</td>
<td>Displays text at 25% of full size.</td>
</tr>
<tr>
<td>Zoom→Shrink by 6</td>
<td>17%</td>
<td>Displays text at 17% of full size.</td>
</tr>
<tr>
<td>Navigate→First Page</td>
<td>First</td>
<td>Moves to first page.</td>
</tr>
<tr>
<td>Navigate→Page-10</td>
<td>Page-10</td>
<td>Moves to the tenth page before the one displayed.</td>
</tr>
<tr>
<td>Navigate→Page-5</td>
<td>Page-5</td>
<td>Moves to the fifth page before the one displayed.</td>
</tr>
<tr>
<td>Navigate→Prev</td>
<td>Prev</td>
<td>Moves to previous page</td>
</tr>
<tr>
<td>Navigate→Next</td>
<td>Next</td>
<td>Moves to next page</td>
</tr>
<tr>
<td>Navigate→Page+5</td>
<td>Page+5</td>
<td>Moves to the fifth page after the one displayed.</td>
</tr>
<tr>
<td>Navigate→Page+10</td>
<td>Page+10</td>
<td>Moves to the tenth page after the one displayed.</td>
</tr>
<tr>
<td>Navigate→Last Page</td>
<td>Last</td>
<td>Moves to last page</td>
</tr>
<tr>
<td>Options→PostScript</td>
<td>View Page</td>
<td>Allows selection among two or more options, including displaying figures (the initial state) and replacing them with properly sized rectangles.</td>
</tr>
<tr>
<td>File→Open</td>
<td>File</td>
<td>Brings up a browser for selection of new .dvi file.</td>
</tr>
</tbody>
</table>

Table A.12: Keystrokes for controlling xdvi.

<table>
<thead>
<tr>
<th>Keystroke</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Size text to fit window.</td>
</tr>
<tr>
<td>1s</td>
<td>(one-s) Largest text.</td>
</tr>
<tr>
<td>ns</td>
<td>Apply shrink factor n.</td>
</tr>
<tr>
<td>g</td>
<td>Move to last page.</td>
</tr>
<tr>
<td>1g</td>
<td>(one-g) Move to first page.</td>
</tr>
<tr>
<td>ng</td>
<td>Move to (absolute) page n.</td>
</tr>
<tr>
<td>n</td>
<td>Move to next page.</td>
</tr>
<tr>
<td>p</td>
<td>Move to previous page.</td>
</tr>
<tr>
<td>nn</td>
<td>Advance n pages.</td>
</tr>
<tr>
<td>np</td>
<td>Back up n pages.</td>
</tr>
<tr>
<td>q</td>
<td>Exit program.</td>
</tr>
</tbody>
</table>

which will start xdvi or yap but detach it from the launching Shell window, leaving the Shell window free for other uses. Then, with the .tex file in a text editor detached from the launching Shell window, we can edit the text, save the edited version, use the Shell window to invoke \LaTeX \[70\] on the edited file, and then simply click ML at an appropriate point in the displayed text to instruct xdvi or yap to reread the .dvi file.\[69\] Thus, the effect of each new set of edits can be examined quickly without repeatedly starting and exiting from the previewer.

A.15 The Spell Checker in UNIX\[70\]

The programs ispell and aspell, either or both of which may be part of your \LaTeX \[70\] distribution, are common spell checkers. If either is installed at your site (see the Local Guide), it can be invoked

\[69\] In some environments, rereading an updated file will happen automatically without an explicit user request.

\[70\] To the author's knowledge, no comparable stand-alone spell checker exists for Windows.
with a command like\footnote{Additional information about `ispell` or `aspell` can be found by typing the command `ispell` with no arguments or the command `aspell help`. Even more detailed information may be available in the on-line help, accessed in many systems by typing the command `man ispell` or the command `man aspell`. Googling `ispell` or `aspell` will surely also provide links to detailed descriptions.}

\texttt{ispell filename} \texttt{or aspell check filename}

or perhaps with a mouse click in a GUI. For files with extension `.tex`, `ispell` enters its \TeX\ mode and will not identify every \TeX\ or \LaTeX\ command as a misspelled word. Note, however, that these commands are simply \textit{ignored} by `ispell` and `aspell`; their correctness or legitimacy as commands to \LaTeX\ is \textit{not} assessed.

### A.16 A Sample Document

The following sample document demonstrates some of the commands explained above and also introduces some useful commands that have not yet been mentioned. (The explanatory \textit{comments} following the `%` sign can be included in the code but have no effect on the output produced.)

\begin{verbatim}
\documentclass{article} % Mandatory command; select
% default 10 point type
\setlength{\textheight}{9truein} % Set height of text area
\setlength{\topmargin}{-0.5truein} % Center text on 11'' height
\setlength{\textwidth}{6truein} % Set width of text area
\setlength{\oddsidemargin}{0.25truein} % Center text on 8.5'' width
\setlength{\parskip}{6pt plus 1pt minus 1pt} % Specify extra space
% between paragraphs,
% allowing \LaTeX\ to adjust
% space 1 point up or down
\setlength{\parindent}{40pt} % Set paragraph indent
\begin{document} % Mandatory command
\begin{center} % Large, bold, centered title
{\Large\bf A Sample Document for Your Perusal}
\end{center}
\begin{flushleft} % Two lines; flush left
{\em Author\}: J.~Q.~Student
% Note italic correction
% Tilde prevents extra space
\end{flushleft}
{\em Date\}: \today
\end{document}
\end{verbatim}

In this document we have used the \texttt{\verb+\setlength+} commands to modify \LaTeX’s default page setup to make fuller use of an 8.5''\times11'' page.\footnote{Note the special command `\texttt{\verb+\LaTeX+}` provided for the display of the `\LaTeX{}` ‘‘logo’’.} The title could have been generated using the three commands \texttt{\verb+\title{+\ldots\verb+}+}, \texttt{\verb+\author{+\ldots\verb+}+}, and \texttt{\verb+\date{+\ldots\verb+}+} before the \texttt{\verb+\begin{document}+}
command---i.e., in the preamble---followed by the command \verb*+\maketitle+ after the beginning of the document. The command \verb*?\verb*+ ... +? will cause \LaTeX{} to print whatever is between the plus signs (which could be virtually any specified character) exactly as it is. The asterisk is optional, and it makes \LaTeX{} highlight the spaces that occur inside the \verb+verbatim+ environment.

\noindent Notice that a blank line creates a new paragraph. The \verb+\noindent+ command \emph{suppresses} the standard paragraph indentation. In this special space we will also demonstrate some math environment operations. Consider the equation
\begin{equation}
\int_{0}^{\infty}\: e^{-x}\, dx = 1,
\label{LATEX:demo}
\end{equation}
where a medium sized space, specified by the command \verb+:+, is put between the integral sign $\int_{0}^{\infty}$, and the integrand and a small space, specified by the command \verb+++, is inserted between the integrand and the $dx$ in Eq.~(\ref{LATEX:demo}).

The equation
\begin{equation}
\frac{\partial e^{x_0 y^2} } {\partial x_0 } = y^2 e^{x_0 y^2}
\end{equation}
demonstrates partial derivatives and fractions. Note the automatic generation and placement of equation numbers in the output. Also note that pages are automatically numbered, though the actual printing of page numbers can be suppressed with the commands \verb+\pagestyle+ and \verb+\thispagestyle+.

\end{document} % Mandatory command

The output produced when this short sample file is processed through \TeX{} and \dvips{} and then printed is shown in Table A.13, though the page header on that page is not included in the output. Note that, to obtain the proper internal reference to the first equation, this document must be processed \emph{twice} by \TeX{}. The file itself is named \verb+texsample2.tex+ and can be copied from the directory \$\HEAD/tex$.

\section{Miscellaneous Other Features}

\TeX{} has an enormous number of additional features beyond those enumerated above. In particular, be aware of

1. All of the environments listed in Section A.3.4.

2. All of the packages listed in Section A.3.5.

3. The command \verb+\today+, which returns today's date in the form “month date, year”.

4. The command \verb+\newcommand+, which permits us to define commands supplementing the standard commands. For example, the commands
\begin{verbatim}
\newcommand{\beq}{\begin{equation}}
\newcommand{\eeq}{\end{equation}}
\end{verbatim}
Table A.13: Output produced by the code in Section A.16, except that the equations here are numbered (A.1) and (A.2) rather than (1) and (2) and the footnote is labeled \(^a\) rather than 1. Further, the page number that would appear has been deleted in this display.

**A Sample Document for Your Perusal**

*Author:* J. Q. Student  
*Date:* 16 January 2020

In this document we have used the \texttt{\setlength} commands to modify \LaTeX{}’s default page setup to make fuller use of an 8.5” × 11” page.\(^a\) The title could have been generated using the three commands \texttt{\title{...}}, \texttt{\author{...}}, and \texttt{\date{...}} before the \texttt{\begin{document}} command—i.e., in the preamble—followed by the command \texttt{\maketitle} after the beginning of the document. The command \texttt{\verb*+␣...␣+} will cause \LaTeX{} to print whatever is between the plus signs (which could be virtually any specified character) exactly as it is. The asterisk is optional, and it makes \LaTeX{} highlight the spaces that occur inside the \texttt{verbatim} environment.

Notice that a blank line creates a new paragraph. The \texttt{\noindent} command suppresses the standard paragraph indentation. In this special space we will also demonstrate some math environment operations. Consider the equation

\[
\int_0^\infty e^{-x} \, dx = 1, \tag{A.1}
\]

where a medium sized space, specified by the command \texttt{\,}, is put between the integral sign \(\int_0^\infty\), and the integrand and a small space, specified by the command \texttt{\,}, is inserted between the integrand and the \(dx\) in Eq. (A.1). The equation

\[
\frac{\partial e^{x_0 y^2}}{\partial x_0} = y^2 e^{x_0 y^2} \tag{A.2}
\]

demonstrates partial derivatives and fractions. Note the automatic generation and placement of equation numbers in the output. Also note that pages are automatically numbered, though the actual printing of page numbers can be suppressed with the commands \texttt{\pagestyle} and \texttt{\thispagestyle}.

\(^a\)Note the special command \texttt{\LaTeX} provided for the display of the \LaTeX{} “logo”.

5. The command \texttt{\renewcommand} for changing commands that already exist. When a command already exists (as, for example, when a command is defined by the selected document class), \texttt{\newcommand} will fail. In those circumstances (as we have seen already in Section A.5), we need the command \texttt{\renewcommand}. As one particular example, the built-in command \texttt{\today} which, by default, formats the date in American style (e.g., April 3, 1938) can be changed to format the date in European style (3 April 1938) with the command

\[
\renewcommand{\today}{\number\day\space \ifcase\month\or January% \or February\or March\or April\or May\or June\or July\or August% \or September\or October\or November\or December\fi \space\number\year}
\]

The percent signs at the end of the first two lines are \textit{not} superfluous; they guarantee that \TeX{} will see this command as a single line and hence that extraneous spaces will not appear in
the output for occasional dates. Note also that this modification invokes \TeX's \texttt{case} structure, which is introduced by the \texttt{\ifcase} command and terminated by the \texttt{\fi} command.

6. The command \texttt{\pagestyle{Style}}. Placed in the preamble, this command selects a particular (global) page style \textit{for the entire document}. Recognized styles include \texttt{plain}, \texttt{empty}, \texttt{headings}, and \texttt{myheadings}. Details will be found in Sections 6.1.2 and C.5.3 in \textit{The \LaTeX\ Manual}.

7. The command \texttt{\thispagestyle{Style}}. Placed at any point, this command selects a particular page style \textit{for the current page}, overriding the global specification for that page alone. Recognized styles are the same as for the command \texttt{\pagestyle}. This command in the form \texttt{\thispagestyle{empty}} is commonly used to suppress page numbering on the first page of a several-page document. Details will be found in Sections 6.1.2 and C.5.3 in \textit{The \LaTeX\ Manual}.

8. \texttt{ReV\TeX}, which contains files defining the \texttt{aps} document class. These files have been created by the American Institute of Physics (AIP), the American Physical Society (APS), and the Optical Society of America (OAS) and are intended for use in preparing manuscripts for ultimate publication in the journals published by these organizations. Full documentation is contained in \textit{The \REVTEX Input Guide} prepared by the AIP, the APS, and the OAS.\footnote{Version 4.1, which was released in final form on 11 August 2010, is compatible with \LaTeX\2\epsilon. The APS website \url{publish.aps.org/revtex4} (no \url{www.}) contains up-to-date information about \REVTEX4, links to an assortment of manuals (including one titled \textit{Rev\TeX\4.1 Author's Guide}, and a link from which that version can be downloaded. \REVTEX is automatically included in many standard \LaTeX\ distributions.}

9. The command \texttt{\input}, which simply inputs the file specified in its argument. Details are described in Section 4.4 of \textit{The \LaTeX\ Manual}.

10. The calligraphic type style for producing upper-case calligraphic letters in math mode. This style can be invoked either with the declaration \texttt{\cal} or the command \texttt{\mathcal}. It is described in Sections 3.3.2, 3.3.8, and C.7.8 of \textit{The \LaTeX\ Manual}.

11. Methods for placing accents over characters. For example, the command \texttt{"o} will produce \"o, the command \texttt{\~n} will produce \~n, and the command \texttt{c} will produce \c. A full listing of the possibilities will be found in Section 3.2.1 and Table 3.1 of \textit{The \LaTeX\ Manual}.

12. The \texttt{alltt} and \texttt{verbatim} packages, which allow incorporation of computer code by reference to the actual file containing the computer program itself. On the surface, it would appear as if a file containing computer code could be incorporated into a \LaTeX\ document with the simple command sequence

\begin{verbatim}
\begin{verbatim} \input{FileName} \end{verbatim}
\end{verbatim}

The problem comes because the backslash that introduces the command \texttt{\input} will, in the \texttt{verbatim} environment, be treated as an ordinary character and will not be recognized as introducing a command. If, instead, we invoke the alternative \texttt{alltt} environment with the \LaTeX\ commands

\begin{verbatim}
\begin{alltt} \input{FileName} \end{alltt}
\end{verbatim}

the problem is solved, since \texttt{\}, \texttt{\{} and one or two other characters are treated specially within the \texttt{alltt} environment and the embedded command \texttt{\input} will now be properly recognized as a command to read the specified file into the \LaTeX\ source stream at this point. This new environment, however, will be available only if the \texttt{alltt} package is explicitly added with the command

\texttt{\usepackage{alltt}}

placed in the preamble to the \LaTeX\ file.

\footnote{Version 4.1, which was released in final form on 11 August 2010, is compatible with \LaTeX\2\epsilon. The APS website \url{publish.aps.org/revtex4} (no \url{www.}) contains up-to-date information about \REVTEX4, links to an assortment of manuals (including one titled \textit{Rev\TeX\4.1 Author's Guide}, and a link from which that version can be downloaded. \REVTEX is automatically included in many standard \LaTeX\ distributions.}
Actually, there is at least one situation in which the \texttt{alltt} environment isn’t quite up to the task. If we want to read in a C program that specifies newline characters with \texttt{n}, \LaTeX{} embellished with \texttt{alltt} will complain that \texttt{n} is an undefined command. For this case (and, of course, for the others as well), we need instead exploit the \texttt{verbatim package} (not environment), which is made available by placing the command

\begin{verbatim}
\usepackage{verbatim}
\end{verbatim}

in the preamble. In particular, this inclusion defines a command \texttt{verbatiminput}, invoked with a statement like

\begin{verbatim}
verbatiminput{FileName}
\end{verbatim}

When the \texttt{verbatim} package is invoked, we also have available a new environment—the \texttt{comment} environment, which can be used to “bracket” extended text that one wants to exclude from processing by \LaTeX.\footnote{The \texttt{verbatim package} also redefines the \texttt{verbatim environment} in ways, however, of little consequence unless the text in the environment is very extensive. If the \texttt{verbatim package} is invoked, one particularly significant change in the \texttt{verbatim environment} results in the complete ignoring of any characters following the statement \texttt{\end{verbatim}} in the same line. It is best always to place the statement \texttt{\end{verbatim}} on a line by itself.}

13. The ten characters ($, &-, {, %, #, ~, ^, \), which have special meanings to \TeX{} and will not normally be printed as characters. The first seven of these characters can be printed as \texttt{characters} by preceding the character with a backslash, e.g., to print $, type \texttt{$\$} in the code. The last three, however, are trickier because \texttt{\^} and \texttt{\$} are themselves commands for accents over the following letter and \texttt{\$} is the command for a new line. These last three characters can, however, be printed by invoking the constructions \texttt{\verb+\^+}, \texttt{\verb+\$+}, and \texttt{\verb+\$+}. Here, the \texttt{\verb} command enters verbatim mode, the \texttt{immediately following + sign}—any character can be used—flags the beginning of the text to be presented in verbatim mode, and the final + sign—better, repeat of the first character—flags the end of the text to be presented in verbatim mode. The backslash can also be produced in math mode with the command \texttt{\backslash}. In some environments and in footnotes, the command \texttt{\verb} is forbidden. Another way to specify the printing of some of these special characters is to use the \TeX{} (not \LaTeX) command \texttt{\char}. In its raw form, this command simply takes a number, e.g., \texttt{\char98}, which specifies the insertion of character 98 from the current font. We can, however, also specify the character by invoking the ‘tic’ operator, which instructs \TeX{} to calculate the numeric code from the character itself. In particular, some of the special characters that \texttt{cannot} be invoked directly can be invoked with the command \texttt{\char}. Thus, for example, the command \texttt{\char97} will produce the character ‘a’ while the commands \texttt{\char'b}, \texttt{\char'"}, \texttt{\char'"}, and \texttt{\char'\texttt{\char'\}} will produce the characters ‘b’, ‘”’, ‘”’, and ‘\texttt{\char'\}’, respectively. Similarly, the command \texttt{\texttt{\char'\texttt{\char'\}+\texttt{\char'\}}} will produce ‘$’, which differs in sometimes desirable ways from the character ‘$’ produced by \texttt{\backslash$}.

14. The commands that allow us to create boxes as described in Sections 6.4.3 and C.13.3 in \textit{The \LaTeX{} Manual}. These commands include \texttt{\mbox}, \texttt{\makebox}, \texttt{\fbox}, \texttt{\framebox}, \texttt{\parbox}, and \texttt{\rule} and the \texttt{minipage} environment. All of these commands “block” the contents of the box into a structure that \LaTeX{} sees as a single unit. The commands \texttt{\fbox} and \texttt{\framebox} also place a printed rectangular box around the contents of the box created.

15. The notion of counters. In the off-the-shelf version of \LaTeX{}, each new invocation of the \texttt{enumerate} environment starts a counter off again at the beginning. Sometimes, we might wish to have the numbers in a new enumeration pick up from where the numbers in the previous one ended. We should, of course, achieve that objective in a way that does not depend on knowing explicitly what the starting number in the new environment should be. Basically, we have to invent a way to tell \LaTeX{} to remember the value at which it ended and retrieve that
521

value when a new environment is entered. The remembered value must be stored in a \TeX
variable called a \textit{counter}, which must be defined with the command

\begin{verbatim}
\newcounter{hold}
\end{verbatim}

where \texttt{hold}, which cannot contain numeric characters, is the name chosen for the counter.

Then, the structure

\begin{verbatim}
\begin{enumerate}
  \item Text of first item.
  \item Text of second item.
  \setcounter{hold}{\value{enumi}}
\end{enumerate}
\end{verbatim}

... Text not in enumerate environment.

\begin{verbatim}
\begin{enumerate}
  \setcounter{enumi}{\value{hold}}
  \item Text of third item.
  \item Text of fourth item.
  \setcounter{hold}{\value{enumi}}
\end{enumerate}
\end{verbatim}

will achieve the desired end. In the first \texttt{enumerate} environment, the counter \texttt{enumi}, which is
used behind the scenes to keep track of the number of items, is initialized to zero. It is then
incremented by 1 with each new item. At the end of the environment, \texttt{enumi} stores the number
of the last item. The command \texttt{\setcounter} in the first environment saves the current value of
\texttt{enumi} in the counter \texttt{hold}, which survives the exit from the environment. Thus, immediately
on entry to the second environment, we can use a “reflection” of the first use of \texttt{\setcounter}
to restore the value that \texttt{enumi} had reached at the end of the first environment.

16. Parameters influencing placement of “floats” (figures and tables). Sometimes \TeX seems to
have a mind of its own with regard to placement of floating objects on the current or later
pages. Many of these “problems” can be cleared up by tampering with the default values of
the parameters that limit the number of floats that can be put at the top or bottom of the page
or, even more, by changing the parameters that stipulate the maximum fraction of a page that
can be devoted to floats or the minimum amount of text that must appear on a page. These
parameters are enumerated at the end of Section C9.1 in \textit{The \TeX Manual}. For single column
presentations, the most important of these parameters are \texttt{\topfraction}, \texttt{\bottomfraction},
\texttt{\textfraction}, and \texttt{\floatpagefraction}. The command \texttt{\renewcommand} must be used to
change the values of these parameters.

17. The way to change section, page, figure, table, and footnote “numbering”. By default in
the \texttt{article} class, sections, subsections, subsubsections, pages, figures, and footnotes are
labeled with Arabic numbers, e.g., Section 3.1.2. The format of that label as determined
from the underlying counters \texttt{section}, \texttt{subsection}, \texttt{subsubsection}, \texttt{page}, \texttt{figure}, \texttt{table},
and \texttt{footnote} can be changed. If, for example, we wished the sections to be labeled with
upper-case letters, the subsections with lower-case letters, and the subsubsections with arabic
numbers (the default), we would simply execute the instructions

\begin{verbatim}
\renewcommand{\thesection}{\Alph{section}.}
\renewcommand{\thesubsection}{\thesection\alph{subsection}.}
\end{verbatim}

in the preamble.\textsuperscript{74} Similarly, the commands

\begin{verbatim}
\renewcommand{\thetable}{\Roman{table}}
\renewcommand{\thepage}{\roman{page}}
\end{verbatim}

\textsuperscript{74}Note the explicit periods and the inclusion of the section “number” in the definition of the subsection “number”.

Table A.14: Structure to produce full-width text at top of double-column text.

```
\documentclass[twocolumn]{article}
... Whatever preamble we want
\begin{document}

\twocolumn
[\begin{center}
 \large\bf Title \[12pt] % Bold title; extra space
 \large\bf Author \[12pt] % Bold author; extra space
\end{center}
\begin{quotation}
 ... Text of abstract.
\end{quotation}
]

... Text of paper
\end{document}
```

will change table “numbering” to upper-case Roman numbers and page “numbering” to lower-case Roman numbers. Essentially, the “numbers” on these components of a document are generated when \LaTeX{} executes the command \texttt{\the...}, where \ldots{} stands for the name of the appropriate counter. Redefining this command changes the translation \LaTeX{} applies to the counter when generating the “number”.

18. The way to create a full-width heading and abstract above (and on the same page as) a two-column presentation of text, which exploits an optional argument to the \texttt{\twocolumn} (not the optional argument \texttt{twocolumn} to the command \texttt{\documentclass}). One format that achieves this end uses the code is shown in Table A.14.\footnote{In more recent versions of \LaTeX{}, the optional argument \texttt{[12pt]} to put a bit of extra space after the title and author appears to generate error messages. The “fix” is to replace \texttt{[12pt]} with a full command, specifically \texttt{\vspace{12pt}}.} If this pattern is to work, there can be no commands that produce output between the command \texttt{\begin{document}} and the command \texttt{\twocolumn}.

19. The means to change the label in the caption of a figure. By default, \LaTeX{} introduces the caption of the first figure with the label ‘Figure 1:’, incrementing the number automatically with each subsequent figure. The word ‘Figure’ in this caption is the default value of the command \texttt{\figurename{}}, but that portion of the label can be changed with a simple command like

```
\renewcommand{\figurename}{Fig.}
```

in the preamble. Changing the colon after the number is harder, since the specification of that punctuation is embedded in the class file in use and is not brought to the outside in a simple command. To change the colon to a period, for example, we need to find the file \texttt{article.cls}, search through the file for colons, replace the critical ones with periods, save the file in the default directory with a new name, and then specify it rather than the standard file in the \texttt{\documentclass} command at the beginning of the \LaTeX{} source file.\footnote{The file \texttt{article.cls} in the version of \LaTeX{} installed at Lawrence University has only two colons that are not in comments; both should be changed.}
20. The means to change the label in the caption of a table. By default, \LaTeX\ introduces the caption of the first table with the label ‘Table 1:’, incrementing the number automatically with each subsequent table. The word ‘Table’ is supplied by the command \texttt{\tablename} and can be changed in the way described for \texttt{\figname} at item 19 above. The colon can also be changed as described in the previous item, though changing the colon for figures will change it in the same way for tables.

21. The means to change the label in the title of a chapter. By default, \LaTeX\ introduces the title of the first chapter with the label ‘Chapter 1’ on a line by itself, incrementing the number automatically with each subsequent chapter. The word ‘Chapter’ is supplied by the command \texttt{\chaptername} and can be changed in the way described for \texttt{\figname} at item 19 above.

22. The means to change the title above the table of contents and above the index. By default, \LaTeX\ labels the title of contents ‘Contents’ and the index ‘Index’. The word ‘Contents’ is supplied by the command \texttt{\contentsname} and the word ‘Index’ is supplied by the command \texttt{\indexname}. Each can be changed in the way described for \texttt{\figname} at item 19 above.

23. Using the \texttt{array} environment to create matrices in math mode. As with the \texttt{tabular} environment (see Section A.6), an optional argument specifies the positioning of entries in the columns, ampersands separate entries in each row, and the command \texttt{\}\ marks the end of each row. Thus, for example, the \LaTeX\ code

```
\[
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right)
\]
```

will produce the display

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{pmatrix}
\]

The entries in each cell can, of course, be much more elaborate than the simple choices made here.

24. The \LaTeX\ package \texttt{needspace}, which facilitates avoiding awkward page breaks conditionally. For example, when a section title occurs close to the bottom of a page, \LaTeX\ may place the title and only a single line of the text before turning the page. Sensible styles would dictate that the section be started on a fresh page. The command \texttt{\newpage} will, of course, achieve that objective. As a document experiences further edits, however, that page break may not any longer be appropriate. Placing the command

```
\usepackage{needspace}
```

in the preamble and then, at the point where a conditional page break might be wise, inserting one of the commands

```
\needspace{5\baselineskip} \quad \text{or} \quad \Needspace{5\baselineskip}
```

will result in turning the page, but only if five or fewer lines remain at the bottom of the page. The amount of space left by \texttt{\needspace} will depend some on what penalties are in effect but will usually be close enough to be acceptable; further, \texttt{\needspace} will leave a ragged bottom even if \texttt{\flushbottom} is in effect. The command \texttt{\Needspace} will leave the requested space, will take longer to execute, and will leave a ragged bottom; the command \texttt{\Needspace*} will produce a flush bottom if \texttt{\flushbottom} is in effect. The unit of measure is the size of the length parameter \texttt{\baselineskip}. The 5 in this example can, of course, be whatever number seems appropriate. Note that there is no multiplication sign after the number.
25. The Windows batch command `cleanTEX` defined by the batch file

```
REM delete all TEX intermediate files
del *.aux
del *.log
del *.dvi
del *.toc
del *.ilg
del *.idx
del *.bak
del *.sav
del *.out
del *.ind
```

and the Unix shell script defined by the file

```
#!/bin/bash
delete all TEX intermediate files
rm -f *.sav *.out *.ind
```

which facilitate removing all \TeX/L\LaTeX auxiliary files\(^77\) in the directory in which the command or script is executed. These files can be created by direct typing or can be copied from the directory `\$HEAD/tex`. The Windows file is executed by the simple statement `cleanTEX` at a command window prompt, though a path to the file may be included if the file is not located in the directory to be purged of \TeX/L\LaTeX auxiliary files; the UNIX file is executed by the simple statement `./cleanTEX`, though the characters `./` may be replaced by the path to the file if the file is not located in the directory to be purged of \TeX/L\LaTeX auxiliary files.

26. The Windows batch command `cleanbak` define by the the batch file

```
REM Delete .bak files
del /s *.bak
del /s *.sav
```

and the UNIX shell script `cleanbak` defined by the the file

```
#!/bin/bash
Delete *.bak, *.sav, and *~ files
find . -name '.*.bak' -exec rm {}
find . -name '.*.sav' -exec rm {}
find . -name '*~' -exec rm {}
```

which facilitate removing all backup files\(^78\) in the directory in which the command or script is executed and in all subdirectories below that directory. These files can be created by direct typing or can be copied from the directory `\$HEAD/tex`. The Windows file is executed by the simple statement `cleanbak` at a command window prompt, though a path to the file may be included if the file is not located in the directory at the top of the tree to be purged of backup files; the UNIX file is executed by the simple statement `./cleanbak`, though the characters `./` may be replaced by the path to the file if the file is not located in the directory at the top of the tree to be purged of backup files.

\(^77\)Files with file types `.aux`, `.log`, `.dvi`, `.toc`, `.ilg`, `.idx`, `.bak`, `.sav`, `.out`, and `.ind`.

\(^78\)Files with file types `.bak` and `.sav` and files for which the last character in the name is `~`. 

\clearpage
A.18 References

As access to the web has expanded, more and more of the information that once was printed is available more readily on the web. Searching for help on specific issues, either on the web as a whole or (perhaps more effectively) more narrowly on the \TeX Users Group site www.tug.org will yield valuable results. Further, when \TeX is installed in UNIX and UNIX-based operating systems (which includes Mac computers), the Shell command \texttt{man}, e.g. \texttt{man hyperref}, may bring up a page describing the indicated entity. In all full \TeX installations, the Shell command \texttt{texdoc}, e.g. \texttt{texdoc hyperref}, will bring up a description (though some of those descriptions are in languages other than English).

Numerous books have also been written for a variety of audiences and with objectives ranging from general discussions to very specific focus on particular tasks. Among the more common books are the following:


Math Into \TeX (Third Edition), George Grätzer (Birkäuser, Boston) [ISBN 0-8176-4131-9 or 978-0201433111, 2000]

The \TeX Web Companion Integrating \TeX, HTML, and XML, Michael Goossens, Sebastian Rahtz, Eitan M. Gurari, and Ross Moore (Pearson Education, Inc.) [ISBN 0201433117 or 978-0201433111, 1999]

Additional books will likely surface in a search for \LaTeX on the Amazon or Barnes and Noble websites, though that search may also generate a number of hits for documents about rubber.

A.19 Exercises

A.1. Study carefully the \LaTeX code presented in Section A.16 and the resulting output in Table A.13, making sure you understand both the syntax of each command and the effect it produces in the output.
A.2. Use \LaTeX to write a letter to a friend. Format your letter so that it has

- a centered block at the top containing your name and address (\texttt{center} environment);
- a right-justified date (using \texttt{\today} and either \texttt{\hfill} or the \texttt{flushright} environment);
- a left-justified block containing an inside address (\texttt{flushleft} environment);
- a left-justified salutation;
- the body of the letter, containing more than one paragraph;
- a closing (e.g., Sincerely, With love, ...) positioned 3.5" from the left margin; and
- your name, spaced far enough below the closing to allow for your signature and aligned with the closing.

Suppress page numbers altogether on this letter. Include both your \LaTeX code and the processed output in what you submit as a solution to this exercise.

A.3. Examine one (or more) of the templates listed in Table A.6 and, in a document produced with \LaTeX, explain the function of each command it contains. Include both your \LaTeX code and the processed output in what you submit as a solution to this exercise.

A.4. The folder \$\texttt{HEAD/tex} contains the three files \texttt{radio.ps}, \texttt{radio.eps}, and \texttt{radio.pdf}, each of which contains a description of a graph showing the number of nuclei of each of three species \texttt{A}, \texttt{B}, and \texttt{C} as a function of time as the 1000 nuclei of \texttt{A} initially present decay radioactively first to \texttt{B} and then to \texttt{C}. The equations describing the system are

\[
\frac{dA}{dt} = -k_A A \quad \frac{dB}{dt} = k_A A - k_B B \quad \frac{dC}{dt} = k_B B
\]

and the graph shows the solution of these equations when the initial conditions are \(A(0) = 1000, B(0) = C(0) = 0\) for the case \(k_A = k_B = 0.1\). Prepare a document containing this figure, the differential equations, the initial conditions, and a brief description of the graph in English. Be sure that your text includes explicit references to the figure and the equations. You might also contrive to include a footnote somewhere. Include both your \LaTeX code and the processed output in what you submit as a solution to this exercise. A Crutch: The file \$\texttt{HEAD/tex/sampledoc.tex} provides a start on the creation of a suitable source file for this exercise.

A.5. Generate \LaTeX code to produce the memo

\begin{verbatim}
MEMORANDUM

Current date

TO: \hspace{2cm} Insert name of recipient here.
FROM: \hspace{2cm} Insert name of sender here.
SUBJECT: \hspace{2cm} Insert topic here.

MESSAGE:

Insert message here.

\end{verbatim}

Make sure that the date placed in the memo is the date the memo was processed (i.e., use the command \texttt{\today}). Include both your \LaTeX code and the processed output in what you submit as a solution to this exercise. Suggestion: You may want to save this template in a file, say \texttt{memo_template.tex}, so you have it available as a starting point for the multitude of memos you will subsequently write.
A.6. In connection with a grant you received from the XYZ Foundation, you need periodically to submit a progress report. The format and content of that report are dictated by the Foundation, and the report is created by filling in the information indicated in italics in the template on page 528. Create a L\TeX{} source file that you can save and use repeatedly to facilitate generating each required report, i.e., create a L\TeX{} source file that, when processed, will produce the output shown below. Pay meticulous attention to the spacing in the heading and to the spacing and the rulings in the table.
PROGRESS REPORT to XYZ FOUNDATION

Due date of report

Grant Number: Grant number
Date of Award: Date of award

Title of Award: Title of award

Principal Investigator (PI): Name of PI

Investigator’s Institution: Name and address of institution

1. Please describe progress made since last report:
   Insert response.

2. Please list talks given since last report, including title and venue:
   Insert response.

3. Please give full citations for each publication since last report:
   Insert response.

4. Please describe any unanticipated difficulties encountered:
   Insert response.

5. Please identify any individuals beyond the PI who have contributed more than ten hours per week to the project during the past time period:
   Insert response.

6. Please summarize expenses since the last report:

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original grant</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Total expenses reported last time</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Available funds at start of current period</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Expenses in current period:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Fringe benefits</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Page charges</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Other: Identify</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>Total for current period</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
<tr>
<td>AVAILABLE FUNDS FOR REMAINDER OF PROJECT</td>
<td>$xxx,xxx</td>
<td></td>
</tr>
</tbody>
</table>

Signed: ____________________________ Date: ____________________________

Typed Name of PI

Template to be reproduced in Exercise A.6.
A.A Listings

This section provides listings of the several batch files/shell scripts and the one PYTHON program involved in converting PostScript files to PDF files. Their use is described in Section A.8, and the files themselves reside in the directory \$HEAD/tex.

A.A.1 ... for Windows

Batch File ceps2pdf.bat

REM ceps2pdf.bat (Convert EPS to PDF in Windows)
echo off
ps2pdf %1.eps tmp.pdf
pdfcrop tmp.pdf %1.pdf
del tmp.pdf

Batch File cps2pdf.bat

REM cps2pdf.bat (Convert PS to PDF in Windows)
echo off
ps2pdf %1.ps tmp.pdf
pdfcrop tmp.pdf %1.pdf
del tmp.pdf

Batch File rdfileeps.bat

REM rdfile.bat (Convert each file in nameonly.txt to PDF in Windows)
del dir.txt
for /f %%a in (nameonly.txt) do ( 
    ps2pdf %%a.eps tmp.pdf
    pdfcrop tmp.pdf %%a.pdf
)
del tmp.pdf
del nameonly.txt

Batch File rdfileps.bat

REM rdfileps.bat (Convert each file in nameonly.txt to PDF in Windows)
del dir.txt
for /f %%a in (nameonly.txt) do ( 
    ps2pdf %%a.ps tmp.pdf
    pdfcrop tmp.pdf %%a.pdf
)
del tmp.pdf
del nameonly.txt
A.A.2 ... for UNIX

Shell Script ceps2pdf

#!/bin/bash
# ceps2pdf (Convert EPS to PDF in UNIX)
filename=$1
ps2pdf $filename.eps tmp.pdf
pdfcrop tmp.pdf $filename.pdf
rm -f tmp.pdf

Shell Script cps2pdf

#!/bin/bash
# cps2pdf (Convert PS to PDF in UNIX)
ps2pdf $1.ps tmp.pdf
pdfcrop tmp.pdf $1.pdf
rm -f tmp.pdf

Shell Script rdfileeps

#!/bin/bash
# rdfileeps (Convert each file in nameonly.txt to PDF in UNIX)
cat nameonly.txt | while read filename
do
  ps2pdf $filename.eps tmp.pdf
  pdfcrop tmp.pdf $filename.pdf
  rm -f tmp.pdf
done
rm -f dir.txt
rm -f nameonly.txt

Shell Script rdfileps

#!/bin/bash
# rdfileeps (Convert each file in nameonly.txt to PDF in UNIX)
cat nameonly.txt | while read filename
do
  ps2pdf $filename.ps tmp.pdf
  pdfcrop tmp.pdf $filename.pdf
  rm -f tmp.pdf
done
rm -f dir.txt
rm -f nameonly.txt
A.A. LISTINGS

A.A.3 ... for Windows and UNIX

Python Script ExtractFileName.py

# David Cook
# ExtractFileName.py
# Strip file names in dir.txt and store results in nameonly.txt

# Open and read in existing file from execution of dir /b or ls -1
stream = open("dir.txt","r")
all_lines = stream.readlines()
stream.close()

current_line = "\n"
current_heading = ""

# Open a file for writing out
outfile = open("nameonly.txt","w")

# Loop over each line of the 'all_lines' variable,
# stripping off the file type, leaving only the
# name to be written to the output file.
for line in all_lines:
    lw = (line.split(".")[0]).strip()
    outfile.write(lw +"\n")
outfile.close()
Appendix Z

Contacting Software Vendors

Note: Regardless of which components are included and which omitted in this version of *Computation and Problem Solving in Undergraduate Physics*, the information in this Appendix is that from the assemblage containing all components.

In this appendix, we present information to help interested individuals contact the vendors of software referred to at various points in this book. The information in this appendix was accurate as of 16 April 2018, but no guarantee can be made that it will be accurate forever into the future.

**IDL®**

Harris Geospatial Solutions
385 Interlochen Crescent
Broomfield, CO 80021 USA
Voice: 303-786-9900
FAX: 303-786-9909
E-mail: geospatial@harris.com
Web: www.harrisgeospatial.com

In addition, links to numerous third-party contributions of IDL routines can be found by Googling ‘IDL routines’. Among the most prominent of the sites that will emerge points you to the IDL Astronomy User’s Library maintained at the Goddard Space Flight Center and accessible from the URL idlastro.gsfc.nasa.gov.

**LTÉX – see TeX**

**LSODE**

The ODE solver LSODE is one component in a large package of ODE solvers originating in the Computing and Mathematics Research Division of the Lawrence Livermore National Laboratory. The full package is called ODEPACK, public-domain software written by Alan C. Hindmarsh and others. Compiled solvers, numerous example programs, and source code for the package are available for download from links at computation.llnl.gov/casc/odepack/odepack_home.html. Additional information and downloads may be found from links at www.netlib.org/odepack. In particular, the two text files opkd-sum and opks-sum and at this URL provide a description of the single- and double-precision components in the package. (Netlib is a large repository of programs maintained at Oak Ridge National Laboratory.)

**MacLTÉX**

MacLTÉX is a shareware implementation of the TeX/LiTÉX system for Macintosh computers. Information is available at the URL www.tug.org/mactex.

**MAXIMA**

Originally called MACSYMA, this first of the computer algebra systems was developed at MIT and supported from its origin in 1968 until 1982 by MIT, NASA, ONR, and DOE. In 1982, MACSYMA became a commercial product that was further developed and remained available until about 1999.
The 1982 MIT version remained available as DOE MACSYMA but was released in 1999 to a group that continues to develop and maintain the program, changing its name to MAXIMA, whose website is at the URL http://maxima.sourceforge.net/. MAXIMA is freely available for a wide variety of platforms.

**MAPLE®**

Waterloo Maple, Inc.  
615 Kumpf Drive  
Waterloo, Ontario  
CANADA, N2V 1K8  
Voice: 800-267-6583  
FAX: 519-747-5284  
E-mail: info@maplesoft.com  
Web: www.maplesoft.com

**MATHEMATICA®**

Wolfram Research, Inc.  
100 Trade Center Drive  
Champaign, IL 61820-7237 USA  
Voice: 217-398-0700, 800-965-3726  
FAX: 217-398-0747  
E-mail: info@wolfram.com  
Web: www.wolfram.com

**MATLAB®**

The MathWorks, Inc.  
3 Apple Hill Drive  
Natick, MA 01760-2098 USA  
Voice: 508-647-7000  
FAX: 508-647-7101  
E-mail: info@mathworks.com  
Web: www.mathworks.com

**MiKTeX**

MiKTeX is an implementation of the TeX/LaTeX system for Windows computers. Information is available at the URL www.miktex.org. MiKTeX is also available from CTAN, the TeX/LaTeX distribution network accessible from links at www.tug.org.

**MUDPACK**

MUDPACK is a package containing many components for solving elliptic partial differential equations in two and three dimensions. The main web page for information about this package is www2.cisl.ucar.edu/resources/legacy/mudpack.

**Numerical Algorithms Library**

The Numerical Algorithms Library (NAG library) is a large commercially available library of C and Fortran subroutines/subprograms implementing a wide assortment of numerical and statistical algorithms.

Numerical Algorithms Group, Inc.  
801 Warrenville Road  
Suite 185  
Lisle, IL 60532-4332 USA  
Voice: 630-971-2337  
FAX: 630-971-2706  
E-mail: infodesk@nag.com  
Web: www.nag.com

**NUMERICAL RECIPES**

The vendor of Numerical Recipes is reluctant to provide detailed contact information, preferring that potential customers deal with them through forms on their website at www.numerical.recipes (without a ‘.com’). The current version and many of the past versions, some of which include languages no longer being updated, are available for download from this site.

**OCTAVE**

Available under the terms of the GNU General Public License as published by the Free Software Foundation, OCTAVE is an array processing program whose syntax is similar to that of MATLAB. Information about the program can be found at the site www.gnu.org/software/octave.

**ODEPACK – see LSODE**
OzTEX
OzTEX is a shareware implementation of the \TeX/\LaTeX system for Macintosh computers. Information is available at the URL www.trevorrow.com/oztex. OzTEX is also available from CTAN, the \TeX/\LaTeX distribution network accessible from links at www.tug.org.

PYTHON/NUMPY/MATPLOTLIB/PLOTLY/MAYAVI/SCIKIT-IMAGE
PYTHON, a high-level programming language created by Guido van Rossum, was first released in 1991. In execution, PYTHON programs are interpreted, not compiled. Information and free downloads are available at the URL www.python.org. Information about various add-on modules can be found as follows:

- The module numpy, which adds numerous mathematical capabilities (arrays, matrices, mathematical functions, ...) to PYTHON, is described at the URL www.numpy.org.
- The module matplotlib, which adds numerous 2D plotting capabilities and a few 3D plotting capabilities to PYTHON, is described at the URL matplotlib.org.
- The module plotly, which provides several 3D plotting capabilities, is described at the URL plot.ly.
- The module mayavi, which provides numerous capabilities for 3D data visualisation and plotting, is described at the URL docs.enthought.com/mayavi/mayavi.
- The module scikit-image, which includes scimage and provides image processing capabilities, is described at the URL scikit-image.org.

There are numerous distributions of PYTHON. A popular distribution that automatically includes numerous modules that might not be included in many other distributions is described at www.anaconda.com.

\TeX/\LaTeX/dvips/graphicsx/makeindex/xdvi/dvips/...

The primary site for information (history, current plans, downloads, ...) for \TeX, \LaTeX, and numerous other publicly available components of \TeX system and its derivatives is the web site of the \TeX Users’ Group (TUG), www.tug.org. This organization maintains CTAN (the Comprehensive \TeX Archive Network), which has a handful of backbone machines around the world and a number of mirror sites, from any of which an enormous number of files associated with the \TeX/\LaTeX system can be downloaded.

\TeXlive
\TeXlive is among the newer implementations of the \TeX/\LaTeX system for all platforms. Information about this distribution and instructions for downloading and installing it are available from the URL www.tug.org/texlive.

TGIF
TGIF (pronounced T-G-I-F) is a versatile program for creating two-dimensional drawings. The program is Xlib-based and interactive, and it runs under X11 on LINUX and UNIX platforms (including MAC OS X and cygwin on Windows). Information (brief history, licensing understandings, instructions for downloading, ...) about TGIF is available from the URL bourbon.usc.edu/tgif/.

Winedt
Winedt is an inexpensive ($40.00 per student user, $60 per educational user) editor for Intel-based machines running one or another version of Microsoft Windows. It has particular features that make it especially suitable for creating source files for \TeX/\LaTeX. Information about licensing and downloads can be found at the URL www.winedt.com. Winedt is also available from CTAN, the \TeX/\LaTeX distribution network accessible from links at www.tug.org.
Xemacs
This flexible, open source text editor is available from a variety of sources and is protected under the terms of the GNU Public License. Downloads and information about the program can be found at the URL xemacs.sourceforge.net.

Xv
Written, maintained, and copyrighted by John Bradley, xv is an interactive image manipulation program that runs in X-windows. Downloads, information about the program, and information about licensing and registering is available at the URL www.trilon.com.
Index

The user of this index should be aware that not only textual discussions but also some of the problems are indexed. Page numbers displayed in Roman type refer to textual discussions; page numbers displayed in Italic type refer to problems.

Symbols


$\text{IDLHEAD}$, 11

$\text{MAPLEHEAD}$, 156


$\text{PYTHONHEAD}$, 15

A

aborting execution
  in C, 204
  in \text{FORTRAN}, 197
  in \text{MAPLE}, 112
  in \text{PYTHON}, 16, 209
accuracy
  in evaluating integrals, 377–379, 382–385, 399–401, 404–406
  in finding roots, 436–437
  in solving ODEs, 297–298, 307, 310
  with conservation laws, 298, 310–312
acrodex, 488
action statements, 177, 179–180
Adams/Bashforth/Moulton (ABM) methods, 299–300
adaptive methods
  for integrals, 379
  for ODEs, 298–299, 327, 334
adding text to graphics, see \text{placing text in graphics}
algorithms
  definition, 177
  for \(a^2 + b^2 = c^2\), 230
  for adding, 231
  for bowling, 229
  for controlling loops, 186
  for counting, 186, 187
  for exchange, 186
  for finding extremes, 187, 188
  for integration, 372–382
  for Laplace’s equation, 188
  for ODEs, 291–300
  for parking lot, 229
  for root finding, 434–437
  for searching, 188, 230
  for sorting, 231
  for summing, 187
animation
  in \text{MAPLE}, 156
  in \text{PYTHON}, 78–84
arithmetic operators
  in C, 202
  in \text{FORTRAN}, 195
  in \text{MAPLE}, 115
  in \text{PYTHON}, 21
array indices
  in C, 202
  in \text{FORTRAN}, 195
  in \text{MAPLE}, 121
  in \text{pseudo code}, 179
  in \text{PYTHON}, 23–27
arrays
  for data storage, 190
  in C, 202
  in \text{FORTRAN}, 195
  in \text{MAPLE}, 114, 119–122
  in \text{pseudo code}, 179
  in \text{PYTHON}, 24–27
  scalar, see \text{scalar fields}
  vector, see \text{vector fields}
ASCII character codes, 5
ASCII text files, 8
aspell, 515–516
assigning values to variables
  in C, 202
  in \text{FORTRAN}, 195
in MAPLE, 116–117
in pseudocode, 180
in PYTHON, 18

B
backsubstitution, 465
Bessel functions, 414, 473
binary files, 8
binary number system, 4–5
Biot-Savart law, 366
bisection, see root finding
bit, 4–5
black body radiation, 169, 413
blocking statements, see also control structures
in C, 203
in MAPLE, 145
in pseudocode, 182, 192
in PYTHON, 35
Boolean values, see logical expressions
Boolean variables, see logical expressions
boundary value problems, 267, 278, 477, 478
byte, 5–6

C
C, 1
C commands
fclose, 213, 222, 333, 336
fgets, 227
fopen, 204, 213, 222, 227, 332, 335, 337
fprintf, 204, 213, 222, 332, 333, 335–337
fscanf, 227
main, 202, 213, 221
printf, 201, 203, 205, 332, 404, 405, 407, 408, 458, 459, 461
return, 207
scanf, 205, 332, 404, 458, 459, 461
C control structures
do/while, 206, 337
for, 201, 202, 204, 212, 213, 221, 222, 227, 333, 336, 404, 407
if/else, 204, 459
switch/case/default, 205
while, 206, 458, 459
C data types
char, 202, 227
file, 204, 212, 221, 227
float, 201, 202, 212, 221, 227
int, 201, 202, 212, 221, 227
C directives, 202
#define, 201, 202, 212, 221
#include, 201, 202, 212, 221
C functions
cos, 221, 462
exp, 407, 408
pow, 202, 212, 407, 408, 458, 459
sin, 212, 221, 461, 462
sqrt, 407, 408
user-defined, 206–207
C header files
math.h, 202, 212, 221, 404, 407, 408, 458, 461
nr.h, 264, 265, 336, 338, 407–409, 460–462
nrutil.h, 336, 338, 460–462
stdio.h, 202, 212, 221, 404, 407, 408, 458, 461
C programs
bisect.c, 459–460, 481
decay.c, 332, 350–351
decayrk4.c, 336, 351
decayrkqs.c, 338, 352
errqtrap.c, 407–409, 416, 417
errtrapzd.c, 406–407, 416
guessroot.c, 458
irrad.c, 210–212, 237–238
laplace.c, 201, 203
laplace_file.c, 204
pdens.c, 215–216, 242–243
quadpole.c, 224–225, 253–255
read_irrad.c, 258
sinrtbis.c, 460, 461
sinrtnest.c, 462–463
trapezoidal.c, 405, 419
wavegd.c, 219–220, 248–249
C special symbols
\n (new line), 203, 204, 213, 222, 332, 335, 337, 404, 458, 459, 461
* (multiplication), 202
+ (addition), 202
++ (incrementing index), 227, 404, 407
- (subtraction), 202
/ (division), 202
/*...*/ (comment), 202
%d (format), 203, 205, 213, 222, 227, 332, 407
%e (format), 203, 213, 222
%f (format), 203–205, 332, 335, 337, 407, 408, 458, 459, 461
%g (format), 227
%s (format), 407
& (pointer), 205, 332, 337, 458, 459, 461, 463
braces, 203
cardioid, 52, 411
carrying capacity, 272, 283–285
Cartesian coordinates
in MAPLE, 174
case sensitivity
in C, 202
in FORTRAN, 193
in MAPLE, 112
in pseudocode, 178
in PYTHON, 16–18
cc, see UNIX commands
center of mass
definition of, 354
of cardioid, 411
of semicircular plate, 355, 362–364
central processing unit, 3
chaos
Lorenz system, 344
character codes, 4–5
character strings
in MAPLE, 114
in PYTHON, 18
characteristic equation, 424
charging capacitor, 99
classification
of integrals, 353
of ODEs, 267
color
in PYTHON, see also PYTHON keywords:
  color, edgecolor, colors, . . . , 51, 52, 88–89
combining statements on one line
in C, 202
in MAPLE, 112
in pseudocode, 182
in PYTHON, 16, 34, 54
command files
in MAPLE, see MAPLE command files
in PYTHON, see PYTHON scripts
command line editing
in MAPLE, 123
in PYTHON, 16
commands
in C, see C commands
in FORTRAN, see FORTRAN commands
in MAPLE, see MAPLE commands
in pseudocode, see pseudocommands
in PYTHON, see PYTHON commands
comments, see also documentation
in C, 202
in FORTRAN, 193
in \LaTeX, 516
in MAPLE, 147
in pseudocode, 182–183, 186
in PYTHON, 16, 41, 47
common storage
in C, see global variables
in FORTRAN, 200, 327
in PYTHON, see global variables
compiler directives, 179
in C, see C directives
in FORTRAN, see FORTRAN directives
in pseudocode, see pseudocode directives
compiling source file, see Local Guide, 178
in C, 204, 212, 332, 336, 338, 405, 407, 409,
458, 460, 461, 463
in FORTRAN, 197, 210, 325, 329, 331,
400–402, 451, 453, 454, 456
complex numbers
in MAPLE, 128–129
in PYTHON, 28–29
Compton scattering, 100
conditions, see logical conditions
constants
in MAPLE, see MAPLE constants
in PYTHON, see PYTHON constants
contact information, 533–536
continuing statement on second line
in C, 202
in FORTRAN, 196
in MAPLE, 112
in pseudocode, 182
in PYTHON, 16
control characters, 4
control structures
in C, see C control structures
in FORTRAN, see FORTRAN control structures
in MAPLE, see MAPLE control structures
in pseudocode, see pseudocode control structures
in PYTHON, see PYTHON control structures
convergence criteria, 190, 297–298, 377–379,
436–437
convert .eps/.ps to .pdf, 510–511
convert .pdf to .eps/.ps, 511
Cornu spiral, 358, 390–392
CPU, see central processing unit
Cramer’s rule, 464–465
creating arrays
in PYTHON, 24–27
creating lists
in PYTHON, 23
creating matrices
in PYTHON, 27–28
creating sets
in PYTHON, 23
creating tuples
in PYTHON, 23
cross product
in MAPLE, 147–148, 175
in PYTHON, 26, 97
current directory, see also default directory
in PYTHON, 39, 40, 44, 45, 54, 58, 80, 82,
90–91
curve fitting, see least squares fitting
to parabola, 173, 475
customizing
  matplotlib, 93–94
  MAPLE, 159–160
  PYTHON, 86–88, 92–93
cylindrical coordinates
in MAPLE, 175
D
data analysis, 357
data files
decay_c.dat, 333, 350–351
decay_f.dat, 326, 347
decayrk4_c.dat, 335, 351
<table>
<thead>
<tr>
<th>File Name</th>
<th>Pages</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>decayrk4_f.dat</td>
<td>329, 348</td>
<td></td>
</tr>
<tr>
<td>decayrkqs_c.dat</td>
<td>337, 352</td>
<td></td>
</tr>
<tr>
<td>decayrkqs_f.dat</td>
<td>330, 349</td>
<td></td>
</tr>
<tr>
<td>freefault.dat</td>
<td>476, 477</td>
<td></td>
</tr>
<tr>
<td>irrad_c.dat</td>
<td>210–212, 227, 237–238, 258</td>
<td></td>
</tr>
<tr>
<td>irrad_f.dat</td>
<td>210, 226, 236, 257</td>
<td></td>
</tr>
<tr>
<td>irrad_python.dat</td>
<td>214, 228, 239, 258–259</td>
<td></td>
</tr>
<tr>
<td>laplace_c.dat</td>
<td>204, 209, 233</td>
<td></td>
</tr>
<tr>
<td>laplace_f.dat</td>
<td>197, 233</td>
<td></td>
</tr>
<tr>
<td>laplace_py.dat</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>ldrum.dat</td>
<td>81, 108–109</td>
<td></td>
</tr>
<tr>
<td>pdens_c.dat</td>
<td>216, 242–243</td>
<td></td>
</tr>
<tr>
<td>pdens_f.dat</td>
<td>215, 240–241</td>
<td></td>
</tr>
<tr>
<td>pdens_python.dat</td>
<td>216, 244–245</td>
<td></td>
</tr>
<tr>
<td>quadpole_c.dat</td>
<td>225, 253–255</td>
<td></td>
</tr>
<tr>
<td>quadpole_f.dat</td>
<td>224, 251–252</td>
<td></td>
</tr>
<tr>
<td>quadpole_python.dat</td>
<td>225, 255–256</td>
<td></td>
</tr>
<tr>
<td>radio.dat</td>
<td>40, 106</td>
<td></td>
</tr>
<tr>
<td>rdata.dat</td>
<td>54, 106–107</td>
<td></td>
</tr>
<tr>
<td>ruchardt.dat</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>wavegd_c.dat</td>
<td>219–220, 248–249</td>
<td></td>
</tr>
<tr>
<td>wavegd_f.dat</td>
<td>219, 246–247</td>
<td></td>
</tr>
<tr>
<td>wavegd_python.dat</td>
<td>222, 250</td>
<td></td>
</tr>
</tbody>
</table>

data types
- floating point, 6–7
- integer, 6–7
- string, 6–7

data typing
- explicit, 179
- implicit, 179
- in C, 202
- in FORTRAN, 195
- in pseudocode, 178–179, 181
- in PYTHON, 17

default directory, see also current directory, 9
- in MAPLE, 146, 154, 158–159
- in PYTHON, 39, 54, 84, 305, 313

defining ODEs
- for MAPLE, 137, 281, 283, 286–288, 323
- in PYTHON, 304

deleting functions
- in MAPLE, 117

deleting variables
- in MAPLE, 117, 131
- in PYTHON, 24, 34

demos
- in MAPLE, 111, 114

diffraction patterns, see also interference patterns, 299, 415, 473, 474
- of square aperture, 58–67

dimensionless casting
- for plotting, 100
- of integrals, 355–357, 359, 366, 410, 413
- of ODEs, 140–141, 268–273, 275–277, 284, 423, 425

discretizing
- Laplace’s equation, 189

displaying data on screen
- in C, 201, 203

in FORTRAN, 194, 196
in MAPLE, 112
in pseudocode, 180
in PYTHON, 16, 20–24

dividing statement between lines, see continuing statement on second line
documentation, see also comments
- in MAPLE notebooks, 156–157
- in PYTHON py-files, 47
dot product
- in MAPLE, 147–148, 175
- in PYTHON, 26, 97
double factorial, 12
drawing space curves
- with MAPLE, 160
- with PYTHON, 85
drumhead, 80–82
dvipdfm, 488
dvips, 487, 505

E
electric field, 358
- in wave guide, 73–76, 217–222
- of dipole, 235
- of quadrupole, 223–225
- of relativistic particle, 100

electrostatic potential, 358
- of charged disks, 99, 410
- of charged rings, 358–359, 393–394, 397–398, 415
- of finite line charge, 364–366
- of spherically symmetric distribution, 411

e elliptic integrals, 173, 357, 414
em dash, 496
em space, 493
en dash, 496
en space, 493
energy levels
- in quantum oscillator, see harmonic oscillator
- in quantum well, 289–290, 427, 444–446, 448–450, 472

equilibrium points, 422, 431
equivalent resistance, 476
error function, 358, 360, 382, 389–390, 396–397, 400, 401, 405, 406, 413
error messages
- in LATEX, 513–514
Euler’s method, 291–293, 300–302, 325–327, 332–333
improved, see improved Euler method
evaluating integrals
- with C, 404–409
- with FORTRAN, 399–404
- with PYTHON, 382–394
exchange algorithm, 186
executing program, see Local Guide
exiting  
  from MAPLE, 112  
  from PYTHON, 16
expressing infinity  
  in MAPLE, 362
expressions  
  in MAPLE, 114–116

F

$\text{f77}$, see UNIX commands
Fabry-Perot interferometer, 99
factorial, 12, 21, 124
Fibonacci numbers, 97
field mapping, 102, 103
finding eigenvalues/eigenvectors  
  with MAPLE, 133–134, 170, 171  
  with PYTHON, 36–38, 97, 98
finding roots, see root finding
finite difference approximations  
  for derivatives, 231
fitting data, see curve fitting, least squares fitting
floating point number  
  double precision, 7  
  single precision, 6
fonts, see also Greek letters
formatting data files, 190–191
formatting output  
  in C, 203, 213, 222  
  in FORTRAN, 196  
  in pseudocode, 180  
  in PYTHON, 43, 207, 301
FORTRAN, 1
  position of statements on line, 195
FORTRAN commands  
  close, 211, 220, 226, 326, 329  
  format, 198, 199, 211, 220, 320, 330  
  open, 197, 211, 220, 226, 325, 329, 330  
  read, 198, 199, 226, 326, 399, 452, 453, 455  
  write, 194, 196–198, 211, 220, 325, 326, 329–331, 399, 402, 452, 453, 455
FORTRAN control structures  
  call, 199, 329, 331, 402, 457  
  do while/endo, 199, 321, 452, 453  
  do/endo, 194–197, 211, 219, 220, 226, 326, 329, 399, 402  
  do/endo , 210  
  function/return, 200, 400, 402, 403  
  if/then/else/endif, 197, 453  
  program/end, 195, 210, 218–219, 402, 403, 455  
  subroutine/return, 199, 328, 456
FORTRAN data types  
  character, 195, 226  
  double precision, 195  
  integer, 195  
  real, 195
FORTRAN directives  
  common, 200, 328, 330
dimension, 194, 210, 219, 226, 328, 330
external, 402, 403, 455
implicit, 195
parameter, 194, 195, 210, 219
FORTRAN functions  
  cos, 219, 456  
  exp, 400, 402, 403  
  sin, 210, 219, 455, 456  
  sqrt, 400, 402, 403  
  user-defined, 200, 455
FORTRAN programs  
  biseect.f, 452–454, 480  
  decay.f, 325, 347  
  decayrk4.f, 329, 348  
  decayrkqs.f, 331, 349  
  errqtrap.f, 401–403, 416  
  errtrapzd.f, 401, 416  
  guessroot.f, 452  
  irrad.f, 209–210, 236  
  laplace.f, 194, 197  
  laplace_file.f, 197  
  pdensa.f, 215, 240–241  
  quadpole.f, 224, 251–252  
  read_irrad.f, 257  
  sinrthbs.f, 454, 455  
  sinrtnewt.f, 456–457  
  trapezoidal.f, 400, 418  
  wavelg.d, 218–219, 246–247
FORTRAN special symbols  
  ! (comments), 193  
  * (multiplication), 195  
  ** (exponentiation), 195, 210, 400, 402, 403, 452, 453  
  + (addition), 195  
  - (subtraction), 195  
  / (division), 195  
  A (in format statements), 198, 326, 399, 403, 452, 453, 455  
  C (comments), 193  
  E (in format statements), 196  
  F (in format statements), 196, 197, 325, 329, 330, 399, 402, 403, 455  
  I (in format statements), 196, 402
FORTRAN subroutines, 199–200
  user-defined, 456
four-slit interference pattern, 100
Fourier series, 361, 371–372, 412
Fraunhofer diffraction, 209–214
Fresnel integrals, see also Cornu spiral, 358, 415
  functions  
    in C, see C functions  
    in FORTRAN, see FORTRAN functions  
    in MAPLE, see MAPLE functions  
    in PYTHON, see PYTHON functions,  
      PYTHON scripts  
    typical available, 180

G
gamma function, 12–13
Gaussian distribution, 357, 413
Gaussian elimination, 465–466
Gaussian integration, see quadrature
gedit, 1
ghostview, 488
global positioning, 475
global truncation error, see truncation error, global
global variables
in C, 207, 334
in FORTRAN, see common storage
in PYTHON, 45–47, 392
golden ratio, 471
gravitational force, 276
Greek letters, see also fonts
in LATEX, 496–497
in MAPLE, 115
in PYTHON, 61–62, 84
H
hard copy
from MAPLE, 152–155
from PYTHON, 57–58
Helmholtz coil, 366–370
help, see on-line help
hexadecimal number system, 5
high-pass filter, 54–57
high-resolution graphing
in MAPLE, 148–152
in PYTHON, 30–33, 48–78
Hooke’s law, 423
hyperlinks, 509–510
I
IDL, 1
IDL contact information, 533
improved Euler method, 293–294, 302
indices in LATEX, 507
indicical equation, 290
inert commands
in MAPLE, see suppressing evaluation in MAPLE
inhomogeneities in linear equations, 464
initial value problems, 267
initialization files
in MAPLE, 159–160
in PYTHON, 92–93
integer
signed, 6
unsigned, 6
interactive plotting in PYTHON, 90
interference patterns, see also diffraction patterns
Fabry-Perot, 99
from four slits, 100
internal storage of expressions
in MAPLE, 116
interpolation points, 375, 376
interpreting source code, see also Local Guide, 178
interrupt
in MAPLE, 112
in PYTHON, 16
ispell, 515–516
K
keywords
in PYTHON, see PYTHON keywords
Kirchhoff’s laws, 476
Knuth, Donald, 483
Kronecker delta, 360
L
Lagrange equations
for 2D harmonic oscillator, 171
for compound pendulum, 172
Laguerre polynomials, 169
Laguerre’s method, see root finding
Lamport, Leslie, 483
Laplace transforms, 13–14, 279–280, 341
definition, 13, 137, 279
for ODEs, 279
in MAPLE, 137, 173
Laplace’s equation, 478
in C, 200–204, 233
in FORTRAN, 193–197, 233
in pseudocode, 188–190
in PYTHON, 207–209
LATEX, 1
accents in, 519
counters in, 520
dashes in, 495
math mode in, 496–497
quotation marks in, 496
special characters in, 520
latex, 486, 487, 505
LATEX commands
\ (italic correction), 492
\ (new line), 494, 499
\! (negative thin space), 497
\, (thin space), 497
\- (allow hyphen), 496
\: (medium space), 497
\; (thick space), 497
\addcontentsline, 506–507
\addtocontents, 506–507
\Alph, 498, 521
\alph, 498, 521
\and, 512
\arabic, 498
\author, 516
<table>
<thead>
<tr>
<th>Command</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>\bf</code></td>
<td>516</td>
</tr>
<tr>
<td><code>\bfseries</code></td>
<td>492</td>
</tr>
<tr>
<td><code>\boldmath</code></td>
<td>497</td>
</tr>
<tr>
<td><code>\cal</code></td>
<td>519</td>
</tr>
<tr>
<td><code>\caption</code></td>
<td>499, 500, 502, 505</td>
</tr>
<tr>
<td><code>\centerline</code></td>
<td>502</td>
</tr>
<tr>
<td><code>\chapter</code></td>
<td>496</td>
</tr>
<tr>
<td><code>\chaptername</code></td>
<td>523</td>
</tr>
<tr>
<td><code>\char</code></td>
<td>520</td>
</tr>
<tr>
<td><code>\cindex</code></td>
<td>493</td>
</tr>
<tr>
<td><code>\centerline</code></td>
<td>502</td>
</tr>
<tr>
<td><code>\chapter</code></td>
<td>496</td>
</tr>
<tr>
<td><code>\chaptername</code></td>
<td>523</td>
</tr>
<tr>
<td><code>\char</code></td>
<td>520</td>
</tr>
<tr>
<td><code>\cindex</code></td>
<td>507</td>
</tr>
<tr>
<td><code>\documentclass</code></td>
<td>484, 486, 489, 510, 516</td>
</tr>
<tr>
<td><code>\documentstyle</code></td>
<td>484</td>
</tr>
<tr>
<td><code>\fbox</code></td>
<td>520</td>
</tr>
<tr>
<td><code>\filename</code></td>
<td>522</td>
</tr>
<tr>
<td><code>\footnote</code></td>
<td>496, 516</td>
</tr>
<tr>
<td><code>\footnotesize</code></td>
<td>493</td>
</tr>
<tr>
<td><code>\frac</code></td>
<td>516</td>
</tr>
<tr>
<td><code>\framebox</code></td>
<td>520</td>
</tr>
<tr>
<td><code>\hbox</code></td>
<td>493</td>
</tr>
<tr>
<td><code>\hfill</code></td>
<td>520</td>
</tr>
<tr>
<td><code>\Huge</code></td>
<td>516</td>
</tr>
<tr>
<td><code>\huge</code></td>
<td>493</td>
</tr>
<tr>
<td><code>\ifFileExists</code></td>
<td>513</td>
</tr>
<tr>
<td><code>\ifthenelse</code></td>
<td>512–513</td>
</tr>
<tr>
<td><code>\includegraphics</code></td>
<td>500–503, 510</td>
</tr>
<tr>
<td><code>\index</code></td>
<td>507</td>
</tr>
<tr>
<td><code>\indexname</code></td>
<td>523</td>
</tr>
<tr>
<td><code>\input</code></td>
<td>519</td>
</tr>
<tr>
<td><code>\int</code></td>
<td>516</td>
</tr>
<tr>
<td><code>\item</code></td>
<td>497–498, 521</td>
</tr>
<tr>
<td><code>\itshape</code></td>
<td>492</td>
</tr>
<tr>
<td><code>\itemize</code></td>
<td>498</td>
</tr>
<tr>
<td><code>\itemizei</code></td>
<td>498</td>
</tr>
<tr>
<td><code>\itemizetwo</code></td>
<td>498</td>
</tr>
<tr>
<td><code>\itemizerem</code></td>
<td>498</td>
</tr>
<tr>
<td>\LARGE</td>
<td>493</td>
</tr>
<tr>
<td>\Large</td>
<td>493, 516</td>
</tr>
<tr>
<td>\large</td>
<td>493</td>
</tr>
<tr>
<td>LaTeX</td>
<td>516</td>
</tr>
<tr>
<td>\listoffigures</td>
<td>506–507</td>
</tr>
<tr>
<td>\listoftables</td>
<td>506–507</td>
</tr>
<tr>
<td>\makebox</td>
<td>520</td>
</tr>
<tr>
<td>\makeindex</td>
<td>507–508</td>
</tr>
<tr>
<td>\maketitle</td>
<td>516</td>
</tr>
<tr>
<td>\mathbf</td>
<td>497</td>
</tr>
<tr>
<td>\mathcal</td>
<td>519</td>
</tr>
<tr>
<td>\mathit</td>
<td>497</td>
</tr>
<tr>
<td>\mathrm</td>
<td>497</td>
</tr>
<tr>
<td>\maths</td>
<td>497</td>
</tr>
<tr>
<td>\makebox</td>
<td>496, 497, 520</td>
</tr>
<tr>
<td>\makebox</td>
<td>496, 497, 520</td>
</tr>
<tr>
<td>\makebox</td>
<td>496, 497, 520</td>
</tr>
<tr>
<td>\mathbf</td>
<td>497</td>
</tr>
<tr>
<td>\mathcal</td>
<td>519</td>
</tr>
<tr>
<td>\mathit</td>
<td>497</td>
</tr>
<tr>
<td>\mathrm</td>
<td>497</td>
</tr>
<tr>
<td>\maths</td>
<td>497</td>
</tr>
<tr>
<td>\makebox</td>
<td>496, 497, 520</td>
</tr>
<tr>
<td>\makebox</td>
<td>496, 497, 520</td>
</tr>
<tr>
<td>\makebox</td>
<td>496, 497, 520</td>
</tr>
<tr>
<td>\newcommand</td>
<td>517</td>
</tr>
<tr>
<td>\newcounter</td>
<td>521</td>
</tr>
<tr>
<td>\newlength</td>
<td>494</td>
</tr>
<tr>
<td>\newpage</td>
<td>493</td>
</tr>
<tr>
<td>\noindent</td>
<td>493, 516</td>
</tr>
<tr>
<td>\normalfont</td>
<td>492</td>
</tr>
<tr>
<td>\normalsize</td>
<td>493</td>
</tr>
<tr>
<td>\not</td>
<td>512</td>
</tr>
<tr>
<td>\or</td>
<td>512</td>
</tr>
<tr>
<td>\pageref</td>
<td>496, 499, 500</td>
</tr>
<tr>
<td>\pagestyle</td>
<td>516, 519</td>
</tr>
<tr>
<td>\parbox</td>
<td>520</td>
</tr>
<tr>
<td>\part</td>
<td>496</td>
</tr>
<tr>
<td>\partial</td>
<td>516</td>
</tr>
<tr>
<td>\printindex</td>
<td>507</td>
</tr>
<tr>
<td>\qquad</td>
<td>493</td>
</tr>
<tr>
<td>\quad</td>
<td>493</td>
</tr>
<tr>
<td>\ref</td>
<td>496, 499, 500, 516</td>
</tr>
<tr>
<td>\renewcommand</td>
<td>495, 498, 518, 521, 522</td>
</tr>
<tr>
<td>\rmfamily</td>
<td>492</td>
</tr>
<tr>
<td>\Roman</td>
<td>498, 522</td>
</tr>
<tr>
<td>\roman</td>
<td>498, 522</td>
</tr>
<tr>
<td>\rule</td>
<td>520</td>
</tr>
<tr>
<td>\scriptsize</td>
<td>493</td>
</tr>
<tr>
<td>\scshape</td>
<td>492</td>
</tr>
<tr>
<td>\section</td>
<td>496</td>
</tr>
<tr>
<td>\setboolean</td>
<td>512–513</td>
</tr>
<tr>
<td>\setcounter</td>
<td>507</td>
</tr>
<tr>
<td>\setlength</td>
<td>493, 516</td>
</tr>
<tr>
<td>\settodepth</td>
<td>493</td>
</tr>
<tr>
<td>\settoheight</td>
<td>493</td>
</tr>
<tr>
<td>\settowidth</td>
<td>494</td>
</tr>
<tr>
<td>\sffamily</td>
<td>492</td>
</tr>
<tr>
<td>\slshape</td>
<td>492</td>
</tr>
<tr>
<td>\small</td>
<td>493</td>
</tr>
<tr>
<td>\subsection</td>
<td>496</td>
</tr>
<tr>
<td>\subsubsection</td>
<td>496</td>
</tr>
<tr>
<td>\tableofcontents</td>
<td>506–507</td>
</tr>
<tr>
<td>\textbf</td>
<td>492</td>
</tr>
<tr>
<td>\textit</td>
<td>492</td>
</tr>
<tr>
<td>\textmd</td>
<td>492</td>
</tr>
<tr>
<td>\textnormal</td>
<td>492</td>
</tr>
<tr>
<td>\textsf</td>
<td>492</td>
</tr>
<tr>
<td>\textsl</td>
<td>492</td>
</tr>
<tr>
<td>\texttt</td>
<td>492</td>
</tr>
<tr>
<td>\textup</td>
<td>492</td>
</tr>
<tr>
<td>\text..</td>
<td>521–522</td>
</tr>
<tr>
<td>\theenum</td>
<td>498</td>
</tr>
<tr>
<td>\thenum</td>
<td>498</td>
</tr>
<tr>
<td>\thenumtwo</td>
<td>498</td>
</tr>
<tr>
<td>\thenumthree</td>
<td>498</td>
</tr>
<tr>
<td>\thenumfour</td>
<td>498</td>
</tr>
<tr>
<td>\thispagestyle</td>
<td>516, 519</td>
</tr>
<tr>
<td>\tiny</td>
<td>493</td>
</tr>
<tr>
<td>\title</td>
<td>516</td>
</tr>
<tr>
<td>\today</td>
<td>517, 518</td>
</tr>
<tr>
<td>\ttfamily</td>
<td>492</td>
</tr>
<tr>
<td>\twocolumn</td>
<td>522</td>
</tr>
</tbody>
</table>
INDEX

\itemsep, 498
\marginparsep, 508
\marginparwidth, 508
\oddsidemargin, 489, 516
\parindent, 489, 516
\parsep, 498
\parskip, 489, 498, 516
\textfraction, 521
\textwidth, 489, 508, 516
\topfraction, 521
\topmargin, 489, 516
\topskip, 489, 516
\verb, 492, 516
\verb*, 493
\verbatiminput, 520
\vspace, 493, 500
\vspace*, 493

\LaTeX contact information, 483, 535
\LaTeX counters
enumi, 498, 521
enumii, 498
enumiii, 498
enumiv, 498
figure, 521
footnote, 521
page, 521
section, 521
subsection, 521
subsubsection, 521
section, 521
subsection, 521
subsubsection, 521
\LaTeX environments, 494–495
\ (...) \ (in-line equation), 496
\ [...] \ (displayed equation), 496
$...$ (in-line equation), 496
array, 523
center, 494, 499, 501, 505, 516
comment, 520
displaymath, 496
document, 485, 486, 516
enumerate, 497–498, 520, 521
eqarray, 496
equation, 496, 516
figure, 500–503, 505
flushleft, 516
itemize, 497–498
minipage, 520
\texttt, 506
picture, 500, 506
quotation, 494
quote, 494
table, 498–500	abular, 498–500
tikzpicture, 503–506
\LaTeX length parameters, 490
\baselineskip, 493, 495
\baselineskip, 495
\bottomfraction, 521
\evensidemargin, 489, 508
\textwidth, 489, 508, 516
\topfraction, 521
\topmargin, 489, 516
\topparwidth, 489, 516
\topskip, 489, 516

\LaTeX Manual, 483
\LaTeX output
from MAPLE, 155–156
\LaTeX packages, 495
alltt, 519
color, 509, 513
graphicx, 500–503, 509–510
hyperref, 509–510, 513
ifthen, 512–513
imakeidx, 507–508
makeidx, 507–508
maple2e, 156
maplestd2e, 156
needspace, 523
showidx, 508
tikz, 500, 503–506
verbatim, 519–520
\LaTeX page previewers, see also \xdvi, \yap, 514–515
\LaTeX preamble, 489–491
\LaTeX sample, 485–488, 516–517
\LaTeX special symbols
" (closing double quotation), 496
--- (em dash), 495
-- (en dash), 495
- (dash), 495
~ (minus sign), 496
\ (hard space), 495
" (opening double quotation), 496
\LaTeX templates, 490
\LaTeX type size, 492
\LaTeX type styles, 491–492
\LaTeX templates, 491–492
lawn mower, 470
least squares fitting, 476–478
Legendre polynomials, 167, 382, 412, 472
Lennard-Jones potential, 474
licensing of software, 14
linking object code, see \Local Guide, 178
lists
in MAPLE, 114, 116, 119
in PYTHON, 22–24
\Local Guide, 2, 8, 9, 11, 14–16, 40, 58, 111, 112,
148, 160, 193, 197, 200, 203, 204, 207,
209, 210, 212, 214, 219, 220, 222, 224,
225, 261, 263, 264, 300, 321, 325, 332,
366, 382, 399, 400, 404, 405, 407, 437,
logical conditions, see logical expressions

logical expressions
in C, 202
in FORTRAN, 195
in PEPx, 512–513
in MAPLE, 145–146
in pseudocode, 180–181
in PYTHON, 35–36

logical operators, see logical expressions

logistic growth, 272, 283–285

long integer
signed, 6
unsigned, 6

loops
in C, 202
in FORTRAN, 195
in MAPLE, 125, 129, 130, 144–146
in pseudocode, 183–184
in PYTHON, 33–36

Lorentz distribution, 98, 410, 414

Lorentz lineshape, 45

LP, see UNIX commands

LSODE contact information, 533

LU decomposition, 96, 466

M

machine code, 178
Macintosh OS, 1
MacTeX
contact information, 533
magnetic field, 358
in wave guide, 73–76, 103, 217–222
of circular loops, 49, 101, 234, 366–370, 415
of Helmholtz coil, 366–370
of solenoid, 101
magnetic vector potential, 358

MAPLE, 1

maple, 112

MAPLE command files, 146–148
crossdot, 147, 175
testmultiply, 147

MAPLE commands, see also MAPLE functions, 114
about, 138, 160–161
additionally, 138, 160–161
alias, 164
animate, 156
appendto, 153
argument, 128
Array, 120, 121, 129, 371, 397
array, 398, 448–450
assigned, 117
asympt, 136
collect, 127, 284
Column, 134
combine, 129, 366
conjugate, 128
countourplot, 151
contourplot, 151
convert, 122, 126, 129, 133, 135, 162, 173, 366, 369, 370, 397, 398, 433, 434, 448, 449
cos, 364
cross, 147–148
CrossProduct, 366
Curl, 142, 143, 174, 175
currentdir, 158–159
dchange, 141
denom, 127, 284
Determinant, 132, 288
diff, 136, 138, 140, 281, 283, 286–288, 323
diff, 134, 136, 138, 149, 167, 170, 282, 431
display, 151
Divergence, 142, 143, 174, 175
done, 112
dot, 147–148
DotProduct, 366
dsolve, 138–141, 280–291, 323–325
Eigenvectors, 133
evalc, 128, 129
expand, 125–127, 129, 130, 141, 162, 166, 370, 433, 447
factor, 125, 138, 141, 166
fsolve, 369, 446–450, 467, 469
GenerateMatrix, 288
GetCoordinates, 142
Gradient, 142, 174, 175
Im, 128
infolevel, 140
Int, 136, 395–398
int, 134, 361–372, 395–398
interface, 147, 153, 163, 325, 363, 365, 366, 371, 433
invlaplace, 137, 173
is, 282, 283
laplace, 137, 173
Laplacian, 142, 143, 174, 175
latex, 155–156
lhs, 282
Limit, 136
limit, 136, 283, 286, 363, 433
listplot, 397, 398, 448
Matrix, 121, 132, 133
MatrixAdd, 364
MatrixInverse, 132
mtaylor, 135
Multiply, 132
nops, 126, 166
INDEX

Normalize, 133, 134
dumer, 284
dodeplot, 324
op, 125–127, 135, 166, 369
piecewise, 164
plot, 149, 150, 164, 284–286, 368, 373, 432, 450
plot3d, 151
plotsetup, 152–154
polar, 128
print, 129, 148, 163–164
protect, 118
quit, 112
Re, 128
read, 146, 147
restart, 112, 123, 140, 163, 283
rhs, 138, 149, 282, 284, 286, 288
root_by_bisection, 449
ScalarMultiply, 362, 367, 371
series, 136, 164, 283, 366, 433
SetCoordinates, 142
simplify, 128, 129, 134, 137, 139, 162, 166, 282, 283, 286, 364, 366–368, 373
solve, 130, 131, 139, 282, 288, 363, 369, 429–433, 467, 469
spacecurve, 160
stop, 112
subs, 126, 139–141, 166, 284, 363, 365, 367, 370, 373, 431
subsop, 127, 166
Sum, 164, 373
sum, 164
taylor, 135, 363, 365, 368, 370, 371, 433, 434
textplot, 151
Trace, 132
Transpose, 132
unapply, 163
unprotect, 118, 149
value, 136, 282, 283
Vector, 119, 121, 362
VectorField, 142, 143
whattype, 126, 135
with, 131, 132, 137, 144, 151, 362, 364
writeto, 153

MAPLE constants, 115
false, 115
1 (√−1), 115, 128
infinity (∞), 115, 134, 136, 362, 363
Pi (π), 115, 117, 124, 129, 151
ttrue, 115

MAPLE contact information, 534

MAPLE environment variables, 114

_ENV*, 114
_ENV_allSolutions, 288, 430
_ENV_dropMultiplicity, 430
_ENV_explicit, 429
_MaxSols, 430
Digits, 114, 124, 131, 396, 430
infolevel, 281, 286
Order, 114, 135, 290

MAPLE functions, see also MAPLE commands, 114–118
abs, 128
cot, 450
exp, 128, 134, 135, 137, 148, 397, 432, 447
factorial, 124
RootOf, 429
sqrt, 124, 133, 135, 363, 364, 370, 397, 431, 450

MAPLE keywords, 115
abserr, 324
assume, 139, 364
axes, 160
axesfont, 149, 150, 284–286, 368, 373, 397, 398, 432, 448, 450
color, 149–151, 160, 284–286, 324, 368, 373, 397, 398, 432, 448, 450
conjugate, 364
continuous, 362
countours, 151
digits, 395
decimals, 395
digits, 395
digits, 395
digits, 395
digits, 395
digits, 395
exp, 129
font, 151, 160
grid, 151
grid, 151
grid, 151
gridlines, 450
labeldirections, 149, 150, 284–286, 368, 373, 397, 398, 432, 448, 450
labelfont, 149, 150, 284–286, 368, 373, 397, 398, 432, 448, 450
labels, 149, 150, 284–286, 368, 373, 397, 398, 432, 448, 450
linalg, 149, 150, 284–286
method, 324, 395, 396, 398
numpoints, 149, 150, 160
orthogonal, 364
output, 324
parfrac, 126, 173
plotoptions, 153
plotoutput, 153
relerr, 324
scaling, 150, 151
tickmarks, 450
title, 149, 150, 284, 285
titlefont, 149, 150, 284, 285
INDEX

trig, 129

type, 323, 324

verboseproc, 325

view, 160, 450

MAPLE logical expressions, see logical expressions in MAPLE

MAPLE manuals, 111

MAPLE notebooks, 156–157

MAPLE operators

and, 164

D, 139

union, 287

MAPLE packages, 131–132, 144

DEtools, 136, 141

DotProduct, 364

intrtrans, 114, 137

LinearAlgebra, 131, 148, 288, 362, 364, 366, 367, 371

orthopoly, 168, 170

PDEtools, 136, 140

plots, 150–152, 324, 397, 398

student, 136

VectorCalculus, 142

MAPLE special symbols

! (escape to OS), 113

! (factorial), 124

* (multiplication), 115, 124, 133

** (exponentiation), 115

+ (addition), 115, 124

, (separate items in column), 121

- (subtraction), 115

-> (function definition), 115, 117, 129, 136, 164, 373, 450

.. (dimension array), 119–121

/ (division), 115, 124

: (specify data type), 147

:= (assignment), 115–121, 129, 136

# (comments), 147

$ (sequence operator), 134, 138

% (previous statement), 125, 129, 131

%% (second previous statement), 125

%% (third previous statement), 125

_C1 (ODE constant), 138, 280, 282, 288, 289

_C2 (ODE constant), 138, 280, 282, 288, 289

Z (generic variable), 429

Z1 (arbitrary integer), 289

~ (exponentiation), 115, 117, 124, 125

angle brackets (<...>) (create array), 121, 364, 366, 371

Pi (π), 448

vertical bar (separate columns), 121, 364, 366, 371

MAPLE statements

termination of, 112

MAPLE system variables

libname, 159

MATHEMATICA, 1

MATHEMATICA contact information, 534

mathematical functions

in C, see C functions

in FORTRAN, see FORTRAN functions

in MAPLE, see MAPLE functions, MAPLE programs, MAPLE commands

in PYTHON, see PYTHON functions

MATLAB, 1

MATLAB contact information, 534

matrices

in MAPLE, 119–122

in PYTHON, 27–28

matrix multiplication

in MAPLE, 132–133, 173

in PYTHON, 27–28

max-min problems, 422

MAXIMA, 1

MAXIMA contact information, 533

Maxwell-Boltzmann distribution, 413

method of bisection, see root finding

method of Frobenius, 290–291

method of least squares, see least squares fitting

midpoint method, 296

midpoint rule, see quadrature

MiKTeX, 1

MiKTeX contact information, 534

ML (left mouse button), 9

MM (middle mouse button), 9

moment of inertia

definition of, 355

of cardioid, 411

of semicircular plate, 355, 364, 388–389

motion

of membrane, 104

of string, 104

MR (right mouse button), 9

MUDPACK contact information, 534

Müller’s method, see root finding

multiway selection

in C, 204–205

in FORTRAN, 197–198

in pseudocode, 183

multistep methods

for ODEs, 299–300

N

NAG library contact information, 534

named common

in C, see global variables

in FORTRAN, see common storage

in PYTHON, see global variables

natural frequencies

of spherical cavity, 472

of stiff bar, 472

of three-mass system, 471

of two-mass system, 423–424, 431–432, 440

Newton’s method, see root finding

Newton’s second law, 353, 354, 423, 425

normal distribution, see Gaussian distribution

normal modes
INDEX

of membrane, 58–67
of string, 104
numerical integration, see quadrature
Numerical Recipes, 261–266

for ODEs
algorithm routines, 327, 334
driver routines, 327, 334
stepper routines, 327, 334

in C, 333–338, 460–463
rtbis.c, 460–463
rtnewt.c, 460, 462–463
rtsafe.c, 460
zbrak.c, 463
broydn.c, 470
bsstep.c, 334
caldat.c, 264
flmoon.c, 264–265
gaussj.c, 467
julday.c, 264
lubksb.c, 467
ludcmp.c, 467
mmid.c, 334
mnewt.c, 470
newt.c, 470
nrutil.c, 264, 336, 338, 409, 460, 462
qromb.c, 409, 416
qsimp.c, 409, 416
qtrap.c, 407–409
rk4.c, 334–336
rkck.c, 334
rkqs.c, 334, 336–338
rtsafe.c, 463
svbksb.c, 467
svdcmp.c, 467
trapezoid, 406–409
tridag.f, 467

in FORTRAN, 327–332, 454–457
rtbis.f, 454–457
rtnewt.f, 454–457
rtsafe.f, 454
zbrak.f, 457
broydn.f, 470
bsstep.f, 327
caldat.f, 263
flmoon.f, 262–263
gaussj.f, 467
julday.f, 264
lubksb.f, 467
ludcmp.f, 467
mmid.f, 327
mnewt.f, 470
newt.f, 470
qromb.f, 403, 416
qsimp.f, 403, 416
qtrap.f, 401–403
rk4.f, 327–329
rkck.f, 327
rkqs.f, 327, 329–332
rtsafe.f, 457
svbksb.f, 467
svdcmp.f, 467
trapezoid.f, 401–403
tridag.f, 467

NUMERICAL RECIPES contact information, 534
nybble, 5

O

object code, 178
object-image relations, 99
octal number system, 5
OCTAVE, 1
OCTAVE contact information, 534
on-line help
in MAPLE, 114
in PYTHON, 48

ordinary differential equations
with C, 332–338
with FORTRAN, 325–332
with MAPLE, 137–141, 280–291, 323–325
with PYTHON, 300–323
orthogonal functions, 360–361
OzTEX contact information, 535

P

page previewer
in B\TeX, 514–515
partial fractions, 126, 173, 340
passwords, see Local Guide
path (in directory tree), 8
path specification
in MAPLE, 158
in PYTHON, 16
PDF files, 487–488
pdfcrop, 510–511
pdflatex, 487, 504, 509–510
pdfTeX, 511
pendulum, simple, see simple pendulum
phases of moon, 262–265
pivotal condensation, 466
pivoting, 466

placing text in graphics
in MAPLE, see MAPLE packages, plots;
MAPLE commands, textplot;
MAPLE commands, display; MAPLE
keywords, font
in PYTHON, see PYTHON commands,
matplotlib.pyplot.text
Planck radiation law, 100
polar coordinates
in MAPLE, 128–129, 142–143
in PYTHON, 52–53, 67–68
population biology, 272, 283–285, 345
preallocation of arrays
in PYTHON, 34, 70
predictor-corrector methods, 294
procedure, 185
program, 177
projectile motion, see trajectories
properties
in PYTHON, see PYTHON keywords
proprietary software, 14
protected variables
in MAPLE, 118
in PYTHON, see PYTHON special symbols, PYTHON constants
ps2pdf, 488, 505, 510–511
pseudocode comments, 182–183, 186
pseudocode control structures, 177, 182–185
CASE-END_CASE, 183
EXECUTE, 184
FOR-THRU-DO, 184, 190–192
FOR-THRU-DO-STEP, 184
IF-THEN-ELSE-END_IF, 3, 4, 182, 187, 188
LOOP-END_LOOP, 3, 4, 183, 186–188
REPEAT-UNTIL, 184
WHILE-DO, 184
pseudocode directives
DIMENSION, 179, 190, 192
pseudocommands
ATTACH, 192
CLOSE, 192
READ, 180
WRITE, 180, 190, 192
py-files, see PYTHON scripts, PYTHON functions
PYTHON, 1
python, 16, 39, 80, 82
PYTHON attributes, 30
add_subplot, 82, 85, 88
append, 34, 40, 81, 91
axis, 87
clear, 82
close, 40, 81, 208, 214, 223, 228
dtype, 25, 30
extend, 34
format, 43, 208, 301
grid, 79
imag, 28
insert, 34
itemsize, 25, 30
ndim, 25, 30
plot, 54, 79, 85, 87, 308
plot_surface, 59, 61–63, 65–66, 68, 70, 82, 88
plot_wireframe, 59–61
pos, 84
quiver, 77, 104
read, 39, 40, 44, 45, 47, 80, 82, 84, 305, 308, 310, 313, 316, 321, 387, 388, 391, 439, 441
readline, 40–41, 228
readlines, 40
real, 28
reshape, 25, 30, 440
set_data, 79
set_title, 54, 85, 87, 308
set_xlabel, 54, 60, 62, 65, 70, 308
set_xlim, 82
set_xticks, 85, 88
set_ylabel, 54, 60, 62, 65, 70
set_ylim, 60, 62, 63, 65, 82
set_zlabel, 85, 88
shape, 25, 30
size, 25, 30, 394
sort, 96
split, 40, 95
subplots_adjust, 53, 54, 87, 308
velocity, 83, 84
view_init, 62, 67, 77
write, 42–43, 208, 214, 223
PYTHON class attributes, see PYTHON attributes, 30
PYTHON color codes, 52
PYTHON command files, see PYTHON scripts
PYTHON commands, see also PYTHON functions, PYTHON scripts
animation
FuncAnimation, 78–82
bool, 17
break, 36
clear, 34
continue, 36
del, 24, 34
dir, 24
eexec, 39, 44, 45, 47, 80, 82, 84, 305, 307, 308, 310, 313, 316, 387, 388, 391, 439, 441
execfile, 39, 44, 45, 47, 80, 82, 305, 307, 308, 310, 313, 316, 387, 388, 391, 439, 441
exit, 16
float, 17, 81, 228
general structure of, 18–19
getattr, 30
global, 46, 47, 79
globals, 24
help, 47
hex, 17
import, 19–21, 36, 44, 45, 48, 52, 54, 65
input, 80, 94–95
int, 17, 80, 95, 228
isinstance, 95
join, 91
len, 22, 23
locals, 24
matplotlib
is_interactive, 90
rcParams, 93
matplotlib
axis, 89
INDEX

bisect, 438–439, 444
newton, 438–439, 442
skimage.measure.marching_cubes_lewiner, 72
sorted, 96
str, 17, 43, 214, 223
sys
  getsizeof, 91–92
type, 17, 22–25, 27
unicodedata
  lookup, 61
vpython
  box, 83
  rate, 84
  sphere, 83
text, 83
  vector, 83, 84
zip, 72

PYTHON constants
False, 17, 35
math
e, 22
pi (π), 22
None, 95
numpy
  pi (π), 52, 59, 60, 69, 75, 87, 88, 213, 221, 383, 384, 387, 390, 394, 441, 442
sys.path, 91
True, 17, 35

PYTHON control structures
def/return, 43–46, 79, 82, 304, 305, 307, 308, 310, 313, 317, 387, 388, 390, 391, 393, 439, 441, 444
if/elif/else, 35–36
try/except, 95
while, 35, 39, 81, 84, 95

PYTHON current directory, see current directory in PYTHON

PYTHON data attributes, see also PYTHON attributes, 30

PYTHON data types, see also PYTHON attributes, 30

PYTHON default directory, see current directory in PYTHON

PYTHON Edit Window, 38–40

PYTHON environment variables

MATPLOTLIBRC, 93
PYTHONPATH, 91
PYTHONSTART, 92–93

PYTHON functions, see also PYTHON commands, PYTHON scripts, 43–47
cos, 393
float, 40
math
  acos, 21
  asin, 21
  atan, 21
  atan2, 21
  cos, 21
  acosh, 21
erf, 21
exp, 21
fabs, 21
factorial, 21
gamma, 21
 radians, 21
  sin, 21
  asinh, 21
  sqrt, 21, 22
tan, 21
atanh, 21
numpy
  cos, 44, 51, 52, 54, 67, 75, 79, 85, 87, 222, 390, 442, 445
cosh, 31, 54
  exp, 52, 56, 67, 69, 383–385, 387, 441, 442
  sinh, 54
  sqrt, 44, 56, 69, 311, 383–385, 387, 389, 445
  pow (exponentiation), 20
quad, 44
rings, 393
round, 20
sqrt, 393
user-defined, 43–47

PYTHON instance attributes, see also PYTHON attributes, 30

PYTHON keywords, 18–19, 32, 33
align, 83
args, 307, 308, 312, 313, 316, 392–394
atol, 320
axis, 37, 81, 445
azim, 62
both, 445
bottom, 445
capsize, 56
cmap, 65, 70
colormap, 72, 73
colors, 63–64, 76, 89
cstride, 61
divmax, 395
ecolor, 56
divmax, 395
eedgecolor, 61, 62, 65, 68, 70, 82, 88
elev, 62
divmax, 395
epsabs, 395
epsrel, 395
fargs, 80
filename, 73
font, 83
frames, 79, 80, 82
height, 83
hspce, 54, 308
init_func, 79, 80
interval, 79, 80
labelbottom, 445
level, 72
limit, 395
linestyle, 49, 51, 54, 56, 314
make_trail, 83
marker, 49
markeredgecolor, 54, 57
markerfacecolor, 54, 57
markersize, 49
maxiter, 388, 395
n, 395
normalize, 77
pos, 83
projection, 60, 62, 65, 70, 88
radius, 83
repeat, 79, 80, 82
rotation, 89
rstride, 61
rtol, 320, 395
shade, 61, 62, 70
show_colorbar, 72, 73
size, 83
title, 72, 73
tol, 395
top, 445
trail_color, 83
wspace, 54, 308

 PYTHON linestyle codes, 52
 PYTHON marker codes, 55
 PYTHON method attributes, see also PYTHON attributes, 30
 PYTHON modules, 19–20
 animation, 78–82
 cmath, 28
cycler, 93
math, 20–22

 matplotlib, 20, 48–57, 78, 93–94
 matplotlib.cm, 65
 matplotlib.pyplot, 20, 30, 44, 45, 48–57, 60, 65, 79, 80, 85, 208, 301, 305, 307, 308, 310, 313, 316, 390, 394, 437
 mayavi, 72
 mpl_toolkits.mplot3d, 60, 65, 70, 77, 80, 85, 208
 numpy, 20, 24–30, 44, 45, 48–57, 65, 80, 85, 208, 213, 221, 228, 300, 305, 307, 308, 310, 313, 316, 383, 387, 394, 437
 operator, 20, 35
 os, 20, 90–92
 plotly, 72–73
 scipy.integrate, 305, 307, 308, 310, 313, 316, 387, 394
 scipy.optimize, 437
 skimage, 72
 sys, 20, 91
 unicodedata, 61, 65
 vpython, 83

 PYTHON programs, see PYTHON commands, PYTHON functions, PYTHON scripts
 PYTHON py-files, see PYTHON scripts, PYTHON functions
 PYTHON reserved words, 17–18
 None, 24

 PYTHON scripts
 apollo.py, 322
dampharm.py, 322
damposc.py, 307–308, 322
decay.py, 305, 322
decaymod.py, 306–307, 322
drumhead.py, 82, 108–109
dlrvnosc.py, 322
drvnpend.py, 322
ExtractFileName.py, 531
gausint.py, 387
henon.py, 322
irrad.py, 212–214, 239
laplace.py, 208–209
largamp.py, 322
lineshape.py, 45, 46
lineshape.py, 45
lorenz.py, 322
luplot, 44–45, 47
luplot.py, 45
moment.py, 388
onedshm.py, 322
quadpole.py, 225, 255–256
rcfilter.py, 55, 106–107
INDEX

read_irrad.py, 258–259
rossler.py, 322
spiralc.py, 390
spirals.py, 391
stdwaves.py, 312–315, 322
stwave.py, 107–108
turnpts.py, 439
turnptsp.py, 439
twodshm.py, 322
twooscil.py, 322
vandpol.py, 322
wavegd.py, 220–222, 250

PYTHON search path, 91
PYTHON special symbols
'...' (enclose strings), 18, 22
'''...''' (enclose strings), 18
'''...''' (comments), 16, 47
* (multiplication), 20, 21
** (exponentiation), 20, 21
+ (addition), 20, 21
- (subtraction), 20, 21
/ (division), 20, 21
: (range), 26, 41, 56, 70, 311, 445
; (combine statements), 16, 54
= (assignment), 18
== (equal to), 95
# (comments), 16, 47
% (remainder), 20
\ (continue line), 16, 50, 52
f (in format statements), 207
for expressing conditions, 35
j (complex number), 28–29
\n (end of line), 41–43, 91, 208, 214
nan (not a number), 28

PYTHON symbol codes, 55
PYTHON system variables, see PYTHON constants

PYTHON variables

vpython.scene
autoscale, 83
background, 83
height, 83
title, 83
width, 83

Q

Q of resonant circuit, 101
quadratic formula, 44, 130, 428, 429, 470, 471
quadrature, 372–382
adaptive algorithms, 379
assessing error in, 377–379, 382–385, 399–401, 404–406
C programs, 404–409
FORTRAN programs, 399–404
Gauss-Legendre, 382
Gaussian, 379–382, 384–385, 413, 415
iterative algorithms, 379
midpoint rule, 173, 373
Newton-Cotes, 373–379
recursive trapezoidal rule, 376
Romberg integration, 377
roundoff error, see roundoff error
Simpson’s rule, 173, 375, 377, 381, 384, 412, 415
trapezoidal rule, 374, 383, 399, 404
truncation error, see truncation error
with MAPLE, 395–398
with PYTHON, 382–394
quality factor, see Q of resonant circuit
quantum energy levels, see energy levels
quantum probabilities, 360
in hydrogen atom, 69, 102, 214–216, 234, 410, 414
of harmonic oscillator, 360, 389, 396, 413
quantum scattering, 168
quantum wave function, see wave function

R

radius of gyration
definition of, 355
of cardioid, 411
of semicircular plate, 364
railroad problem, 473
range of projectiles, see trajectories
Rayleigh criterion, 474
reaction kinetics, 345
reading data
from files
in C, 227
in FORTRAN, 226
in pseudocode, 193
in PYTHON, 40–41, 228
from keyboard
in C, 205–206
in FORTRAN, 198–199
in pseudocode, 180
in PYTHON, 94–95
recasting
algorithms, 230
control structures, 229
recursion relationship, 290
redirection of output in UNIX, 197, 204
reflection at dielectric film, 99
relativity
mass/momentum/energy, 99
motion under constant force, 362
relaxation, 189–190
residual, 436
resonance
in LRC circuit, 101, 274, 341
restoring initial state
in MAPLE, 112, 160
in PYTHON, 94
returning to command level
  in MAPLE, 112
  in PYTHON, 16
returning to operating system
  from MAPLE, 112
  from PYTHON, 16
ReVTEX, 519
Richardson extrapolation, 376, 383
Rodriques' formula, 167
Romberg integration, see quadrature
root finding
  accuracy in, 436–437
    by bisection, 434, 438–439, 452–455, 459–462
    by Laguerre’s method, 436
    by Müller’s method, 436
    by secant method, 435, 438–439
    by trial and error, 451–452, 458–459, 468–469
  in C, 460–463, 470
  in FORTRAN, 454–457, 469
  in MAPLE, 429–434, 446–450, 469
  in PYTHON, 437–446, 467, 470
roundoff error
  in numerical quadrature, 377
  in ODEs, 297
rubber lengths in \LaTeX, 489
Ruchardt’s experiment, 478
Runge-Kutta methods, 294–297
running program, see Local Guide

S

saving files, see writing data to files
scalar fields
  three-dimensional, 214–216
    in C, 215–216
    in FORTRAN, 215
    in PYTHON, 216
  two-dimensional, 209–214
    in C, 210–212
    in FORTRAN, 209–210
    in PYTHON, 212–214
Schrödinger equation, 278–279, 289–290, 315–320, 427, 444–446
search path
  in MAPLE, 159
  in PYTHON, 91
secant method, see root finding
separating statements on one line
  in C, 202
  in MAPLE, 112
  in pseudocode, 182
  in PYTHON, 16, 34, 54
sequences
  in MAPLE, 114, 118–119
series solutions to ODEs, 290–291
sets
  in MAPLE, 114, 119
  in PYTHON, 22–24
shooting method, 312
sigmoid curve, 272, 286
simple pendulum, 343, 356, 370–371, 414
Simpson’s rule, see quadrature
simultaneous equations
  by direct methods, 466
  by iterative methods, 466
    linear, 464–467
    nonlinear, 467–470
singular equations, 465
singular value decomposition, 467
solving Laplace’s equation, see Laplace’s equation
solving linear equations, 464–467
  in MAPLE, 131
  in PYTHON, 29
solving ODEs
  with C, 332–338
  with FORTRAN, 325–332
  with MAPLE, 280–291, 323–325
  with PYTHON, 300–323
source code, 178
special symbols
  in C, see C special symbols
  in FORTRAN, see FORTRAN special symbols
  in MAPLE, see MAPLE special symbols
  in PYTHON, see PYTHON special symbols
spherical coordinates
  in MAPLE, 175
spurious roots, 421, 427, 445, 450
stable equilibrium, 422
standing waves
  in cube, 102, 234
  in string, 277–278, 288–289, 312–315, 342
Stark effect, 98, 171, 471
startup files, see initialization files
structure of data files, 190–191
subroutines
  in C, see C functions
  in FORTRAN, see FORTRAN subroutines
  in MAPLE, see MAPLE functions
  in PYTHON, see PYTHON functions, PYTHON scripts
suppressing evaluation
  in MAPLE, see inert commands, 136
suppressing output
  in MAPLE, 112
  in PYTHON, 22

T

tables
  in \LaTeX, 498–500
  in MAPLE, 114
Taylor series
INDEX

for solving ODEs, 294–298
for solving simultaneous equations, 469
in MAPLE, 135, 164, 167, 173
termination of statements
in C, 202
in MAPLE, 112
in pseudocode, 182
in PYTHON, 16
\TeX, 483, 491
\TeX contact information, 483, 535
\TeX output
from MAPLE, see LATEX output
texdoc, 503, 525
\TeXlive, 1
\TeXlive contact information, 535
text editors, see Local Guide
text in graphics, see placing text in graphics
TGIF, 1
TGIF contact information, 535
thermal equilibrium, 101
thin lens equation, 99
tikz, 503–506
tikz commands
\definecolor, 504
\draw, 504–505
\foreach, 504, 505
\node, 504, 505
\x, 504, 505
trajectories, 353
double pendulum, 340
earth falling into sun, 410, 413
exponentially decaying force, 410
in central forces, 275–277, 309–312, 343, 344
in constant magnetic field, 85, 160, 234
in Coulomb field, 341
in crossed E and B, 344
simple harmonic oscillator, 410
under constant force, 362, 409
transformation rules
in MAPLE, 117
transmission at dielectric film, 99
transpose
in MAPLE, 132, 147
in PYTHON, 28
trapezoidal rule, see quadrature
tree-structured directories, 8
tridiagonal systems, 466, 477
truncation error
global, 298
in midpoint formula, 378
in numerical quadrature, 377, 401, 407
in ODEs, 297, 301–302
in Simpson’s rule, 378
in trapezoidal rule, 378, 383, 400, 405
per step, 298
truth table, 181
tuples
in PYTHON, 22–24
turning points, 360, 389, 413, 422, 430, 438–439, 447, 452–454, 458–460, 473
two’s complement notation, 6
two-way selection
in C, 205, 459
in FORTRAN, 198, 453
in MAPLE, 146
in pseudocode, 182
in PYTHON, 35–36

U

UNIX, 1
UNIX commands
aspell, 515–516
c_, 203, 264, 265, 333, 336, 338, 458, 460, 461, 463
cleanbak, 524
cleanTEX, 524
cp, 263, 264
dvipdfm, 488
dvips, 487
f77, 197, 263, 326, 329, 331, 400, 401, 452–454, 456
f90, 197
f95, 197
ispell, 515–516
latex, 486, 487
lp, 488
ls, 511
pdfcrop, 510–511
pdflatex, 487
pdftops, 511
ps2pdf, 488
python, 16
setenv, 92
texdoc, 503
xdvi, 488
UNIX shell scripts
ceps2pdf, 510–511, 530
cleanbak, 524
cleanTEX, 524
cps2pdf, 510–511, 530
dfileeps, 511, 530
rdfileeps, 511, 530
UNIX special symbols
> (output redirection), 197, 204
UNIX tutorial, see Local Guide
unstable equilibrium, 422
user accounts, see Local Guide
user-defined commands, see Local Guide
user-defined functions
in C, see C functions
in FORTRAN, see FORTRAN functions
in MAPLE, see MAPLE functions
in PYTHON, see PYTHON functions
user-defined subroutines
in C, see C functions
in FORTRAN, see FORTRAN subroutines

V
Van der Pol oscillator, 343
variable names
  in C, 202
  in FORTRAN, 193, 195
  in MAPLE, 115
  in pseudocode, 178
  in PYTHON, 17–18
vector arrays
  three-dimensional, 223–225
  two-dimensional, 217–222
vector calculus
  with MAPLE, 142–143
vector fields
  three-dimensional
    in C, 224–225
    in FORTRAN, 224
    in PYTHON, 225
  two-dimensional
    in C, 219–220
    in FORTRAN, 218–219
    in PYTHON, 220–222
vector identities, 175
vectors
  in MAPLE, 119–122
velocity field
  of rotating object, 235
vibrating string, 79–80
vim, 1
viscous damping, 269, 272

W
wave function, 278–279, 315–320, 360, 411, 413
Wheatstone bridge, 168
Windows, 1
Windows batch files
ceps2pdf.bat, 510–511, 529
cleanbak.bat, 524
cleanTEX.bat, 524
cps2pdf.bat, 510–511, 529
rdfileeps.bat, 511, 529

rdfileps.bat, 511, 529

Windows commands
cleanbak, 524
cleanTEX, 524
dir, 511
dvipdfm, 488
dvips, 487
latex, 486, 487
pdfcrop, 510–511
pdflatex, 487
pdf2ps, 511
print, 488
ps2pdf, 488
python, 16
set, 92
setx, 92
texdoc, 503
yap, 488

Winedt, 1
Winedt contact information, 535
writing data to files, 234
  in FORTRAN, 197, 209–210, 215, 218–219, 224
  in pseudocode, 190–193
  in PYTHON, 41–43, 212–214, 216, 220–222, 225
writing data to screen
  in C, 201, 203
  in FORTRAN, 194, 196
  in pseudocode, 180
  in PYTHON, 20–24

X
xdvi, 488, 514–515
Xemacs, 1
Xemacs contact information, 536
xmaple, 112
Xv contact information, 536

Y
yap, 488, 514–515